Supported by ERC through Starting Grant no. 759253

European Research Council Established by the European Commission

Neutron star mergers and matter under extreme conditions

The first compact star merger event – implictations for nuclear and particle physics

ECT* Trento, 17/10/2019

Andreas Bauswein

(GSI Darmstadt)

Outline

- ► R-process in NS mergers
- ► Multi-messenger interpretation of GW170817 \rightarrow lower limit on NS radii \rightarrow Collapse behavior (EoS dependence of BH formation)
- ► Postmerger GW emission
- ► Signatures of the QCD phase transition

Collapse behavior and multi-messenger EoS constraints

 $\longrightarrow M_{
m thres} = (3.45 \pm 0.05) \ M_{\odot}$ (for this particular EoS)

Collapse behavior: Prompt vs. delayed (/no) BH formation

<u>Relevant for:</u> EoS constraints through M_{max} measurement, Conditions for short GRBs, Mass ejection, Electromagnetic counterparts powered by thermal emission, NS radius constraints !!!

Collapse behavior

EoS dependent - somehow M_{max} should play a role

Simulations reveal M_{thres}

TOV properties of nonrotating							
					•		
EoS	$M_{\rm max}$ (M_{\odot})	R _{max} (km)	C _{max}	<i>R</i> _{1.6} (km)	$M_{ m thres}$ (M_{\odot})		
NL3 [37,38]	2.79	13.43	0.307	14.81	3.85		
GS1 [39]	2.75	13.27	0.306	14.79	3.85		
LS375 [40]	2.71	12.34	0.325	13.71	3.65		
DD2 [38,41]	2.42	11.90	0.300	13.26	3.35		
Shen [42]	2.22	13.12	0.250	14.46	3.45		
TM1 [43,44]	2.21	12.57	0.260	14.36	3.45		
SFHX [45]	2.13	10.76	0.292	11.98	3.05		
GS2 [46]	2.09	11.78	0.262	13.31	3.25		
SFHO [45]	2.06	10.32	0.294	11.76	2.95		
LS220 [40]	2.04	10.62	0.284	12.43	3.05		
TMA [44,47]	2.02	12.09	0.247	13.73	3.25		
IUF [38,48]	1.95	11.31	0.255	12.57	3.05		

 Merger property from simulations

Bauswein et al. 2013

Smooth particle hydrodynamics + conformal flatness

Threshold binary mass

Empirical relation from simulations with different M_{tot} and EoS

 $k = M_{\rm t}$

Fits (to good accuracy):

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{\rm max}) = \left(-3.38 \frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max}$$

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{1.6}) = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

Both better than 0.06 M_{sun},

$$k = M_{\rm thres}/M_{\rm max}$$

EoS constraints from GW170817*

\rightarrow lower bound on NS radii

(recall: upper bound from tidal deformability)

* See also Margalit & Metzger 2017, Shibata et al. 2017, Radice et al. 2018, Rezzolla et al. 2018, Ruiz & Shapiro 2018, Capano et al 2019,... for other EoS constraints in the context of GW170817

A simple but robust NS radius constraint from GW170817

High ejecta mass inferred from electromagnetic transient

(high compared to simulations)

- \rightarrow provides strong support for a delayed/no collapse in GW170817
- \rightarrow even asymmetric mergers that directly collapse do not produce such massive ejecta

Reference	$m_{ m dyn} \left[M_{\odot} ight]$	$m_{ m w}\left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	-
Arcavi et al. (2017)	-	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. (2017b)	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	_
Perego et al. (2017)	0.005 - 0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. $(2017a)$	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03

Figure 1. NGC4993 grz color composites ($1'_5 \times 1'_5$). Left: composite of detection images, including the discovery z image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Soares-Santos et al 2017

Compilation in Cote et al 2018

- Ejecta masses depend on EoS and binary masses
- Note: high mass points already to soft EoS (tentatively/qualitatively)
- Prompt collapse leads to reduced ejecta mass
- ▶ Light curve depends on ejecta mass:
 → 0.02 0.05 M_{sun} point to delayed collapse

Compilation Wu et al 2016: dynamical and secular ejecta comparable

EoS and binary-mass dependence:

Bauswein et al. 2013

Only dynamical ejecta

Collapse behavior

(1) If GW170817 was a delayed (/no) collapse:

 $M_{\rm thres} > M_{\rm tot}^{GW170817}$

(2) Recall: empirical relation for threshold binary mass for prompt collapse:

$$M_{\rm thres} = \left(-3.38 \frac{G M_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max} > 2.74 M_{\odot}$$

(with M_{max}, R_{max} unknown)

(3) Causality: speed of sound $v_S \le c$

$$\Rightarrow M_{\max} \le \frac{1}{2.82} \frac{c^2 R_{\max}}{G}$$

Putting things together:

$$M_{\rm tot}^{GW170817} \le \left(-3.38 \frac{G M_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max} \le \left(-\frac{3.38}{2.82} + 2.43\right) \frac{1}{2.82} \frac{c^2 R_{\rm max}}{G}$$

 \rightarrow Lower limit on NS radius

Bauswein et al. 2017

NS radius constraint from GW170817

- ► R_{max} > 9.6 km
- ► R_{1.6} > 10.7 km
- Excludes very soft nuclear matter
- Similar argument for Lambda in Radice et. al 2018
- follow-up Koeppel et al 2019 (same idea) arriving at similar constraints of 10.7 km
- See Capano et al. 2019 for an application within Bayesian statistics framework

Bauswein et al. 2017

Radice et al 2018

Radius vs. tidal deformability

Radius and tidal deformability scale tightly \rightarrow Lambda > 210

- Limit cannot be much larger otherwise we could get no direct collapse / dim counterpart (unless one weakens some of the conservative assumptions)
- ▶ Radice et al. 2018 followed a very similar argument claiming Lambda > 400 (300 in Dai 2019)
 → only 4 EoS considered no complete coverage existing simulation data/parameter space
 → no argument why fifth EoS shouldn't lie at Lambda<400 (see also Tews et al. 2018, Kiuchi 2019)
 → full EoS dependence (including Mmax) has to be investigated via Mthres

Discussion - robustness

- ► Binary masses well measured with high confidence error bar
- Clearly defined working hypothesis: delayed collapse
 - \rightarrow testable by refined emission models
 - \rightarrow as more events are observed more robust distinction
- Very conservative estimate, errors can be quantified
- Empirical relation can be tested by more elaborated simulations (but unlikely that MHD or neutrinos can have strong impact on M_{thres})
- Confirmed by semi-analytic collapse model
- ► Low-SNR constraint !!!

Future

- Any new detection can be employed if it allows distinction between prompt/delayed collapse
- ► With more events in the future our comprehension of em counterparts will grow → more robust discrimination of prompt/delayed collapse events
- Low-SNR detections sufficient $!!! \rightarrow$ that's the potential for the future
 - \rightarrow we don't need louder events, but more
 - \rightarrow complimentary to existing ideas for EoS constraints

Future detections (hypothetical discussion)

→ as more events are observed, bands converge to true M_{thres} → prompt collapse constrains M_{max} from above

Bauswein et al. 2017

Semi-analytic model: details

- Stellar equilibrium models computed with RNS code (diff. Rotation, T=0, many different microphysical EoS) => turning points => M_{stab}(J)
- ► Compared to J(M_{tot}) of merger remnants from simulations (very robust result) → practically independent from simulations

Bauswein & Stergioulas 2017

Semi-analytic model reproducing collapse behavior

×

0.32

Bauswein et al 2013: numerical determination of collapse threshold through hydrodynamical simulations

Solid line fit to numerical data Crosses stellar equilibrium models:

- prescribed (simplistic) diff. rotation
- many EoSs at T=0
- detailed angular momentum budget !
- => equilibrium models qualitatively reproduce collapse behavior
- even quantitatively good considering the adopted approximations

Future: Maximum mass

► Empirical relation

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

- Sooner or later we'll know R_{1.6} (e.g. from postmerger) and M_{thres} (from several events through presense/absence of postmerger GW emission or em counterpart)
 - => direct inversion to get precise estimate of M_{max}

A.B., Baumgarte, Janka, PRL 2013

Postmerger GW emission* (dominant frequency of postmerger phase)

 \rightarrow determine properties of EoS/NSs \rightarrow complementary to inspiral

 not detected for GW170817 – expected for current sensitivity and d=40 Mpc (Abbott et al. 2017)

Postmerger

Dominant postmerger oscillation frequency f_{peak} Very characteristic (robust feature in all models)

Gravitational waves – EoS survey

Here only 1.35-1.35 Msun mergers (binary masses measurable) – similar relations exist for other fixed binary setups !!!

~ 40 different NS EoSs

Gravitational waves – EoS survey

Smaller scatter in empirical relation (< 200 m) \rightarrow smaller error in radius measurement Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

GW data analysis: Clark et al 2014, Clark et al 2016, Chatziioannou et al 2017, Bose et al. 2018, Torres-Riva et al 2019, Breschi et al 2019, $\dots \rightarrow$ detectable at a few 10 Mpc

Binary mass variations

Different total binary masses (symmetric)

Fixed chirp mass (asymmetric 1.2-1.5 M_{sun} binaries and symmetric 1.34-1.34 M_{sun} binaries)

Bauswein et al. 2012, 2016

Model-agnostic data analysis

Based on wavelets

Chatziioannou et al. (2017) \rightarrow detectable at a few 10 Mpc

See also Bauswein et al 2012, Clark et al 2014, Clark et al 2016, Chatziioannou et al 2017, Bose et al. 2018, Yang et al 2019, Torres-Riva et al 2019, Breschi et al 2019, Martynov et al 2019, ...

Observable signature of (QCD) phase transition

Phase diagram of matter

Does the phase transition to quark-gluon plasma occur (already) in neutron stars or only at higher densities ?

EoS with 1st-order phase transition to quark matter

Bauswein et al. 2019

- EoS from Wroclaw group (Fischer, Bastian, Blaschke; Fischer et al. 2018) as one example for an EoS with a strong 1st-order phase transition to deconfined quarks
- Difficult to measure transition in mergers through inspiral: Lambda very small, high mass star probably less frequent

Phase transition

► Even strong phase transitions leave relatively weak impact on tidal deformability

 7 different models for quark matter: different onset density, different density jump, different stiffness of quark matter phase

Bauswein et al. 2019

EoSs from Wroclaw group

1.35-1.35 Msun - DD2F-SF-1

Merger simulations

► GW spectrum 1.35-1.35 Msun

But: a high frequency on its own may not yet be characteristic for a phase transition

- \rightarrow unambiguous signature
- $(\rightarrow$ show that all purely baryonic EoS behave differently)

Signature of 1st order phase transition

- Tidal deformability measurable from inspiral to within 100-200 (Adv. Ligo design)
- Postmerger frequency measurable to within a few 10 Hz @ a few 10 Mpc (either Adv. Ligo or upgrade: e.g Clark et al. 2016, Chatzioannou et al 2017, Bose et al 2018, Torres-Rivas et al 2019)
- ▶ Important: "all" purely hadronic EoSs (including hyperonic EoS) follow fpeak-Lambda relation \rightarrow deviation characteristic for strong 1st order phase transition

Discussion

- Consistency with fpeak-Lambda relation points to
 - purely baryonic EoS
 - (or an at most weak phase transition \rightarrow no strong compactification)
 - in the tested (!) density regime
- fpeak also determines maximum density in postmerger remnant
- postmerger GW emission provides complimentary information to inspiral
 - \rightarrow probes higher density regime

Bauswein et al. 2019

Different transitions

- Absolutely stable strange quark matter leads to similar shift (if still considered viable → requires re-hadronization to be compatible with GW170817)
- ► Phase transition without extended stable hybrid star branch → earlier collapse (not necessarily characteristic) → slight dephasing (small quark matter fraction) similar frequencies, i.e. no strong and unambiguous signature of quark matter as hadronic EoS can lead to similar effects

Em counterpart / nucleosynthesi

- Electromagnetic transient powered by radioactive decays (during / after r-process)
 - \rightarrow quasi-thermal emission in UV, optical, infrared
- ► Different ejecta components: dynamical, disk ejecta
- No obvious qualitative differences differences quantitaive differences within expected "hadronic" scatter (simplistic considerations)
- More subtle impact possible, but unlikely (simple model wo neutrinos, network, disk evolution ...) also other characteristic similar: outflow veocity, disk mass, ...

Bauswein et al 2019 – only dynamical ejecta

Bauswein et al 2013

Conclusions

- NS radius must be larger than 10.7 km (very robust and conservative), corresponds to Lambda > 200
- More stringent constraints from future detections
- ► Limit on Mmax !
- ► NS radius measurable from dominant postmerger frequency
- Explicitly shown by GW data analysis
- Threshold binary mass for prompt collapse \rightarrow maximum mass M_{max}
- Strong 1st order phase transitions leave characteristic imprint on GW (postmerger frequency higher than expected from inspiral)
- ► Complementarity of inspiral and postmerger phase → postmerger probes higher density regime