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NEW STRONG DYNAMICS

Composite Higgs Composite Dark Matter

New SU(Nc) gauge sector with Nf fermions in 
the Nr representation of the gauge group

Most of the theory work is done using EFTs at the SM scale, but we want to use UV complete models
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✦ Dark Matter is a composite object

✦ Interesting and complicated internal 
structure

✦ Properties dictated by strong dynamics

✦ Self-interactions are natural

✦ Composite object is neutral 

✦ Constituents may interact with Standard 
Model particles

e.g. hidden sector 
baryon or glueball

Similar to QCD

Chance to observe them 
 in experiments and give the 

correct relic abundance

Lattice Field Theory methods

What is composite dark matter?
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Stability is a direct 
consequence of 

accidental symmetries Neutrality follows naturally 
from confinement into singlet 

objects wrt. SM charges 

Small interactions with 
SM particles arise from form 
factor suppression (higher 

dim. operators)

Self-interactions are 
included due to strongly 

coupled dynamics

“Natural” features



COMPOSITE DARK MATTER
[review by Kribs & Neil, 1604.04627][list of references focused on lattice results when possible]



COMPOSITE DARK MATTER
★Pion-like (dark quark-antiquark) 

✦ pNGB DM [Hietanen et al.,1308.4130] 

✦ Quirky DM [Kribs et al.,0909.2034] 

✦ Ectocolor DM [Buckley&Neil,1209.6054] 
✦ SIMP [Hochberg et al.,1411.3727] 

✦ Minimal SU(2) [Francis et al.,1610.10068]
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✦ One-family TC [LatKMI,1510.07373] 
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✦ Quirky DM [Kribs et al.,0909.2034] 

✦ Ectocolor DM [Buckley&Neil,1209.6054] 
✦ SIMP [Hochberg et al.,1411.3727] 

✦ Minimal SU(2) [Francis et al.,1610.10068]

★Glueball-like (only gluons) 

✦ SUNonia [Boddy et al.,1402.3629]

★Dark Nuclei [Detmold et 
al.,1406.2276-1406.4116]

[review by Kribs & Neil, 1604.04627][list of references focused on lattice results when possible]



Importance of lattice simulations

★Lattice simulations are needed to numerically solve strong 
dynamics

★Controllable systematic errors and room for improvement

★Naive dimensional analysis and EFT approaches can miss 
important non-perturbative contributions

★EFTs inspired by QCD might not work when the dynamics is 
different

★Lattice studies can reliably point out similarities or differences 
as the parameter space (Nc,Nf,Nr) is scanned

[KEK-Japan]



✦New strongly-coupled SU(4) gauge sector “like” QCD with a plethora of 
composite states in the spectrum: all mass scales are technically natural 
for hadrons 

✦New Dark fermions: have dark color and also have electroweak charges 
(W/Z,𝛾) 

✦Dark fermions have electroweak breaking masses (Yukawa couplings) and 
electroweak preserving masses (from confinement)  

✦A global symmetry naturally stabilizes the dark lightest baryonic composite 
states (e.g. dark U(1) “baryon number”) which is a singlet of 4 dark 
fermions: spin 0 (!!)

[LSD collab., Phys. Rev. D88 (2013) 014502]

[LSD collab., Phys. Rev. D89 (2014) 094508]

[LSD collab., Phys. Rev. D92 (2015) 075030]

[LSD collab., Phys. Rev. Lett. 115 (2015) 171803]

“Stealth Dark Matter” model
[LSD collab., Phys. Rev. D92 (2015) 075030]



“Stealth Dark Matter” model

• The field content of the model 
consists in 8 Weyl fermions 

• Dark fermions interact with the SM 
Higgs and obtain current/chiral 
masses 

• Introduce vector-like masses for 
dark fermions that do not break 
EW symmetry 

• Diagonalizing in the mass 
eigenbasis gives 4 Dirac fermions  

• Assume custodial SU(2) symmetry 
arising when u ↔ d

3

Field SU(N)D (SU(2)L, Y ) Q

F1 =

 
Fu
1

F d
1

!
N (2, 0)

 
+1/2

�1/2

!

F2 =

 
Fu
2

F d
2

!
N (2, 0)

 
+1/2

�1/2

!

Fu
3 N (1,+1/2) +1/2

F d
3 N (1,�1/2) �1/2

Fu
4 N (1,+1/2) +1/2

F d
4 N (1,�1/2) �1/2

TABLE I. Fermion particle content of the composite dark matter
model. All fields are two-component (Weyl) spinors. SU(2)L
refers to the standard model electroweak gauge group, and Y is
the hypercharge. The electric charge Q = T3+Y for the fermion
components is shown for completeness.

yet have the ability to simulate on the lattice. Naive di-
mensional analysis applied to the annihilation rate suggests
the dark matter mass scale should be >⇠ 10-100 TeV, but a
more precise estimate is not possible at this time. In any
case, for dark matter with mass below this value, there is
an underproduction of dark matter through the symmet-
ric thermal relic mechanism, and so this does not restrict
consideration of dark matter mass scales between the elec-
troweak scale up to this thermal abundance bound.

CONSTRUCTING A VIABLE MODEL

[placeholder for a description of how a viable model
with interactions with the Higgs can be constructed while
satisfying the various (gross) experimental constraints]

We consider a new, strongly-coupled SU(N)D gauge
group with fermionic matter in the vector-like representa-
tions shown in Table I.

This is not the only possible choice for the charges, but
the requirement for the presence of Higgs Yukawa cou-
plings, along with extremely strong bounds on the ex-
istence of stable fractionally-charged particles based on
searches for rare isotopes [? ], greatly constrains the num-
ber of possible models.

DARK FERMION INTERACTIONS AND MASSES

The fermions F
u,d
i transform under a global U(4) ⇥

U(4) flavor symmetry that is broken to [SU(2) ⇥ U(1)]4
by the weak gauging of the electroweak symmetry. From
this large global symmetry, one SU(2) (diagonal) sub-
group will be identified with SU(2)L, one U(1) subgroup

will be identified with U(1)Y , and one U(1) will be iden-
tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(N)D with electric
charges of Q ⌘ T3,L + Y = ±1/2. We use the notation
where the superscript u and d (as in F

u, F
d and later  u,

 
d,  u,  d) to denote a fermion with electric charge of

Q = 1/2 and Q = �1/2 respectively.
The fermion kinetic terms in the Lagrangian are given

by

L =
X

i=1,2

iF
†
i �̄

µ
Di,µFi +

X

i=3,4;j=u,d

iF
j
i

†
�̄

µ
D

j
i,µF

j
i ,

(1)
where the covariant derivatives are

D1,µ ⌘ @µ � igW
a
µ�

a
/2 � igDG

b
µt

b (2)

D2,µ ⌘ @µ � igW
a
µ�

a
/2 + igDG

b
µt

b⇤ (3)

D
j
3,µ ⌘ @µ � ig

0
Y

j
Bµ � igDG

b
µt

b (4)

D
j
4,µ ⌘ @µ � ig

0
Y

j
Bµ + igDG

b
µt

b⇤ (5)

with the interactions among the electroweak group and the
new SU(N)D. Here Y

u = 1/2, Y
d = �1/2 and t

b

are the representation matrices for the fundamental N of
SU(N)D.

The vector-like mass terms allowed by the gauge sym-
metries are

L � M12✏ijF
i
1F

j
2 �M

u
34F

u
3 F

d
4 +M

d
34F

d
3 F

u
4 +h.c., (6)

where ✏12 ⌘ ✏ud = �1 = �✏12 and the relative minus
signs between the mass terms have been chosen for later
convenience. The mass term M12 explicitly breaks the
[SU(2) ⇥ U(1)]2 global symmetry down to the diagonal
SU(2)diag ⇥ U(1) where the SU(2)diag is identified with
SU(2)L. The mass terms M

u,d
34 explicitly break the re-

maining [SU(2)⇥U(1)]2 down to U(1)⇥U(1) where one
of the U(1)’s is identified with U(1)Y . (In the special case
when M

u
34 = M

d
34, the global symmetry is accidentally en-

hanced to SU(2)⇥U(1), where the global SU(2) acts as a
custodial symmetry.) Thus, after weakly gauging the elec-
troweak symmetry and writing arbitrary vector-like mass
terms, the unbroken flavor symmetry is thus U(1)⇥U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
(2, +1/2) representation. They are given by

L � y
u
14✏ijF

i
1H

j
F

d
4 + y

d
14F1 · H

†
F

u
4

� y
d
23✏ijF

i
2H

j
F

d
3 � y

u
23F2 · H

†
F

u
3 + h.c., (7)

where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =
(0 v/

p
2)T , with v ' 246 GeV. Inserting the vev

L �+ y
u
14✏ijF

i
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j
F

d
4 + y

d
14F1 ·H†

F
u
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� y
d
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i
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i
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j
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u
3 F

d
4 +Md
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d
3 F
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4 + h.c.

yu14 = yd14 yu23 = yd23 Mu
34 = Md

34

[LSD collab., Phys. Rev. D92 (2015) 075030]
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Lattice Stealth DM

• Non-perturbative lattice 
calculations of the spectrum 
confirm that lightest baryon has 
spin zero 

• The ratio of pseudoscalar (PS, 
pion) to vector (V, rho) is used as 
probe for different dark fermion 
masses 

• The meson-to-baryon mass ratio 
is a non-perturbative number 
which can only be extracted 
from lattice simulations
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• Lattice discretization and 
finite volume effects are 
studied using multiple 
simulations (similar to what 
is done in QCD)
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Colliders

SUSY Stealth

LSP

heavier 
superpartners scalar baryon

baryon excited
resonances

Collider searches dominated by light meson production and decay.

Missing energy signals largely absent!

⇢
⇧s

Plot by G. Kribs

VS.

[ATLAS]
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Colliders

SUSY Stealth

LSP

heavier 
superpartners scalar baryon

baryon excited
resonances

Collider searches dominated by light meson production and decay.

Missing energy signals largely absent!

⇢
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Stealth DM: gravitational wave signatures
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✦Spectrum of GW from a deconfinement first order phase transition in the 
dark sector, as a function of the dark transition temperature  
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Concluding remarks

✦ Composite dark matter is a viable interesting possibility with rich 
phenomenology: all scales are natural 

✦ Lattice methods can help in calculating direct detection cross 
sections, production rates at colliders, self-interaction cross sections 
and the spectrum of gravitational waves. Direct phenomenological 
relevance. 

✦ Dark matter constituents can carry electroweak charges and still the 
stable composites are currently undetectable. Stealth cross section. 

✦ Lowest bound for composite dark matter models: ~300 GeV 
(colliders+direct detection+lattice) (can be improved!)
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FIG. 2. The DM spin-independent scattering cross section per nu-
cleon evaluated for xenon is shown as the purple band obtained
from the SU(4) polarizability, where the width of the band cor-
responds to 1/3 < MA

F < 3 from low to high. The blue curve
and the light blue region above it is excluded by the LUX con-
straints [1]. The vertical, darker shaded region is excluded by
the LEP II bound on charged mesons [23]. The orange region
represents the limit at which direct detection experiments will
be unable to discriminate DM events from coherent neutrino re-
coil [39]. We emphasize that this plot is applicable for xenon, and
would require calculating Eq. (17) to apply to other nuclei.

would have form factor suppression. This implies the stan-
dard missing energy signals that arise from DM production
and escape from the detector are rare.

Finally, there are many avenues for further investiga-
tion of stealth dark matter, detailed in [23]. One vital is-
sue is to better estimate the abundance. In the DM mass
regime where stealth DM is detectable at direct detection
experiments, the abundance of stealth dark matter can arise
naturally from an asymmetric production mechanism [23]
that was considered long ago [7–9] and more recently re-
viewed in [40]. If there is indeed an asymmetric abundance
of bosonic dark matter, there are additional astrophysical
consequences [41–43] that warrant further investigation to
constrain or probe stealth DM.
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• Discretize space and time 
• lattice spacing “a” 
• lattice size “L” 

• Keep all d.o.f. of the theory 
• not a model! 
• no simplifications 

• Amenable to numerical 
methods 

• Monte Carlo sampling 
• use supercomputers 

• Precisely quantifiable and 
improvable errors 
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Nc Nf Nr parameters that can be easily changed
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Bounds from EM moments

Magnetic moment  dominates for MB & 25 GeV
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Mesonic and Baryonic EM form factors 
directly from lattice simulations

★ baryon similar to QCD neutron 

★ dark quarks with Q=Y 

★ calculate connected 3pt 

★ scale set by DM mass 

★ magnetic moment dominates 

★ results independent of Nf

[LSD, 1301.1693]
SU(3) Nf=2,6 dark fermionic baryon
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