Neutron star phenomenology using the Dyson–Schwinger equations

Mateusz Cierniak

Division of Elementary Particle Theory, Institute of Theoretical Physics, University of Wroclaw.

< □ > < @ > < 注 > < 注 > ... 注

Overview

- Motivation
- The Dyson–Schwinger equations

2 DSE models

- Munczek–Nemirovsky model (M.C., T.Klähn)
- vBag (T.Klähn, T.Fischer, M.C.)

3 Conclusions

Motivation The Dyson–Schwinger equations

Motivation

Mateusz Cierniak Neutron star phenomenology using DSE

æ

Motivation The Dyson–Schwinger equations

QCD phase diagram

¹Image retrieved from http://theor0.jinr.ru/twiki-cgi/view/NICA. 🛓 🗠 🤉

Motivation The Dyson–Schwinger equations

QCD phase diagram

¹Image retrieved from http://theor0.jinr.ru/twiki-cgi/view/NICA. 🛓 🗠 ۹ 🤉

Motivation The Dyson–Schwinger equations

²Image courtesy of Thomas Klähn

Mateusz Cierniak

Neutron star phenomenology using DSE

Motivation The Dyson–Schwinger equations

The Dyson–Schwinger equations

Mateusz Cierniak Neutron star phenomenology using DSE

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivation The Dyson–Schwinger equations

The Quark Dyson–Schwinger equation

• One particle propagator in-medium

$$S^{-1}(p,\mu) = i\vec{\gamma}\vec{p} + i\gamma_4(p_4 + i\mu) + m + \Sigma(p,\mu)$$

Self–energy term

$$\Sigma(p,\mu) = \int rac{d^4 q}{(2\pi)^4} g^2 D_{
ho\sigma}(p-q) \gamma^
ho rac{\lambda^lpha}{2} S(q) \Gamma^\sigma_lpha(p,q)$$

★ ∃ ► < ∃ ►</p>

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

Munczek–Nemirovsky model (M.C., T.Klähn)

Mateusz Cierniak Neutron star phenomenology using DSE

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

• Quark DSE:

$$S^{-1}(p,\mu) = i\vec{\gamma}\vec{p} + i\gamma_4(p_4 + i\mu) + m + \Sigma(p,\mu)$$

• Interaction term:

$$\Sigma(p,\mu) = \int rac{d^4 q}{(2\pi)^4} g^2 D_{
ho\sigma}(p-q) \gamma^
ho rac{\lambda^lpha}{2} S(q) \Gamma^\sigma_lpha(p,q)$$

• General form of the propagator:

$$S^{-1}(p,\mu) = i\bar{\gamma}\bar{p}A(p,\mu) + i\gamma_4\tilde{p}_4C(p,\mu) + B(p,\mu)$$

• The MN truncation:

$$g^2 D^{\rho\sigma}(k) = 3\pi^4 \eta^2 \delta^{\rho\sigma} \delta^{(4)}(k)$$

• Solution:

$$\begin{cases} A(p,\mu) = C(p,\mu) = \frac{2B(p,\mu)}{B(p,\mu)+m} & \begin{bmatrix} \tilde{p}^2 = \bar{p}^2 + (p_4 + i\mu)^2 \end{bmatrix} \\ B^4 + mB^3 + B^2(4\tilde{p}^2 - m^2 - \eta^2) - mB(4\tilde{p}^2 + m^2 + 2\eta^2) - \eta^2 m^2 = 0 \\ B^4 + mB^3 + B^2(4\tilde{p}^2 - m^2 - \eta^2) - mB(4\tilde{p}^2 + m^2 + 2\eta^2) - \eta^2 m^2 = 0 \end{cases}$$

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

³Cierniak, Klähn, Acta Phys.Polon.Supp. 10 (2017) 811 🗇 🗟 🖘 🖘

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

• DSE results (*m* = 0), Nambu–Goldstone phase

$$\begin{cases} A(p,\mu) = C(p,\mu) = 2\\ B(p,\mu) = \pm \sqrt{\eta^2 - 4\tilde{p}^2} \end{cases}$$

• DSE results (m = 0), Wigner-Weyl phase

$$\begin{cases} A(p,\mu) = C(p,\mu) = \frac{1}{2} \left(1 + \sqrt{1 + \frac{2\eta^2}{\vec{p}^2}} \right) \\ B(p,\mu) = 0 \end{cases}$$

³Cierniak, Klähn, Acta Phys.Polon.Supp. 10 (2017) 🛿 11 🗇 🛛 🖘 🖘 🐲 🖉

Introduction DSE models Conclusions

Scalar density

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

0.6 |p| [GeV]

-0.6

-0.8

 $f_2(p,\mu) = rac{1}{4\pi} \int_{-\infty}^{\infty} dp_4 \operatorname{Tr}[S(p,\mu)]$

• Vector (particle number) density

メロト メロト メヨト メヨト

э

⁴Klähn et al., Phys.Rev.C 82 (2010) 035801

Mateusz Cierniak Neutron star phenomenology using DSE

DSE models

Munczek-Nemirovsky model (M.C., T.Klähn)

Pressure

$$P(\mu) = P^0 + \int_0^\mu dz n_v(z)$$

• Strategy 1 [4]:

$$\left\{ egin{array}{ll} B=\sqrt{\eta^2-4 ilde{p}^2} & {\it Re}(ilde{p}^2)<\eta^2/4\ B=0 & otherwise \end{array}
ight.$$

0.0010 • Strategy 2: 0.0005 $\left\{egin{array}{ll} B=\sqrt{\eta^2-4 ilde{
ho}^2} & (ilde{
ho}^2\in\mathbb{R})<\eta^2/4\ B=0 & otherwise \end{array}
ight.$ 0.0000 1.0 0.4 0.2 0.6 0.8 -0.0005 -0.0010 ⁴Klähn et al., Phys.Rev.C 82 (2010) 035801 Mateusz Cierniak

Neutron star phenomenology using DSE

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

vBag (T.Klähn, T.Fischer, M.C.)

Mateusz Cierniak Neutron star phenomenology using DSE

э

- 4 同 6 4 日 6 4 日 6

vBag (T.Klähn, T.Fischer, M.C.)

• Quark DSE:

$$S^{-1}(p,\mu) = i\vec{\gamma}\vec{p} + i\gamma_4(p_4 + i\mu) + m + \Sigma(p,\mu)$$

Interaction term:

$$\Sigma(p,\mu) = \int rac{d^4q}{(2\pi)^4} g^2 D_{
ho\sigma}(p-q) \gamma^{
ho} rac{\lambda^{lpha}}{2} S(q) \Gamma^{\sigma}_{lpha}(p,q)$$

General form of the propagator:

$$S^{-1}(p,\mu) = i\bar{\gamma}\bar{p}A(p,\mu) + i\gamma_4\tilde{p}_4C(p,\mu) + B(p,\mu)$$

The truncation:

$$g^2 D_{
ho\sigma}(
ho-q) = \delta_{
ho\sigma} rac{1}{m_G^2} \Theta(\Lambda^2-ec{
ho}^2)$$

• Solution: $\begin{cases} A(p,\mu) = 1\\ B(p,\mu) = m + \frac{16N_c}{9m_G^2} \int_{\Lambda} \frac{d^4q}{(2\pi)^4} \frac{B(q,\mu)}{\vec{q}^2 A^2(q,\mu) + \vec{q}_4^2 C^2(q,\mu) + B^2(q,\mu)}\\ \tilde{p}_4^2 C(p,\mu) = \tilde{p}_4 + \frac{8N_c}{9m_G^2} \int_{\Lambda} \frac{d^4q}{(2\pi)^4} \frac{\vec{p}_4 \tilde{q}_4 C(q,\mu)}{\vec{q}^2 A^2(q,\mu) + \tilde{q}_4^2 C^2(q,\mu) + B^2(q,\mu)} \end{cases}$

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

The chiral bag

vBag EoS:

•
$$\mu_f = \mu_f^* + K_v n_{FG,f}(\mu_f^*)$$

•
$$P_f(\mu_f) = P_{FG,f}(\mu_f^*) + \frac{K_v}{2} n_{FG,f}^2(\mu_f^*) - \frac{B_{\chi,f}}{2}$$

•
$$P^Q = \sum P_f(\mu_f)$$

•
$$\epsilon_f(\mu_f) = \epsilon_{FG,f}(\mu_f^*) + \frac{K_v}{2}n_{FG,f}^2(\mu_f^*) + \frac{B_{\chi,f}}{2}$$

•
$$\epsilon^Q = \sum \epsilon_f(\mu_f)$$

•
$$n_{v,f}(\mu_f) = n_{FG,f}(\mu_f^*)$$

⁵Cierniak, Klähn, Fischer, Bastian, Universe 4 (2018) 2, 30 + (=) (=) - (=) (0, 1)

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

The (de)confinement bag

vBag EoS:

•
$$\mu_f = \mu_f^* + K_v n_{FG,f}(\mu_f^*)$$

•
$$P_f(\mu_f) = P_{FG,f}(\mu_f^*) + \frac{K_v}{2} n_{FG,f}^2(\mu_f^*) - B_{\chi,f}$$

•
$$P^Q = \sum P_f(\mu_f) + \frac{B_{dc}}{B_{dc}}$$

•
$$\epsilon_f(\mu_f) = \epsilon_{FG,f}(\mu_f^*) + \frac{K_v}{2}n_{FG,f}^2(\mu_f^*) + B_{\chi,f}$$

э

•
$$\epsilon^{Q} = \sum \epsilon_{f}(\mu_{f}) + B_{dc}$$

•
$$n_{v,f}(\mu_f) = n_{FG,f}(\mu_f^*)$$

⁶Klähn, Fischer, Astrophys.J. 810 (2015) 2, 134 → □ → → *d* → → *z* → → *z* →

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

Vector repulsion

vBag EoS:

•
$$\mu_f = \mu_f^* + K_v n_{FG,f}(\mu_f^*)$$

•
$$P_f(\mu_f) = P_{FG,f}(\mu_f^*) + \frac{K_v}{2} n_{FG,f}^2(\mu_f^*) - B_{\chi,f}$$

•
$$P^Q = \sum P_f(\mu_f) + B_{dc}$$

•
$$\epsilon_f(\mu_f) = \epsilon_{FG,f}(\mu_f^*) + \frac{K_v}{2} n_{FG,f}^2(\mu_f^*) + B_{\chi,f}$$

•
$$\epsilon^{Q} = \sum \epsilon_{f}(\mu_{f}) + B_{dd}$$

•
$$n_{v,f}(\mu_f) = n_{FG,f}(\mu_f^*)$$

⁵Cierniak, Klähn, Fischer, Bastian, Universe 4 (2018) 2, 30 → < ≣ → < ≣ → ⊂ ∞ < ⊂

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

Mass-radius relation

⁵Cierniak, Klähn, Fischer, Bastian, Universe 4 (2018) 2, 30 → 4 ≣ → 4 ≡ → 1 ≡ → 9 α 0

Mateusz Cierniak Neutron star phenomenology using DSE

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

vBag at $T \neq 0$

vBag EoS:

• $\mu_f = \mu_f^* + K_v n_{FG,f}(\mu^*)$

•
$$P_f(\mathbf{T},\mu_f) = P_{FG,f}(\mathbf{T},\mu_f^*) + \frac{K_v}{2}n_{FG,f}^2(\mu_f^*) - B_{\chi,f}$$

•
$$P^Q = \sum P_f(T, \mu_f) + B_{dc}(T)$$

•
$$\epsilon_f(\mathbf{T},\mu_f) = \epsilon_{FG,f}(\mathbf{T},\mu_f^*) + \frac{K_v}{2}n_{FG,f}^2(\mu_f^*) + B_{\chi,f}$$

•
$$\epsilon^{Q} = \sum \epsilon_{f}(T, \mu_{f}^{*}) - B_{dc}(T) + T \frac{\partial B_{dc}(T)}{\partial T}$$

•
$$n_f(\mu_f) = n_{FG,f}(\mu_f^*)$$

•
$$s_f(T, \mu_f) = \frac{\partial P_f(T, \mu_f)}{\partial T}\Big|_{\mu}$$

•
$$s(T, \mu_f) = \sum s_f(T, \mu_f) + \frac{\partial B_{dc}(T)}{\partial T}$$

•
$$\mu_B = \mu_u + 2\mu_d$$

•
$$n_B = \frac{\partial P}{\partial \mu_B}$$

⁶Klähn, Fischer, Astrophys.J. 810 (2015) 2, 134

⁷Fischer, Klähn, Hempel, Eur.Phys.J. A52 (2016) 8,□225 🗇 🔖 ϵ 🖹 🕨 📑

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

vBag at $T \neq 0$ and $\mu_C \neq 0$

vBag EoS:

• $\mu_f = \mu_f^* + K_v n_{FG,f}(\mu^*)$

•
$$P_f(T, \mu_f) = P_{FG,f}(T, \mu_f^*) + \frac{K_v}{2}n_{FG,f}^2(\mu_f^*) - B_{\chi,f}$$

•
$$P^Q = \sum P_f(T, \mu_f) + B_{dc}(T)$$

•
$$\epsilon_f(\mathbf{T},\mu_f) = \epsilon_{FG,f}(\mathbf{T},\mu_f^*) + \frac{K_v}{2}n_{FG,f}^2(\mu_f^*) + B_{\chi,f}$$

•
$$\epsilon^{Q} = \sum \epsilon_{f}(T, \mu_{f}^{*}) - B_{dc}(T) + T \frac{\partial B_{dc}(T)}{\partial T} + \mu_{C} \frac{\partial B_{dc}(T, \mu_{C})}{\partial \mu_{c}}$$

э

•
$$n_f(\mu_f) = n_{FG,f}(\mu_f^*)$$

•
$$s_f(T, \mu_f) = \frac{\partial P_f(T, \mu_f)}{\partial T}\Big|_{\mu_f}$$

•
$$s(T, \mu_f) = \sum s_f(T, \mu_f) + \frac{\partial B_{dc}(T)}{\partial T}$$

•
$$\mu_B = \mu_u + 2\mu_d$$

•
$$n_B = \frac{\partial P}{\partial \mu_B}$$

•
$$\mu_c = \mu_u - \mu_d$$

⁸Klähn, Fischer, Hempel, Astrophys.J. 836 (2017) 1, 89 ↔ ↔ ↔ ↔ ↔ ↔

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

Phase diagram

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

Phase diagram

э

Munczek–Nemirovsky model (M.C., T.Klähn) vBag (T.Klähn, T.Fischer, M.C.)

Phase diagram

Mateusz Cierniak

Neutron star phenomenology using DSE

э

Conclusions and outlook

- Dyson-Schwinger equations are a useful tool for deriving dense matter properties for use in astrophysical studies
- The NJL model can be derived as truncations of the QCD DSE
- DSE can be used to derive hadrons as bound states of quarks
- So far no attempts have been made to study NS properties using a consistent DSE-derived hadron matter model