Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	

Numerical Relativity informed kilonova models

Vsevolod Nedora

In collaboration with Sebastiano Bernuzzi¹, Albino Perego², David Radice³

¹Theoretisch-Physikalisches Institut, Friedrich-SchillerUniversität Jena, 07743, Jena, Germany

²Department of Physics of the University of Trento, Trento, Itali

³Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Outline					

- GW170717 GRB 170817 AT2017gfo
- Kilonova (observations and models)
- Binary Neutron Star merger dynamics
- Ejecta mechanisms
- Examples
- Conclusion

Introduction Kilonova Merger Dynamics Examples Conclusion

17th August 2017: GW detection from elliptical galaxy NGC 4993. GW signal 100 seconds.

GRB170817A of ≈ 2 seconds duration

Introduction Kilonova Merger Dynamics Examples Conclusion

17th August 2017: GW detection from elliptical galaxy NGC 4993.

GW signal 100 seconds.

Neutron Star Collision

GRB170817A of ≈ 2 seconds duration

Introduction UNIVERSITAT

GW170717 - GRB 170817 - AT2017gfo

17th August 2017: GW detection from elliptical galaxy NGC 4993. GW signal 100 seconds.

GRB170817A of ≈ 2 seconds duration

Neutron Star Collision

An astronomical transient AT2017gfo 11 hours after the gravitational wave signa. 70 observatories on 7 continents and in space, across the electromagnetic spectrum.

Introduction UNIVERSITAT GW170717 - GRB 170817 - AT2017gfo

17th August 2017: GW detection from elliptical galaxy NGC 4993.

GW signal 100 seconds. GRB170817A of ≈ 2 seconds duration

An astronomical transient AT2017gfo 11 hours after the gravitational wave signa. 70 observatories on 7 continents and in space, across the electromagnetic spectrum.

Neutron Star Collision

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Kilonova					

Kilonova - EM counterpart to the merger, powered by the radioactive decay of newly-produced heavy nuclei.

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Kilonova					

Kilonova - EM counterpart to the merger, powered by the radioactive decay of newly-produced heavy nuclei.

- Blue component: early, low photon opacity
- **Red component**: late, high photon opacity

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Kilonova					

Kilonova - EM counterpart to the merger, powered by the radioactive decay of newly-produced heavy nuclei.

- Blue component: early, low photon opacity
- Red component: late, high photon opacity

 $r\mbox{-}{\rm process}$ nucleosynthesis (source of the heaviest elements) Chemical Evolution of the Universe

r-process nucleosynthesis

- Formation elements heavier than iron
- Requarements: $T > 10^9 \text{K} n_n > 10^{22} \text{ cm}^{-3}$
- Produces: unstable *n*-rich nuclei
- Radioactive decay can power an EM transient

Ejecta Composition Electron Fraction $Y_e = \frac{n_{e^-} - n_{e^+}}{n_b}$ $Y_e = \frac{1}{(1+N_n/N_p)}$

 $Y_e > 0.25$ - Low κ - Blue $Y_e < 0.25$ - High κ - Red

r-process nucleosynthesis

Formation elements heavier than iron Requarements: $T > 10^9$ K $n_n > 10^{22}$ cm⁻³ Produces: unstable *n*-rich nuclei Radioactive decay can power an EM transient

Fission and Opacities

r-prcess forms Lanthanides & Actinides

Complex atomic structure. High opacities $\propto 10$ & $\propto 30$ cm 2 g $^{-1}$

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	

Opacity calculations $\rho = 10^{-13}$ g cm⁻³, $t_{\rm PM} = 1$ day

 $p = 10^{-4}$ g cm $^{-4}$, $t_{\rm PM} = 1$ d LTE assumed

oduction Kilonova

Merger Dynami

Examples

Conclusion

Opacity calculations

 $\rho = 10^{-13} \mbox{ g cm}^{-3} \mbox{, } t_{\rm PM} = 1 \mbox{ day}$ LTE assumed

Kilonova

Monte-Carlo radiative transfer code simple one-dimensional ejecta model, power-law density structure $\rho \propto r^{-3}$, $< v > \propto 0.1$ c, $M_{\rm ei} = 0.03 M_{\odot}$

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	

Kilonova models

Radiative transfer simulations \rightarrow Spectra (detailed composition).

Semi-analitic models \rightarrow bolometric lightcurves (energy evolution & the amount of radioactive nuclides produced)

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	

Kilonova models

Radiative transfer simulations \rightarrow Spectra (detailed composition).

Semi-analitic models \rightarrow bolometric lightcurves (energy evolution & the amount of radioactive nuclides produced)

Semi-Analytic model

Axisymmetric ejecta components, Polar angle split into bins with radial model for each ejecta component of Grossman et al. (2014). Characetrised by: $m_{ei}^{i}(\theta), v_{rms}^{i}(\theta), \kappa_{rmei}^{i}(\theta)$

Introduction Kilonova Merger Dynamics Examples Conclusion

Kilonova models

Radiative transfer simulations \rightarrow Spectra (detailed composition).

Semi-analitic models \rightarrow bolometric lightcurves (energy evolution & the amount of radioactive nuclides produced)

Kilonova Model Paramters

 $2-3~{
m components}$ (Blue and Red) $M_{ej} \propto 10^{-2} M_{\odot}$ $v_{ej} \propto 0.25 {
m c}$

Semi-Analytic model Axisymmetric ejecta components, Polar angle split into bins with radial model for each ejecta component of Grossman et al. (2014). Characetrised by: $m_{ej}^{i}(\theta), v_{rms}^{i}(\theta), \kappa_{rmej}^{i}(\theta)$

Introduction Kilonova Merger Dynamics Examples Conclusion

Kilonova models

Radiative transfer simulations \rightarrow Spectra (detailed composition).

Semi-analitic models \rightarrow bolometric lightcurves (energy evolution & the amount of radioactive nuclides produced)

Kilonova Model Paramters

 $2-3 \text{ components (Blue and Red)} \ M_{ej} \propto 10^{-2} M_{\odot} \ v_{ej} \propto 0.25 \text{c}$ Merger

simulations...

Semi-Analytic model

Axisymmetric ejecta components, Polar angle split into bins with radial model for each ejecta component of Grossman et al. (2014). Characetrised by: $m_{ej}^{i}(\theta), v_{rms}^{i}(\theta), \kappa_{rmej}^{i}(\theta)$

Geodesic Criterion

```
u_t \leq -1
(u_t is the covariant time com-
ponent of the fluid element
4-velocity)
Simplicity (Nuetonian\rightarrow v_{\infty} > 0)
Independent of EOS.
```


Geodesic Criterion

 $u_t \leq -1$

 $(u_t \text{ is the covariant time com$ $ponent of the fluid element 4-velocity)}$

Simplicity (Nuetonian $\rightarrow v_{\infty} > 0$) Independent of EOS.

Bernoulli criterion

 $hu_t \leq -1$, (h - enthalpy) thermal energy of the fluid is transformed into kinetic one.

Introduction	Kilonova ⊞	Merger Dynamics	Examples	Conclusion	
Ejecta					

Dynamical Ejecta

Components

- Tidal : Orbital plane, Low Y_e
- Shocked : Polar, High Y_e

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Ejecta					

Dynamical ejecta average properites $M_{\rm rj} \propto 10^{-3}$, $v_{\infty} \propto 0.2$, $Y_e \propto 0.2$

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Ejecta					

Dynamical ejecta average properites $M_{\rm ri} \propto 10^{-3}$, $v_{\infty} \propto 0.2$, $Y_e \propto 0.2$

Kilonova

10 / 24

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Ejecta					

- Remnant is born with excess in angular momentum and mass.
- Disk colling & heating via outflows.
- Neutrino cooling,
- neutrino re-absorption [Perego+2014].
- Magnetic stresses & turbulence [Siegel+2014].
- Nuclear recombination energy unbind matter & r-process heating [Fernandez&Metzger 2013.

Introduction	Kilonova ⊞⊐	Merger Dynamics	Examples	Conclusion	
Ejecta					

- Remnant is born with excess in angular momentum and mass.
- Disk colling & heating via outflows.
- Neutrino cooling,
- neutrino re-absorption [Perego+2014].
- Magnetic stresses & turbulence [Siegel+2014].
- Nuclear recombination energy unbind matter & r-process heating [Fernandez&Metzger 2013.

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Ejecta					

- Remnant is born with excess in angular momentum and mass.
- Disk colling & heating via outflows.
- Neutrino cooling,
- neutrino re-absorption [Perego+2014].
- Magnetic stresses & turbulence [Siegel+2014].
- Nuclear recombination energy unbind matter & r-process heating [Fernandez&Metzger 2013.

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Ejecta					

- Remnant is born with excess in angular momentum and mass.
- Disk colling & heating via outflows.
- Neutrino cooling,
- neutrino re-absorption [Perego+2014].
- Magnetic stresses & turbulence [Siegel+2014].
- Nuclear recombination energy unbind matter & r-process heating [Fernandez&Metzger 2013.

hot HMNS

Vsevolod

13.0

u absorption

accretion disc

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Tools					

Goal: construct a numeral relativity informed kilonova model

GRHD - WhiskyTHC

(Radice & Rezzolla 2012; Radice+2014a,b, Radice+2015)

Spacetime - z4c of the Einstein Toolkit

(Bernuzzi & Hilditch 2010)

Neutrinos – Leakage + M0 (gray)

(Galeazzi+2013; Radice+2016b)

Viscosity – subgrid-scale turbulent angular momentum transport.

GRLES (Radice+2017)

Kilonova – semi-analytical anisotropic NR informed kilonova model

(Perego+2017)

Idea: construct a numeral relativity informed Kilonova model

Extracting NR data allows us to improve physical interpretation of the Kilonova model

Future work

- Longer runs (100+ ms)
- High resolution runs
- Add more physics (MF, neutrino treatment)
- More observed events

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	

Thank you for your attention

Computational Relativity Group http://www.computational-relativity.org/

	Kilonova	Merger Dynamics	Examples		
S					
DD2					
t t	oased on n correction or reating hig	uclear statistica coupled, to a re gh density,	l equilibriu lativistic m	m with a finito lean field theo	e volume ory for
	contains ne nelions, trit	eutrons, protons cons and alpha	, light nucl particles ar	lei such as deu nd heavy nucle	uterons,

support masses up to $pprox 2.4 M_{\odot}$

LS220

is based on the single nucleus approximation for heavy nuclei where the thermal distribution of different nuclear species is replaced by a single representative heavy nucleus,

contains neutrons, protons, alpha particles and heavy nuclei.

support masses up to $pprox 2.05 M_{\odot}$

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Ejecta Criteria					

Geodesic $u_t < -1$

- u_t constant of motion for a geodesics (stationary space-time)
- $W = -u_t$ for asymptotically flat space at ∞ .
- assuming, flow is made of isolated particles, following the geodesic, metric is time-independent,
 - neglecting pressure and r-process heating,

Bernoulli, $hu_t < -1$

- stationary relativistic fluid flow, hut constant along fluid world lines.
 - thermal energy of the fluid is now assumed to be transformed into kinetic energy as the fluid decompresses.

Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
Kilonova Model					

Semi-analytic anisotropic kilonova model (Perego et.al 2017)

- multiple ejecta components (Dynamical, secular)
- Ejecta properties: $m_{\rm ej}^i(\theta)$, $v_{\rm rms}^i(\theta)$, $\kappa_{rmej}^i(\theta)$
- Axisymmetry, 12 θ bins.
- Radial model inside each bin (Grossman et.al 2014)
 - energy is reprocessed and reimetted at the photosphere, $Q = M_{env}\epsilon_{nuc}$. Heating rates (Korobkin et al. 2012)

GRHD	Introduction	Kilonova	Merger Dynamics	Examples	Conclusion	
	GRHD					

GR Hydro: WhiskyTHC for n_p and n_n evolution (Radice & Rezzolla 2012;

Radice+2014a,b, Radice+2015)

- NS matter is a perfect fluid
- high resolution shock-capturing (HRSC) schemes

P5 scheme for primitive variables reconstruction

Atmosphere is set to $ho_0=6 imes 10^4 {
m g~com^{-3}}$

Z4c formulation of Einstein's equations for spacetime evolution ((Bernuzzi & Hilditch 2010)

Grid: 3.024 km in diameter. Carpet module of the Einstein Toolkit (Berger-Oliger conservative AMR)