Twin Stars In A Modified Chiral Mean Field Model

Pia Jakobus

Goethe University Frankfurt am Main

October 14, 2019

Motivation And Content

Neutron star matter
Chiral mean field model
MIT Bag model
Twin stars
Results

Image from NASA - LIGO

Neutron star matter

from kent.edu/physics/profile/veronica-dexheimer

Properties of Neutron star matter

- Charge neutral $\sum_{i} \rho_{B_i} Q_{B_i} = 0$
- Conserved Baryon number
- Beta equilibrium $\mu_n = \mu_p + \mu_e$
- isospin asymmetry
- $T_{\rm Thermal} \ll T_{\rm Fermi}$

kent.edu/physics/profile/ veronica-dexheimer Chiral SU(3)-flavor parity-doublet Polyakov-loop quark hardon mean-field model: Unified approach to model QCD from low to high temperatures and densities.

- Baryon octet
- Chiral symmetry restoration
- Smooth crossover to quarks
- Excluded-volume effects

Anton Motornenko et al: Universe 5 (2019) no.6, 156.

Anton Motornenko et al: Universe 5 (2019) no.6, 156.

- Baryons only presented by nucleons and their parity partners
- chiral symmetry restoration at $n \approx 4 n_B$
- Crossover to quark matter

Chiral mean field model

Anton Motornenko et al: Universe 5 (2019) no.6, 156.

Fukushima 2019: arxiv.org/abs/1903.03400

Bag model

MIT Bag model

- two and three flavor Bag model
- vanishing masses

Rischke et al., arXiv:nucl-th/9504021

vMIT Bag model

- repulsive quark-meson coupling $g_q^{(\omega)}\gamma^\mu V_\mu^{(\omega)}$
- 3 flavor Bag model
- massive quarks
- leptons included $\rightarrow \sum_{i} a_{i}n_{i} = 0$

$$\rightarrow \mu_s = \mu_d = \mu_u + \mu_e$$

Gomes et al., arXiv:1806.04763v1

Picture taken from: arXiv:1203.3820

Constructing the combined model

Tolman-Oppenheimer-Volkoff Equation

Solution in hydrostatic equilibrium, as obtained from TOV solver

Twins Stars

Twin stars are solutions of the TOV equation for one EoS where both stars have identical masses but different radii

2 flavor MIT Bag model

Bag EoS: $P = \frac{1}{3}(\epsilon - 4B)$

3 flavor MIT Bag model

The gap in energy density is bigger for 3 flavors

Two solar mass constraint

MIT Bag model

Speed of sound for Bag Model fixed to $1/3, \mbox{ high masses not obtained within this framework!}$

MSR J0740+6620: 2.14^{+0.2}_{-0.18} Mo

Can a stiffer Quark-EoS support twins stars above 2 $M\odot$?

- how does vector enhanced Bag model change transition pressure and energy gap?
- how relevant is the ratio of stiffness?

Vector enhanced MIT Bag model

Additional meson- ω -quark coupling. Does one obtain Twin star solutions with higher masses by stiffening the vMIT Bag model EoS?

MIT Bag model

Bag constant B, Stephan Boltzman limit a3,5B

vMIT Bag model

Bag constant B, repulsive quark- ω -meson coupling $a_{3,\omega}$

Outlook

GW170817

Experimental comparison with merger event

Fukushima 2019: arxiv.org/abs/1903.03400

Summary and Outlook

- Twin stars can be obtained but the masses are too low
- In order to obtain higher Twin masses: **Soft behaviour of quark matter at hadron-quark transition**, in order to have a sufficient latent heat
- stiffening of quark matter by **density dependend coupling** necessary in order to obtain higher mass

on the other hand ...

- Exotic degrees of freedom soften hadronic EoS .. at which densities?
- Repulsive couplings can violate IQCD results¹²

²Physics Letters B, 736:241-245, 2014

¹Physics Letters B, 696(3):257–261, 2011

Thank you for your attention!

Summary

MIT Bag model

- $B\uparrow, \mu_{\mathrm{trans}}\uparrow$
- $a_3 \uparrow \measuredangle(\mathsf{bag},\mathsf{cmf}) \uparrow \Delta \epsilon \uparrow$
- $M_{\text{bag}}^{\text{max}} \leq M_{\text{trans}} \land \frac{\Delta \epsilon_{\text{crit}}}{\epsilon_{\text{trans}}} \geq \frac{1}{2} + \frac{3}{2} \frac{p_{\text{trans}}}{\epsilon_{\text{trans}}}$ no twins

•
$$P = 1/3(\epsilon - 4B)$$
:
 $dP/d\epsilon = c^2/3^2 \ \forall B, a_3$

vMIT Bag model

•
$$B \uparrow, \mu_{\text{trans}} \uparrow$$

• $a_0 \uparrow \measuredangle(\mathsf{bag},\mathsf{cmf}) \downarrow \Delta \epsilon \downarrow$

ρ_0	$0.14\pm0.02~\text{fm}^{-3}$	
$E_{\rm bind}/{\rm nucleon}$	16.6 ± 0.8	MeV
Compressibility K_0	269 ± 54	MeV
$E_{ m asym}$	30 ± 6	MeV

Saturation properties

Model description. In detail here: Motornenko 2019, arXiv:1905.00866

- Mean field approximation
- Baryon octet interacts via scalar σ , ζ and vector ω , ρ , ϕ mesons

$$\mathcal{L}_{B} = \sum_{i} \overline{\psi}_{i} \left(i \gamma_{\mu} \partial^{\mu} + m_{i}^{*} \right) \psi_{i} \tag{1}$$

$$+\sum_{i}\overline{\psi}_{i}\left[\gamma_{\mu}\left(g_{i\omega}\omega^{\mu}+g_{i\rho}\rho^{\mu}+g_{i\phi}\phi^{\mu}\right)+m_{i}^{*}\right]\psi_{i}$$
(2)

• symmetry among parity partners at finite
$$\mu_B$$
: $m_{i\pm}^* = \sqrt{(g_{i\sigma}^{(1)}\sigma + g_{i\zeta}^{(1)}\zeta)^2 + (m_0 + n_s m_s)^2} \pm g_{i\sigma}^{(2)}\sigma + g_{i\zeta}^{(2)}\zeta$

• Chiral symmetry breaking term:

$$V = V_0 + \frac{1}{2}k_0(\sigma^2 + \zeta^2) - k_1(\sigma^2 + \zeta^2)^2 + k_2(\sigma^4/2 + \zeta^4) + k_6 + 4\zeta^6)$$

Polyakov loop enters grand canonical potential for quarks

dynanmic quark masses:

$$m_q^* = g_{q\sigma}\sigma + \delta m_q + m_{0q} \tag{3}$$

$$m_s^* = g_{S\zeta}\zeta + \delta m_S + m_{0s} \tag{4}$$

Mass Radius Profiles

CMF model

