(CONVIRG) PROMETEO GROUP

CLAUDIO BARBIERI - PHD STUDENT

ELECTROMAGNETIC COUNTERPARTS OF BLACK HOLE – NEUTRON STAR MERGERS

The first compact star merger event – Implications for nuclear and particle physics, Trento, October 14-18 2019

1

E.M. COUNTERPARTS

KILONOVA

The NS releases neutron-rich ejecta -> r-processes produce heavy elements far from the "valley of stability" -> radioactive decay -> kilonova emission.

GRB PROMPT

- The disc accretes onto the remnant BH -> Relativistic jet launch (Blandford-Znajek).
- Internal Shocks and/or magnetic reconnection -> GRB Prompt emission.

Jet - Environment interaction -> Salafia, Barbieri et al. 19, Submitted to A&A, (arXiv:1907.07599) 4/34

GRB AFTERGLOW

The jet propagates into the Interstellar Medium (ISM). When it decelerates, a forward shock is formed. ISM electrons are accelerated (Fermi process) and produce synchrotron radiation: the **GRB afterglow**.

KILONOVA RADIO REMNANT

Same as GRB afterglow. When the dynamical ejecta decelerates through interaction with ISM, a forward shock forms and synchrotron radiation is produced.

GW SIGNAL AND E.M. COUNTERPARTS OF BHNS MERGERS

GW SIGNAL AND E.M. COUNTERPARTS OF BHNS MERGERS

GW SIGNAL AND SNR IN 03 NETWORK

Using pycbc

$$\begin{split} M_{\rm BH}, \ M_{\rm NS}, \ d_{\rm L}, \ \theta_{\rm v} & & \tilde{h}_{+}, \ \tilde{h}_{\times} \\ \alpha, \ \delta, \ \psi, \ T & & \text{Interferometer antenna pattern } p_{+}^{\rm i}, \ p_{\times}^{\rm i} \\ \tilde{h}_{\rm obs}^{\rm i} = p_{+}^{\rm i} \times \tilde{h}_{+} + p_{\times}^{\rm i} \times \tilde{h}_{\times} \\ {\rm SNR}^{\rm i} = \sqrt{\int \frac{4\nu |\tilde{h}_{\rm obs}^{\rm i}|^2}{{\rm PSD}^{\rm i}} d\nu} \\ {\rm SNR}^{\rm Network} = \sqrt{\sum_{\rm i} ({\rm SNR}^{\rm i})^2} \\ {\rm Detection} : {\rm SNR}^{\rm Network} \ge 12 \end{split}$$

GW SIGNAL AND E.M. COUNTERPARTS OF BHNS MERGERS

11/34

MERGER RESULT

GW SIGNAL AND E.M. COUNTERPARTS OF BHNS MERGERS

KILONOVA AND GRB AFTERGLOW LIGHT CURVES

1) EM counterparts dependence on the BH properties

EM COUNTERPARTS DEPENDENCE ON THE BH PROPERTIES

Barbieri et al. 19 [1], Published on A&A, (DOI 10.1051/0004-6361/201935443) "Light curve models of BHNS mergers: steps towards a multi-messenger parameter estimation"

EM COUNTERPARTS DEPENDENCE ON THE BH PROPERTIES

- 1) EM counterparts dependence on the BH properties
- 2) EM counterparts dependence on the NS properties

EM COUNTERPARTS DEPENDENCE ON THE NS PROPERTIES

Barbieri et al. 19 [2], Submitted to EPJA, (arXiv:1908.08822) "EM counterparts of BH-NS mergers: dependence on the NS properties"

20/34

EM COUNTERPARTS DEPENDENCE ON THE NS PROPERTIES

- 1) EM counterparts dependence on the BH properties
- 2) EM counterparts dependence on the NS properties
- 3) BHNS can "mimick" NSNS kilonovae

BHNS CAN "MIMICK" NSNS KILONOVAE

Barbieri et al. 19 [2]

- 1) EM counterparts dependence on the BH properties
- 2) EM counterparts dependence on the NS properties
- 3) BHNS can "mimick" NSNS kilonovae
- 4) Light curves degeneracy

LIGHT CURVES DEGENERACY

Barbieri et al. 19 [1,2]

Light curves display a large **degeneracy** introduced by different combinations of binary parameters. <u>Through the EM observations alone it is not possible to constrain the intrinsic binary parameters</u>.

- 1) EM counterparts dependence on the BH properties
- 2) EM counterparts dependence on the NS properties
- 3) BHNS can "mimick" NSNS kilonovae
- 4) Light curves degeneracy
- 5) Power of multi-messenger astronomy

POWER OF MULTI-MESSENGER ASTRONOMY

POWER OF MULTI-MESSENGER ASTRONOMY

Barbieri et al. 19 [1]

1.0 0.8

0.6-0.4-0.2-

2.4

3.2

2.4-1.6-0.8-

5.0

7.5

 $M_{\rm BH} [M_{\odot}]$

12.5

10.0

0.2 0.4 0.6

 $\chi_{\rm BH}$

0.8 1.0

1.2

2.4

0.8

2.0

1.6

 $M_{\rm NS} [M_{\odot}]$

1.6 2.4 3.2

 $log(\Lambda_{NS})$

 $\chi_{
m BH}$

M_{NS} [M₀]

log(A_{NS})

 How the info from an EM counterpart can complement that from the GW signal?
 Proof-of-concept multi-messenger PE -> observation and modeling of the kilonova can break the degeneracies, leading to <u>better constraints</u> on i.e. the BH spin.

		log-flat prior on $\Lambda_{\rm NS}$	log-normal prior on $\Lambda_{\rm NS}$
	$M_{\rm BH}[{\rm M}_\odot]$	$5.6^{+1.9}_{-1.3}$	$6.1^{+2.0}_{-1.3}$
	$\chi_{ m BH}$	$0.7^{+0.2}_{-0.3}$	$0.8^{+0.1}_{-0.2}$
	$M_{ m NS}$ [${ m M}_{\odot}$]	$1.5_{-0.3}^{+0.4}$	$1.4^{+0.3}_{-0.3}$
	$\log(\Lambda_{\rm NS})$	$2.7^{+0.3}_{-0.6}$	$2.5^{+0.2}_{-0.1}$
-			
1.0 0.8 0.6 0.4 0.2	C		
2.4-	~		
2.0- 1.6-			
1.2-	1 Cell		
3.00-			
2.75			
2.25- 2.00-			
	5.0 7.5 10.0 12.	5 0.2 0.4 0.6 0.8 1.0 1	.2 1.6 2.0 2.4 2.00 2.25 2.50 2.75
	<i>M</i> _{BH} [<i>M</i> _☉]	Х вн	$M_{\rm NS} [M_{\odot}]$ log($\Lambda_{\rm NS}$)
	i lifi i lifi lifi		
لے	f i i ! ! !~]		

28/34

- 1) EM counterparts dependence on the BH properties
- 2) EM counterparts dependence on the NS properties
- 3) BHNS can "mimick" NSNS kilonovae
- 4) Light curves degeneracy
- 5) Power of multi-messenger astronomy
- 6) Differences between NSNS and BHNS with the same M_{chirp}

Barbieri et al. 19 [3], in preparation

 If BH and NS mass distributions are adjacent, there exist a range of <u>"ambiguous"</u> M_{chirp} values compatible with both NSNS and BHNS.

Barbieri et al. 19 [3]

- Differences of the ejecta
- Non-spinning BH!

NSNS ejecta properties: Radice+18

II)

Barbieri et al. 19 [3]

- Differences of the ejecta
- Non-spinning BH!

I) 1.46 M_☉ NS - 1.27 M_☉ NS (GW170817-like), M_{chirp} = 1.18 M_☉

Dynamical Ejecta: ~10⁻³ M_☉ Accretion Disc: ~3x10⁻² M_☉ Wind Ejecta: ~3x10⁻³ M_☉ Secular Ejecta: ~10⁻² M_☉

2 M_☉ NS - 1.6 M_☉ NS M_{chirp} = 1.55 M_☉

Dynamical Ejecta: Absent Accretion Disc: ~10⁻³ M_• Wind Ejecta: ~3x10⁻⁵ M_• Secular Ejecta: ~10⁻⁴ M_•

Dynamical Ejecta: ~10⁻² M_☉ Accretion Disc: ~3x10⁻² M_☉ Wind Ejecta: ~3x10⁻⁴ M_☉ Secular Ejecta: ~10⁻² M_☉ 32/34 ... almost!

THANK YOU FOR THE ATTENTION!

Low spins ?

 LVC detections of ten BHBH mergers indicate that the effective spins cluster around ~ 0. Large spins ?

- Belczynski+17, Arca Sedda+19: high natal spins for BHs below 20-30 M_o
- Galactic binaries : X-ray bright sources -> spins above 0.85
- Galactic binaries: transient -> large spread of spins from 0 to above 0.95

 $\frac{M_1\chi_1(\cos\theta_1) + M_2\chi_2(\cos\theta_2)}{M_1 + M_2}$

Isolated binaries or dynamically formed?