Elementary particle masses from a non-perturbative anomaly

Roberto Frezzotti

Physics Department & INFN of Roma Tor Vergata

Rome – Italy

Sept. 12, 2019 LCF19 workshop ECT* Trento

Talk based on

- R. Frezzotti and G.C. Rossi, Phys. Rev. D92 (2015) 054505, arXiv:1811.10326 (PoS - Lattice 2018) and work in preparation
- R. Frezzotti, M. Garofalo and G.C. Rossi, Phys. Rev. D93 (2016) 105030
- S. Capitani *et al.*, Phys.Rev.Lett. 123 (2019) 061802;
 - S. Capitani et al. EPJ Web Conf. 175 (2018) 08008 and 08009

a challenging lattice project carried out in 2017-'19 in collaboration with

- * P. Dimopoulos and G.C. Rossi (Univ. of Roma Tor Vergata and Centro Fermi)
- M. Garofalo (INFN Roma Tor Vergata; Univ. of Edinburgh)
- * B. Kostrzewa, F. Pittler, C. Urbach (HISKP University of Bonn)
- * S. Capitani (Goethe University, Frankfurt)

CPUtime made available by IS LQCD123 under INFN-CINECA agreements (2017 to 2019) on Marconi, and by Univ. of Bonn and Univ. of Edinburgh on local clusters.

э.

イロト 不得 トイヨト イヨト

- Introduction
- Mechanism in simplest Toy Model: basic ideas & lattice demonstration
- Mechanism in an extended Toy Model with $g_W > 0$
- Towards a realistic BSM model: new interactions & matter
- Higgs as a bound state & sub-TeV effective Lagrangian
- Outlook & Conclusions

Assuming you'll be skeptical, hope you can get curious ...

< ロ > < 同 > < 回 > < 回 >

Standard Model: success, limits and paradox

SM: very successful, but an extension is necessary to account for observed

- neutrino masses and mixings
- dark matter
- baryogenesis (larger CP violation needed)
- dark energy & quantum aspects of gravity

SM "paradox": phenomenologically incomplete but renormalizable

In spite of its theoretical self-consistency, a completion of the SM at some (what?) high energy scale is required by experimental facts.

SM renormalizability makes hard to guess this scale $\,\Rightarrow\,$ different scenarios:

- SM valid up to energies $E \le 10^{16} \div 10^{19}$ GeV (big desert)
- SUSY or New Dynamics (non-perturbative?) at *E* > few TeV

The low energy (E < 1 TeV) Lagrangian cannot differ much from the SM one. The hierarchy problems for the EW scale and fermion masses are entangled, see e.g. Bardeen, Hill, Lindner, Phys. Rev. D41 (1990) ... Composite Higgs Models.

Elementary particle masses: hierarchy – NP origin?

SM describes the masses of elementary fermions and weak bosons (W^{\pm}, Z^0)

• well established symmetry pattern: $SU(2)_L \times U(1)_Y \xrightarrow{SSB} U(1)_{em}$

but no hope of explaining flavour mixings or mass orders of magnitude

• $m_{W,Z} \sim m_h \sim v \sim 10^{-13} \Lambda_{GUT} \sim 10^{-16} \Lambda_{Planck}$

no extra symmetry when $m_h \sim v$ gets small \Rightarrow un–naturalness

• $m_t \sim 10^5 m_u$, $m_\tau \sim 10^4 m_e$, $m_e > 10^7 m_{\nu_i}$ \Rightarrow huge hierarchy

A possible alternative: a novel intrinsically <u>non-perturbative (NP)</u> mechanism at work in non-Abelian gauge models with fermions and auxiliary scalars where

- 1) chiral symmetries ($\chi_{L,R}$) acting on fermions and scalars are exact
- 2) fermionic chiral transformations $(\tilde{\chi}_{L,R})$ are explicitly broken at the UV scale ...
- ... to minimal extent (critical model) at low energy: NP "anomaly" \Leftrightarrow fermion mass

Renormalizable models with NP $\tilde{\chi}$ "anomaly"

Anomaly: in the quantum Effective Lagrangian 1PI vertices of NP origin violate $\tilde{\chi}_{L,R}$, yielding mass $\propto \Lambda_T$ for elementary fermions and (if $g_W \neq 0$) weak bosons

Physical interest: if a new non-Abelian gauge interaction (coupling g_T) exists and

- $\star~~\Lambda_{T}$ is the theory's RGI scale phenomenologically $\Lambda_{T}\gtrsim 5~\text{TeV}$
- * mass coefficients are controlled by the "particle's largest gauge coupling"
- \star ~ new fermions feeling the new interactions and with masses $\sim \Lambda_{T}$ exist
- * a composite Higgs bound state (h) gets formed in the WW+ZZ channel

At scale E < 1 TeV one expects: $\Gamma_{LE}^{NG} \supset (c\Lambda_T^2 + c'\Lambda_T h + ...) \frac{1}{2} \text{Tr}(D_\mu^{W,B} U^{\dagger} D_\mu^{W,B} U) + ...) \frac{1}{2} \text{Tr}(D_\mu^{W,$

+ $\Lambda_T[c_1^t \bar{q}_L \tilde{u} q_R^t + c_1^b \bar{q}_L u q_R^b] + \Lambda_T[0 \bar{\ell}_L \tilde{u} \ell_R^\nu + c_1^\tau \bar{\ell}_L u \ell_R^\tau]$ + other generations terms + O(Λ_T^{-1})

with $U = [\tilde{u}|u] = \exp\left(i\zeta^j \tau^j/\sqrt{c}\Lambda_{\mathcal{T}}\right), \quad \zeta^{1,2,3} \text{ GB fields,} \quad u \overset{\mathcal{SU}(2)_L \times U(1)}{\sim} \phi$

NP mechanism for elementary particle masses

A common NP & "natural" mechanism for both fermion and weak boson masses

- \Rightarrow basis for a number of models, which must satisfy experimental constraints, e.g.
- * SM-like 1:2 relation between W-mass and WWh coupling up to $O(p^2/\Lambda_T^2)$
- * effective mass $m_f \propto f\bar{f}h$ effective coupling for all SM fermions (f) up to O(p^2/Λ_T^2)
- * no tree level FCNC: due to SM-like form of all fermion effective mass terms
- * EW precision tests: S-parameter bounds "ok" owing to $m_{Tf}^{eff} \sim O(1)\Lambda_T$
- \Rightarrow insights on the new physics scale Λ_T and on fermion hierarchies, e.g.
- $\star \quad m_t^{eff} = \mathcal{O}(\alpha_s^2|_{\Lambda_T}) \Lambda_T, \ m_\tau^{eff} = \mathcal{O}(\alpha_Y^2|_{\Lambda_T}) \Lambda_T, \ m_W^{eff} = \mathcal{O}\left(g_W|_{\Lambda_T}((4\pi)^3 N_{Tf})^{-1/2}\right) \Lambda_T,$
- * $m_{\text{neutrino}}^{\text{eff}} \simeq 0$, possibly $m_{b}^{\text{eff}} = O(\alpha_{S,W,Y}) m_{t}^{\text{eff}}$, ... 2nd and 1st generation ...
- * possible gauge coupling unification: $\Lambda_{GUT} \simeq 10^{18}$ GeV, $m_{neutrino}^{eff} \sim \frac{\Lambda_T^2}{\Lambda_{GUT}}$ [Frezzotti-Garofalo-Rossi, PRD 93 (2016) 105030]

Mechanism in simplest Toy Model:

basic ideas & lattice demonstration

크

・ロト ・ 四ト ・ ヨト ・ ヨト

The simplest d = 4 toy model

- \star one strong interaction: SU(3) gauge field A_{μ} , dynamical RGI scale Λ_{S}
- * one Dirac fermion doublet: $Q = (f_U, f_D)^T$, a triplet of SU(3)_{gauge}
- * one scalar doublet: $\varphi = (\varphi_2 i\varphi_1, \varphi_0 i\varphi_3)^T$, SU(3)_{gauge}-neutral

Lagrangian – using Φ -matrix notation: $\Phi = [\tilde{\varphi}|\varphi]$, $\tilde{\varphi} = -i\tau^2 \varphi^*$

 $\mathcal{L}_{toy}(Q, A, \Phi) = \mathcal{L}_{kin}(Q, A, \Phi) + \mathcal{V}(\Phi) + \mathcal{L}_{Wil}(Q, A, \Phi) + \mathcal{L}_{Vik}(Q, \Phi)$

- $\mathcal{L}_{kin}(Q, A, \Phi) = \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \bar{Q}_{L} \gamma_{\mu} \mathcal{D}_{\mu} Q_{L} + \bar{Q}_{R} \gamma_{\mu} \mathcal{D}_{\mu} Q_{R} + \frac{1}{2} \operatorname{Tr} \left[\partial_{\mu} \Phi^{\dagger} \partial_{\mu} \Phi \right]$
- $\mathcal{L}_{Wil}(Q, A, \Phi) = \frac{b^2}{2} \rho (\bar{Q}_L \overleftarrow{\mathcal{D}}_{\mu} \Phi \mathcal{D}_{\mu} Q_R + \bar{Q}_R \overleftarrow{\mathcal{D}}_{\mu} \Phi^{\dagger} \mathcal{D}_{\mu} Q_L)$
- $\mathcal{L}_{Yuk}(Q, \Phi) = \eta \left(\bar{Q}_L \Phi Q_B + \bar{Q}_B \Phi^{\dagger} Q_L \right)$

•
$$\mathcal{V}(\Phi) = \frac{\mu_0^2}{2} \operatorname{Tr}[\Phi^{\dagger}\Phi] + \frac{\lambda_0}{4} (\operatorname{Tr}[\Phi^{\dagger}\Phi])^2, \qquad \Phi \equiv [-i\tau^2 \varphi^* |\varphi]$$

dimensionful UV cutoff: $\Lambda_{UV} \sim b^{-1} \rightarrow \infty$, $\hat{\mu}_{\Phi}^2 = Z_{\Phi^{\dagger}\Phi}^{-1} [\mu_0^2 - \tau_0 b^{-2}]$

Toy model: symmetries & renormalizability

1) chiral symmetries $\chi_L \times \chi_R$ acting on fermions Q and scalars Φ are exact

$$\chi_L: \tilde{\chi}_L \otimes \chi^{\Phi}_L$$
 and $\chi_R: \tilde{\chi}_R \otimes \chi^{\Phi}_R$ with

$$\begin{split} \tilde{\chi}_{L} &: Q_{L} \to \Omega_{L} \, Q_{L} \,, \, \bar{Q}_{L} \to \bar{Q}_{L} \, \Omega_{L}^{\dagger} \,, \quad \chi_{L}^{\Phi} : \Phi \to \Omega_{L} \Phi \,, \qquad \Omega_{L} \in \mathsf{SU}(2)_{L} \,, \\ \tilde{\chi}_{R} &: Q_{R} \to \Omega_{R} Q_{R} \,, \bar{Q}_{R} \to \bar{Q}_{R} \Omega_{R}^{\dagger} \,, \qquad \chi_{R}^{\Phi} : \Phi \to \Phi \Omega_{R}^{\dagger} \,, \qquad \Omega_{R} \in \mathsf{SU}(2)_{R} \,, \end{split}$$

Symmetries (Poincaré, T, P, C, SU(3) gauge, $\chi_L \times \chi_R$) \Rightarrow renormalizability, no UV divergent $\Lambda_{UV} \bar{Q}Q$ terms, only $O(\Lambda_{UV}^{-2} \sim b^2)$ cutoff effects on the lattice

2) fermionic chiral transformations $\tilde{\chi}_L \times \tilde{\chi}_R$ are explicitly broken by \mathcal{L}_{Wil} and \mathcal{L}_{Yuk}

* if $\rho \neq 0$ or $\eta \neq 0$ * effective $\tilde{\chi}$ -breaking is minimal at $(\rho, \eta_{cr}(\rho, ...), ...)$

NP terms in the NG phase quantum effective action

What d < 4 operators may appear in Γ , the quantum Effective Lagrangian (EL)? At $(\eta, \rho) \neq (0, 0)$ we expect $\Gamma = \Gamma_{d \leq 4, \ \hat{\mu}_{\phi}^2} + \Delta \Gamma_{d < 4, \ \hat{\mu}_{\phi}^2}^{NG} + \Gamma_{d > 4, \ \hat{\mu}_{\phi}^2}$ with $\Gamma_{d<4, \hat{\mu}_{a}^{2}} = \frac{1}{4}(F \cdot F) + \bar{Q}\mathcal{D}Q + \frac{1}{2}\operatorname{Tr}\left[\partial_{\mu}\Phi^{\dagger}\partial_{\mu}\Phi\right] + \frac{\hat{\mu}_{\phi}^{2}}{2}\operatorname{Tr}\left[\Phi^{\dagger}\Phi\right] + \frac{\hat{\lambda}}{4}\left(\operatorname{Tr}\left[\Phi^{\dagger}\Phi\right]\right)^{2} + \frac{\hat{\lambda}}{4}\left($ $+(\eta - \bar{\eta}(\eta, \rho, ...))[\bar{Q}_L \Phi Q_R + h.c.]$, where $\bar{\eta}(\eta, \rho, ...)$ is independent of $\hat{\mu}_{\Phi}^2$, and NP $d \le 4$ terms if $\chi_L \times \chi_R$ is realized à la Nambu–Goldstone (NG), i.e. $\hat{\mu}_{\Phi}^2 < 0$, $\Delta\Gamma_{d\leq 4, \hat{\mu}^2}^{NG} = \theta(-\hat{\mu}_{\Phi}^2) [c_1 \Lambda_S(\bar{Q}_L U Q_R + \text{h.c.}) + (c_2 \Lambda_S^2 + \tilde{c} \Lambda_S R) \frac{1}{2} \text{Tr}(\partial_\mu U^{\dagger} \partial_\mu U)],$ where $\Phi = v_{\Phi} + \sigma + i\vec{\tau}\vec{\pi} = RU$, $R = (v_{\Phi} + \zeta_0)$, $U = \exp[iv_{\Phi}^{-1}\tau^k\zeta_k]$. \Rightarrow as $\eta \rightarrow \eta_{cr} = \bar{\eta}(\eta_{cr}, \rho, g_0^2, \lambda_0)$ the $\tilde{\chi}_L \times \tilde{\chi}_R$ symmetry is enhanced (critical model) \Rightarrow NP "anomaly" in $\tilde{\chi}$ restoration from the term $\propto c_1 \Lambda_s$ and analogous d > 4 terms \Rightarrow at $\eta = \eta_{cr}$: NP fermion mass $\sim O(\rho | \rho | g_s^4) \Lambda_s$, with $\Lambda_s =$ theory's dynamical scale

Key ingredients for NP fermion mass generation

Crucial : $\tilde{\chi}$ -breaking d > 4 Lagrangian terms, criticality, SSB of $\chi_L \times \chi_R$ invariance

- were $\rho = 0$, UV regulated model would be $\tilde{\chi}$ -symmetric at $\eta_{cr} = 0$: no NP mass
- at $\rho \neq 0$, η_{cr} is the η -value for which no term [$\bar{Q}_L \Phi Q_R + h.c.$] occurs in the EL
- in the Wigner phase, i.e. $\hat{\mu}_{\Phi}^2 > 0$, $U = \Phi/\sqrt{\Phi^{\dagger}\Phi}$ is not well defined, no $\Delta\Gamma_{d \leq 4, \hat{\mu}_{\Phi}^2}^{NG}$
- in the NG phase SSB of $\chi_L \times \chi_R$ invariance, strong interactions and $\tilde{\chi}$ -breaking due to $\mathcal{L}_{Wil+Yuk}^{\eta=\eta_{cr}(\rho,...)} = \frac{b^2}{2}\rho(\bar{Q}_L\overleftarrow{\mathcal{D}}_\mu\Phi\mathcal{D}_\mu Q_R + h.c.) + \eta_{cr}(\bar{Q}_L\Phi Q_R + h.c.)$ induce $\tilde{\chi}$ -SSB, with $\mathcal{L}_{Wil+Yuk}^{\eta=\eta_{cr}(\rho,...)}$ selecting one of the degenerate vacua
- * for $\hat{\mu}_{\Phi}^2 > 0$ one can easily evaluate η_{cr} by enforcing $\tilde{J}_{\mu}^{L,i}$ (or $\tilde{J}_{\mu}^{R,i}$) conservation $x \neq 0$, $\partial_{\mu} \langle Z_{\tilde{J}} \tilde{J}_{\mu}^{L,i}(x) O^{i}(0) \rangle = (\eta - \bar{\eta}) \langle [\bar{Q}_{L} \tau^{i} \Phi Q_{R} - h.c.](x) O^{i}(0) \rangle + O(b^{2}) = 0$ i.e. the low energy cancellation

NP $\tilde{\chi}$ anomaly in simplest toy model: remarks

- * NP anomaly in $\tilde{\chi}$ restoration was conjectured in PRD92 (2015) [RF & GCR] and is "demonstrated" via lattice simulations [Bonn-Rome group, PRL 123 (2019)]
- \star it shows up as RG-invariant terms in the renormalized $\tilde{\chi}$ Schwinger–Dyson Eqs.

at $\rho \neq 0$, $\eta = \eta_{cr}(\rho)$ $\partial_{\mu} \langle Z_{\tilde{i}} \tilde{J}_{\mu}^{L,i}(x) O^{i}(0) \rangle |_{u=0}^{\hat{\mu}_{\Phi}^{0} < 0} = O(c_{1} \Lambda_{S} b^{0}) + O(b^{2})$ in the NG phase of the critical model – but $\partial_{\mu}Z_{\nu}\tilde{J}_{\mu}^{L,i} = 0 + O(b^2)$ if $\hat{\mu}_{\Phi}^2 > 0$

- at scales $p \ll \Lambda_{UV}$, any set of $d > 4 \tilde{\chi}$ -breaking operators is equivalent to $\rho b^2 \frac{1}{2} (\bar{Q}_L \overleftarrow{\mathcal{D}}_\mu \Phi \mathcal{D}_\mu Q_R + h.c.) + \eta_{cr}(\rho) \times \text{Yukawa term}$ with a suitable ρ : one has *universality classes* of massive critical models labelled by ρ where Γ contains $\tilde{\chi}$ -violating NP terms: $\Delta \Gamma_{d<4, \ \hat{\mu}^2}^{NG} + O(\Lambda_S^2/v_{\Phi}^4)[(Q_L U Q_R)(Q_R U^{\dagger} Q_L)] + ...$
- \star value of v_{Φ} matters for quantitative details of the toy model, but is irrelevant for $\Delta\Gamma_{d\leq 4, \hat{\mu}_{2}}^{NG}$ / fermion mass existence and physics in more realistic models ($g_{W} \neq 0$)

э

Arg1: origin of NP vertex corrections at $O(b^2 \alpha_s \Lambda_s)$

Consider small- b^2 expansion of formally $\tilde{\chi}_L \times \tilde{\chi}_R$ invariant correlators

- $\langle O(x, x', ...) \rangle \Big|_{cr}^{R} = \langle O(x, x', ...) \rangle \Big|_{cr}^{F} b^{2} \langle O(x, x', ...) \int d^{4} z \left[L_{6}^{\bar{\chi}br} + L_{6}^{\bar{\chi}co} \right](z) \rangle \Big|_{cr}^{F} + O(b^{4})$ $O(x, x', ...) \Leftrightarrow A_{\mu}^{b} A_{\nu}^{c} \sigma, \ Q_{L/R} \bar{Q}_{L/R} \sigma, \ Q_{L/R} \bar{Q}_{L/R} A_{\mu}^{b} \sigma$
- $\langle ... \rangle |^{R} = UV$ -Regulated $\langle ... \rangle |^{F} = Formal correlator$
- $\mathcal{L}_{Yuk} + \mathcal{L}_{Wil} \implies L_6^{\tilde{\chi}br} \to \tilde{\chi}$ -violating, d = 6 Symanzik LEL terms
- $\tilde{\chi}$ -invariant $O \to b^2 \langle O \int L_6^{\tilde{\chi} br} \rangle |_{cr}^{F} \neq 0$, only due to dynamical $\tilde{\chi}$ SB (otherwise it would vanish due to $\tilde{R}_5 \equiv [Q \to \gamma_5 Q, \bar{Q} \to -\bar{Q}\gamma_5] \in \tilde{\chi}_L \times \tilde{\chi}_R$ symmetry)
- dimensional arguments \Rightarrow NP $b^2 O(\alpha_s |\rho| \Lambda_s)$ corrections occur in several $\tilde{\chi}$ -conserving vertices ...

Arg2: from NP vertex corrections to fermion mass

 $\Delta \Gamma_{AA\Phi,Q\bar{Q}\Phi,...} = b^2 \Lambda_s O(|\rho|\alpha_s) w_{\text{analytic}}(\text{mom}) F_{AA\Phi,Q\bar{Q}\Phi,...}(\frac{\Lambda_s^2}{\text{mom}^2}) \text{ occur for }$

 $p^2 \ll b^{-2}$; conjecture: they persist up to $p^2 \sim b^{-2} o \infty ~~\Leftrightarrow~~ F_{...}(0) = {
m O}(1)$

self-energy diagrams like

give (e.g. central panel – surviving in quenched approximation)

 $\underline{\underline{m}_{Q}^{\text{eff}}} \propto g_{s}^{2} \rho |\rho| \alpha_{s}(\Lambda_{s}) \int^{1/b} \frac{d^{4}k}{k^{2}} \frac{\gamma_{\mu}k_{\mu}}{k^{2}} \int^{1/b} \frac{d^{4}\ell}{\ell^{2} + m_{\sigma}^{2}} \frac{\gamma_{\nu}(k+\ell)_{\nu}}{(k+\ell)^{2}} \cdot \frac{b^{2}\gamma_{\rho}(k+\ell)_{\rho}}{b^{2}\Lambda_{s}\gamma_{\lambda}(2k+\ell)_{\lambda}} \sim \underline{g}_{s}^{2} \rho |\rho| \alpha_{s}(\Lambda_{s}) \Lambda_{s}}$

with the b^4 factor compensated by the two-loop quartic divergency

• in
$$\Gamma_{4\,\hat{\mu}_{\Phi}^2}^{NG}$$
 a NP mass term $\supset c_1 \Lambda_S[\bar{Q}_L Q_R + \bar{Q}_R Q_L]$, $c_1\Big|_{LO} = k_{LO}\rho|\rho|g_S^4$

Numerical Demonstration - 1: lattice formulation

First study with A_{μ} , Q, Φ field, needs lattice setup with exact $\chi_L \times \chi_R$ symmetry. Simplified by quenched approximation: with no sea quark effects "NP anomaly" is still expected, but can use naive valence lattice fermions + $\tilde{\chi}$ -breaking terms $S_{L} = b^{4} \sum_{x} \left\{ \mathcal{L}_{k}^{g} [U_{.}] + \mathcal{L}^{s}(\Phi) + \bar{Q}(x) D_{L}[U_{.}, \Phi] Q(x) \right\} + b^{4} \mu \sum_{x} \left\{ \bar{Q}(x) i \mu \gamma_{5} \tau^{3} Q(x) \right\},$ $\mathcal{L}^{g}_{k}[U]$: YM action, $\mathcal{L}^{s}(\Phi) = \frac{1}{2} \operatorname{Tr} [\Phi^{\dagger}(-\partial_{u}^{*}\partial_{u})\Phi] + \frac{m_{\phi}^{2}}{2} \operatorname{Tr} [\Phi^{\dagger}\Phi] + \frac{\lambda_{0}}{4} (\operatorname{Tr} [\Phi^{\dagger}\Phi])^{2}$. with $\Phi = \varphi_0 \mathbf{1} + i\varphi_i \tau^j$. In terms of $F \equiv [\varphi_0 \mathbf{1} + i\gamma_5 \tau^j \varphi_i]$ the Dirac operator D_L reads $D_{I}[U,\Phi]Q(x) = \gamma_{\nu}\widetilde{\nabla}_{\nu}Q(x) + \eta F(x)Q(x) - b^{2}\rho \frac{1}{2}F(x)\widetilde{\nabla}_{\nu}\widetilde{\nabla}_{\nu}Q(x) + d^{2}\rho \frac{1}{2}F(x)\widetilde{\nabla}_{\nu}Q(x) + d^{2}\rho \frac{1}{2}F(x)$ $-b^{2}\rho \frac{1}{4} \left[(\partial_{\nu}F)(x)U_{\nu}(x)\widetilde{\nabla}_{\nu}Q(x+\hat{\nu}) + (\partial_{\nu}^{*}F)(x)U_{\nu}^{\dagger}(x-\hat{\nu})\widetilde{\nabla}_{\nu}Q(x-\hat{\nu}) \right]$

Fermion mass term $\propto \mu$: technical device needed as IR cutoff in quenched approx., it breaks softly the $\chi_L \times \chi_R$ symmetry and is safely removed by $\mu \to 0$ extrapolation.

Numer. Demonstr. – 2: lattice renormalization & η_{cr}

Lattice setup preserves symmetries of the formal model + doubling symmetry

 \Rightarrow all doubler species enter in the 1PI E L with common ρ and $(\eta - \bar{\eta})$

Quenching: gauge and Φ configurations are independently renormalized

* Explore $\rho = 1.96, 2.94, 0$: renormalization conditions for m_{Φ}^2 , λ_0 , v_{Φ} , g_0^2

$$\begin{split} M_{\zeta_0}^2 r_0^2 &= 1.284(6)\,, \quad \lambda_R \equiv \frac{M_{\zeta_0}^2}{2v_R} = 0.441(4)\,, \quad v_{\Phi}^2 r_0^2 &= 1.458(2)\,, \quad r_0^2 F_{h\bar{h}}(r_0) = 1.65\\ g_0^2 \text{ decreased s.t. } b^2/r_0^2 \text{ varies by} \sim 2.2\,, \quad \text{criticality fixes } \eta &= \eta_{cr}(\rho, g_0^2, \lambda_0) \end{split}$$

- ★ Large volume: $M_{PS}L \ge 4.7$ for three lattice spacings, several μ and η -values
- * Simple correlators give info on η_{cr} , M_{PS} and axial $\tilde{\chi}$ -current matrix elements:

we set
$$P^{i} = \bar{Q}\gamma_{5}\frac{\tau^{i}}{2}Q$$
, $D^{i}_{P} = \bar{Q}_{L}\left\{\Phi, \frac{\tau^{i}}{2}\right\}Q_{R} - \bar{Q}_{R}\left\{\frac{\tau^{i}}{2}, \Phi^{\dagger}\right\}Q_{L}$ and define
 η_{cr} s.t. $r_{AWI}\Big|_{\mu\to 0}^{\eta\to\eta_{cr}} = 0$, $r_{AWI} = \frac{\sum_{\mathbf{x},\mathbf{y}}\langle P^{1}(0)\partial_{0}^{FW}\tilde{A}_{0}^{1,BW}(x)\varphi_{0}(y)\rangle}{\sum_{\mathbf{x},\mathbf{y}}\langle P^{1}(0)\tilde{D}_{P}^{1}(x)\varphi_{0}(y)\rangle}$

Numer. Demonstr. - 3: evidence for NP fermion mass

we measure M_{PS} from $\sum_{\mathbf{x}} \langle P^1(0) P^1(\mathbf{x}) \rangle$ and the matrix element ratio

 $m_{AWI}^{R} \equiv \frac{Z_{A} \sum_{\mathbf{x}} \partial_{0} \langle \tilde{A}_{0}^{i}(\mathbf{x}) P^{i}(\mathbf{0}) \rangle}{2Z_{P} \sum_{\mathbf{x}} \langle P^{i}(\mathbf{x}) P^{i}(\mathbf{0}) \rangle} \Big|_{\eta_{Cr}} \propto c_{1} \Lambda_{S} , \text{ since } \tilde{A}_{\nu}^{i} = \tilde{J}_{\nu}^{Li} - \tilde{J}_{\nu}^{Ri}$

Frezzotti (Roma - Tor Vergata)

3

Mechanism in an extended Toy Model with weak + strong interactions Gauge: $SU(3)_T \times SU(3)_S \times SU(2)_L$ RG-invariant scale: Λ_T

Frezzotti (Roma - Tor Vergata)

< ロ > < 同 > < 回 > < 回 >

Toy model with weak interactions: overview

Dirac fermions: $Q \in (3_T, 3_S)$, $q \in (1_T, 3_S)$; L/R-handed \leftrightarrow SU(2)_L doublets/singlets $\mathcal{L}_{toy}(Q, q, G, A, \Phi, W) = \mathcal{L}_{kin}(Q, q, ...) + \mathcal{V}(\Phi) + \mathcal{L}_{Wil}(Q, q, ...) + \mathcal{L}_{Yuk}(Q, q, \Phi)$ • $\mathcal{L}_{kin} = \frac{1}{4}F^G \cdot F^G + \frac{1}{4}F^A \cdot F^A + \frac{1}{4}F^W \cdot F^W + \bar{Q}_L\gamma_\mu \mathcal{D}_\mu^{G,A,W}Q_L + \bar{Q}_R\gamma_\mu \mathcal{D}_\mu^{G,A}Q_R$ $+ \bar{q}_L\gamma_\mu \mathcal{D}_\mu^{A,W}q_L + \bar{q}_R\gamma_\mu \mathcal{D}_\mu^A q_R + \frac{1}{2}Tr[\Phi^{\dagger}\overleftarrow{\mathcal{D}}_\mu^W \mathcal{D}_\mu^W \Phi]$ • $\mathcal{L}_{Wil} = \frac{b^2}{2}\rho(\bar{Q}_L\overleftarrow{\mathcal{D}}_\mu^{G,A,W}\Phi \mathcal{D}_\mu^{G,A}Q_R + h.c. + \bar{q}_L\overleftarrow{\mathcal{D}}_\mu^{A,W}\Phi \mathcal{D}_\mu^A q_R + h.c.)$ SU(2)_L gauge symmetry: $W_\mu^{1,2,3}$ bosons & covariant derivatives on $\psi = Q$, q, e.g.

 $\mathcal{D}_{\mu}^{A,W} q_{L} = (\partial_{\mu} - ig_{s}\lambda^{a}A_{\mu}^{a} - ig_{w}\frac{\tau^{i}}{2}W_{\mu}^{i})q_{L} \qquad \bar{q}_{L}\overleftarrow{\mathcal{D}}_{\mu}^{A,W} = \bar{q}_{L}(\overleftarrow{\partial}_{\mu} + ig_{s}\lambda^{a}A_{\mu}^{a} + ig_{w}\frac{\tau^{i}}{2}W_{\mu}^{i})$

Global SU(2)_L× SU(2)_R invariance, if W's transform (as \in su(2)_L) under $\tilde{\chi}_L$:

$$\chi_{L} \equiv \tilde{\chi}_{L} \otimes \chi_{L}^{\Phi} \quad \text{and} \quad \chi_{R} \equiv \tilde{\chi}_{R} \otimes \chi_{R}^{\Phi} \quad \text{with}$$
$$\tilde{\chi}_{L} : Q[q]_{L} \to \Omega_{L} Q[q]_{L}, \, \bar{Q}[q]_{L} \to \bar{Q}[q]_{L} \Omega_{L}^{\dagger}, \qquad \chi_{L}^{\Phi} : \Phi \to \Omega_{L} \Phi, \quad \Omega_{L} \in \mathsf{SU}(2)_{L},$$
$$W_{\mu} \to \Omega_{L} W_{\mu} \Omega_{L}^{\dagger},$$

 $\tilde{\chi}_{R}: \ Q[q]_{R} \to \Omega_{R}Q[q]_{R}, \bar{Q}[q]_{R} \to \bar{Q}[q]_{R}\Omega_{R}^{\dagger}, \qquad \chi_{R}^{\Phi}: \ \Phi \to \Phi\Omega_{R}^{\dagger}, \qquad \Omega_{R} \in \mathsf{SU}(2)_{R},$

$g_W > 0$: minimal $\tilde{\chi}$ -breaking in the quantum EL

 $\tilde{\chi}_{LB}$ and χ^{Φ}_{LB} transf.s are no symmetries ... term $\text{Tr}[\Phi^{\dagger} \widetilde{\mathcal{D}}^{W}_{\mu} \mathcal{D}^{W}_{\mu} \Phi]$ breaks $\tilde{\chi}_{L}$, too For the quantum EL we expect $\Gamma = \Gamma_{d < 4, \hat{\mu}_{d}^{2}} + \Delta \Gamma_{d < 4, \hat{\mu}_{d}^{2}}^{NG} + \Gamma_{d > 4, \hat{\mu}_{d}^{2}}$ with $\Gamma_{d \leq 4, \ \hat{\mu}_{\Phi}^2} = \frac{1}{4} (\boldsymbol{F} \cdot \boldsymbol{F})^{G,A,W} + \bar{\boldsymbol{Q}} \mathcal{P} \boldsymbol{Q} + \bar{\boldsymbol{q}} \mathcal{P} \boldsymbol{q} + \frac{\hat{\mu}_{\phi}^2}{2} \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + \frac{\hat{\lambda}}{4} \left(\operatorname{Tr} \left$ + $(\eta - \bar{\eta}_L(\eta, \rho, ...)) \sum_{\psi=Q,q} [\bar{\psi}_L \Phi \psi_R + \text{h.c.}] + \frac{1}{2} (1 - \bar{\gamma}(\eta, \rho, ...)) \operatorname{Tr} [\mathcal{D}^W_\mu \Phi^\dagger \mathcal{D}^W_\mu \Phi]$, and NP $d \le 4$ terms if $\chi_L \times \chi_R$ is realized à la Nambu–Goldstone (NG), i.e. $\hat{\mu}_{\Phi}^2 < 0$, $\Delta\Gamma_{d<4, \hat{\mu}_{\Phi}^{2}}^{NG} = \theta(-\hat{\mu}_{\Phi}^{2}) \sum_{\psi=Q,q} [C_{1} \Lambda_{T}(\bar{\psi}_{L} U \psi_{R} + \text{h.c.}) + (C_{2} \Lambda_{T}^{2} + \tilde{C} \Lambda_{T} R) \frac{1}{2} \text{Tr}(\mathcal{D}_{\mu}^{W} U^{\dagger} \mathcal{D}_{\mu}^{W} U)]$ where $\Phi = \mathbf{v}_{\Phi} + \sigma + i\vec{\tau}\vec{\pi} = \mathbf{R}\mathbf{U}$, $\mathbf{R} = (\mathbf{v}_{\Phi} + \zeta_0)$, $\mathbf{U} = \exp[i\mathbf{v}_{\Phi}^{-1}\tau^k\zeta_k]$. Criticality: $\eta_{cr} = \bar{\eta}_L(g_T, g_S, g_W; \mu_0, \lambda_0; \eta_{cr}, \rho_{cr}), \quad \mathbf{1} = \bar{\gamma}(g_T, g_S, g_W; \mu_0, \lambda_0; \eta_{cr}, \rho_{cr})$ \star absence of Yukawa and ζ_0 -kinetic terms from the EL \Leftrightarrow minimal $\tilde{\chi}$ -breaking * canonical $\zeta_0^c = (1 - \bar{\gamma})^{1/2} \zeta_0$ becomes decoupled, with $v_{\Phi}^c = (1 - \bar{\gamma})^{1/2} v_{\Phi} \rightarrow 0^+$

$g_W > 0$: minimal $\tilde{\chi}$ -breaking in the $\tilde{\chi}$ -SDE

the bare Schwinger Dyson equations (SDE) associated to
$$\tilde{\chi}_{L}$$
 transformations read
 $\partial_{\mu} \langle \tilde{J}_{\mu}^{L,i}(x) \hat{O}(0) \rangle = \langle \tilde{\Delta}_{L}^{i} \hat{O}(0) \rangle \delta(x) - \eta \langle \sum_{f=Q,q} \left(\bar{t}_{L} \frac{\tau^{i}}{2} \Phi f_{R} - \bar{t}_{R} \Phi^{\dagger} \frac{\tau^{i}}{2} f_{L} \right) (x) \hat{O}(0) \rangle + \frac{b^{2}}{2} \rho \langle \sum_{f=Q,q} \left(\bar{t}_{L} \overleftarrow{\mathcal{D}}_{\mu}^{A,W} \frac{\tau^{i}}{2} \Phi \mathcal{D}_{\mu}^{A} f_{R} - \bar{t}_{R} \overleftarrow{\mathcal{D}}_{\mu}^{A} \Phi^{\dagger} \frac{\tau^{i}}{2} \mathcal{D}_{\mu}^{A,W} f_{L} \right) (x) \hat{O}(0) \rangle + \frac{b^{2}}{2} \rho \langle \nabla_{f=Q,q} \left(\bar{t}_{L} \overleftarrow{\mathcal{D}}_{\mu}^{A,W} \frac{\tau^{i}}{2} \Phi \mathcal{D}_{\mu}^{A} f_{R} - \bar{t}_{R} \overleftarrow{\mathcal{D}}_{\mu}^{A} \Phi^{\dagger} \frac{\tau^{i}}{2} \mathcal{D}_{\mu}^{A,W} f_{L} \right) (x) \hat{O}(0) \rangle + \frac{b^{2}}{2} \rho \langle \nabla_{f} (\tau^{i}) \Phi \mathcal{D}_{\mu}^{A} \Phi^{\dagger} \Phi$

 $\Rightarrow \tilde{\chi}_L$ and also $\tilde{\chi}_R$ restored at low momenta, up to ... possible NP terms $\sim \Lambda_T$...

22 / 60

(日)

$\hat{\mu}_{\Phi}^{2} > 0$: restoration of $\tilde{\chi}$ –symmetry @ (ho_{cr} , η_{cr})

Wigner phase at (ρ_{cr}, η_{cr}) : $\mathcal{V}(\Phi)$ has a single minimum $(\hat{\mu}_{\Phi}^2 > 0) \Rightarrow$ renormalized SDE's of $\tilde{\chi}_{L(R)}$: $Z_{\bar{J}}\partial_{\mu}\langle \tilde{J}_{\mu}^{L(R), i}(x)\hat{O}(0)\rangle = \langle \tilde{\Delta}_{L(R)}^{i}\hat{O}(0)\rangle\delta(x) + O(b^2)$ with no NP operators $\sim \Lambda_T$ in rhs as, due to $v_{\Phi} = 0$, effective *U*-field is undefined Equivalently, $\Gamma^{Wig} = \Gamma_{d \leq 4, \ \hat{\mu}_{\Phi}^2} + \Gamma_{d > 4, \ \hat{\mu}_{\Phi}^2}^{Wig}$ has no Yukawa or Φ -kinetic terms $\Gamma_{d \leq 4, \ \hat{\mu}_{\Phi}^2} = \frac{1}{4}[F^G \cdot F^G + F^A \cdot F^A + F^W \cdot F^W] + \sum_{\psi = Q,q} [\bar{\psi}_L \mathcal{P}^{\dots,W} \psi_L + \bar{\psi}_R \mathcal{P}^{\dots} \psi_R] + \mathcal{V}_{eff}^{Wig}[\Phi]$

 Φ decoupled at low energy \leftrightarrow evaluation of (ρ_{cr}, η_{cr}) by imposing LE cancellations

Frezzotti (Roma - Tor Vergata)

$\hat{\mu}_{\Phi}^2 < 0$: dynamical $\tilde{\chi}$ SB & NP masses @ (ho_{cr} , η_{cr})

NG phase at (ρ_{cr}, η_{cr}) : $\mathcal{V}(\Phi)$ has many degenerate minima $(\hat{\mu}_{\Phi}^2 < 0) \Rightarrow$

- * by def. of (ρ_{cr}, η_{cr}) no O(v) *W*-mass and no O(v) Q(q)-mass terms
- under dynamical x SB vacuum polarized by residual O(b²v) x -breaking terms
- ★ interplay of $O(b^2) \tilde{\chi}$ -breaking and $\tilde{\chi}$ SB dynamics induces <u>RG-invariant</u> $O(\Lambda_T b^0)$ $\tilde{\chi}$ -breaking operators in renormalized SDE's \Leftrightarrow the <u>1PI E L</u> reads

 $\Gamma_{4} = \Gamma_{d \leq 4, \, \hat{\mu}_{\Phi}^{2}} + \sum_{\psi = Q, q} \Lambda_{T} C_{1,\psi} [\bar{\psi}_{L} U \psi_{R} + h.c.] + C_{2} \Lambda_{T}^{2} \frac{1}{2} \operatorname{Tr} [U^{\dagger} \overleftarrow{\mathcal{D}}_{\mu}^{W} \mathcal{D}_{\mu}^{W} U] + \Gamma_{d > 4, \, \hat{\mu}_{\Phi}^{2}} (M_{W}^{eff})^{2} = g_{W}^{2} C_{2} \Lambda_{T}^{2} \text{ and } m_{Q/q}^{eff} = C_{1,Q/q} \Lambda_{T} \text{ from a common mechanism}$

NP masses in Γ_{loc}^{NG} @ (ρ_{cr}, η_{cr}) : remarks

* Effective NP masses modulated by gauge couplings & loop suppression factors:

$$\begin{split} m_{Q/q}^{\text{eff}} &= C_{1,Q/q} \Lambda_{T} : \quad C_{1,Q} = O(\alpha_{T}^{2}|_{\Lambda_{T}} \rho_{cr}^{2} N_{Q}) , \quad C_{1,q} = O(\alpha_{S}^{2}|_{\Lambda_{T}} \rho_{cr}^{2} N_{T} N_{Q}) \sim (4\pi)^{-2} \\ (M_{W}^{\text{eff}})^{2} &= g_{W}^{2} C_{2} \Lambda_{T}^{2} : \quad C_{2} = O(\rho_{cr}^{4} N_{T} N_{Q} (4\pi)^{-3}) \sim (N_{T} N_{Q})^{-1} (4\pi)^{-3} \end{split}$$

here $N_S = N_T = 3$, $N_Q = N_q = 2$ and we use $\rho_{cr}^{-2} \stackrel{\text{crit}}{\simeq} N_F^{\text{tot}} = N_S(N_T N_Q + N_q) = 24$

- * Absence in $\Delta\Gamma_{d\leq 4}^{NG}$ of term $\tilde{C}\Lambda_s R \operatorname{Tr} [\mathcal{D}^W_{\mu} U^{\dagger} \mathcal{D}^W_{\mu} U]$ is specific to the critical model: as $\rho_{cr}^2 - \rho^2 \to 0^+ \& \eta \to \eta_{cr}$ we have $1 - \bar{\gamma} \to 0^+$, $m_{\zeta^0}^2 \sim |\hat{\mu}_{\Phi}^2|/(1 - \bar{\gamma}) \to +\infty$ \Rightarrow decoupling of ζ^0 . For Γ_4^{NG} to describe the decoupling of ζ^0 , e.g. in $WW \to WW$ amplitudes, it is necessary that $|\tilde{C}| \leq O((1 - \bar{\gamma})^{1/2})^{\rho \to \rho_{\underline{C}}, \eta \to \eta_{cr}} 0$
- ★ Canonical normalization of NP kinetic term for GB's ⇒ $U = \exp(i\vec{\zeta}\vec{\tau}/\sqrt{C_2}\Lambda_T)$ basic GB's provide longitudinal d.o.f.'s for massive *W*'s (SU(2) unitarity gauge)
- * Further $\tilde{\chi}$ -breaking terms in Γ^{NG} : $\frac{1}{\Lambda_{+}^{2}}[(\bar{Q}_{L}UQ_{R})(\bar{Q}_{R}U^{\dagger}Q_{L})], [\text{Tr}(D_{\mu}^{W}U^{\dagger}D_{\mu}^{W}U)]^{2}, ...$

Towards a realistic BSM model: new interactions and matter

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Dynamical NP mass: towards a realistic model

Might our mechanism be responsible for the effective mass of elementary particles ? Consistency of such an hypothesis with experimentally observed masses requires

- new strong SU(N_T) interaction with RGI scale $\Lambda_T > M_W \gg \Lambda_{QCD}$
- new set of fermions subjected to the new force (besides to SM interactions)
 - $Q_L \in (N_T, 3, 2; Y_Q^L)$, $L_L \in (N_T, 1, 2; Y_L^L)$
 - $Q_R^u \in (N_T, 3, 1; Y_R^u)$, $L_R^u \in (N_T, 1, 1; Y_L^u)$
 - $Q_R^d \in (N_T, 3, 1; Y_R^d)$, $L_R^d \in (N_T, 1, 1; Y_L^d)$

with (irrep. of SU(N_T), SU(3)_S, SU(2)_L; $Y = Q_{em} - T_3$); besides SM fermions, e.g.

- $q_L \in (1,3,2;1/6)$, $\ell_L \in (1,3,2;-1/2)$
- $t_R \in (1,3,1;2/3)$, $\nu_R \in (1,1,1;0)$
- $b_R \in (1,3,1;-1/3)$, $\tau_R \in (1,1,1;-1)$
- a bound state (composite higgs): binding through new fermions & T-strong force;
 needed for PT unitarity in WW → WW scattering [Lee Quigg Thacker 1977]

UV complete Lagrangian: towards a realistic model

$$\mathcal{L}^{BSMM} = \frac{1}{4} \left(F^B F^B + F^W F^W + F^A F^A + F^G F^G \right) + \\ + \sum_{g=1,2,3} \left[\bar{q}^g_L D^{BWA} q^g_L + \bar{q}^g_R U^{BA} q^g_R u + \bar{q}^g_R D^{BA} q^g_R d + \bar{\ell}^g_L D^{BW} \ell^g_L + \bar{\ell}^g_R u \partial \ell^g_R u + \bar{\ell}^g_R D^B \ell^g_R d \right] + \\ + \left[\bar{L}_L D^{BWG} L_L + \bar{L}^u_R D^{BG} L^u_R + \bar{L}^d_R D^{BG} L^d_R \right] + \left[\bar{Q}_L D^{BWAG} Q_L + \bar{Q}^u_R D^{BAG} Q^u_R + \bar{Q}^d_R D^{BAG} Q^d_R \right] + \\ + \sum_{\text{fermions } f} \left[\eta^u_{f,cr}(\bar{t}_L \tilde{\phi} f^u_R) + \frac{1}{2} b^2 \rho^u_f(\bar{t}_L W^u_f(\tilde{\phi}, \mathcal{D}, ...) f^u_R) + \text{h.c.} \right] + \\ + \sum_{\text{fermions } f} \left[\eta^d_{f,cr}(\bar{t}_L \phi f^d_R) + \frac{1}{2} b^2 \rho^d_f(\bar{t}_L W^d_f(\phi, \mathcal{D}, ...) f^d_R) + \text{h.c.} \right] \\ d = 6, 8, ... \tilde{\chi} \text{-breaking terms: mass for } t, c, u \& \tau, \mu, e ; \text{ no } \nu \text{ mass} \\ [appropriate $d = 8, 10, ... \tilde{\chi} \text{ terms: } \alpha_{S/W/Y} \text{-suppressed mass for } b, s, d] \\ \tilde{\chi} \text{-symmetry restoring } \Rightarrow \sum_{f=1}^{N^{folt}_{f=m}} \rho^2_f (1 + O(\rho^2_f)) = O(1) \text{ and } \eta_f = \eta_{f,cr}(\{\rho\}) \\ \text{Even if } \rho_f \simeq \rho_{cr} \quad \forall f \text{ describing isospin & generations requires further assumptions.} \end{cases}$$$

э

28/60

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computing $M_W^{eff}/M_{T-meson} \sim M_W^{eff}/\Lambda_T$: expected $\ll 1$

 $(M_W^{\text{eff}})^2 = g_W^2 C_2 \Lambda_T^2 : \quad C_2 = O(\rho_{cr}^4 N_T N_{Q+L} (4\pi)^{-3}) \sim O((N_T N_{Q+L})^{-1} (4\pi)^{-3})$

 $M_{T-meson} \simeq 2M_{Q/L}^{eff}O(1) = O(2\alpha_T^2|_{\Lambda_T}\rho_{cr}^2N_{Q+L})\Lambda_T \sim O(2\Lambda_T)$ are expected from

 $M_W^{eff}/M_{T-meson} \sim g_W \sqrt{C_2} O(1) \sim O((N_T N_{Q+L})^{-1/2} (4\pi)^{-3/2}) \sim 10^{-2}$

numerically computable with controlled O(20%) errors \Rightarrow little hierarchy [Pomarol]

i) $M_{T-meson}$: $\sum_{\vec{x}} \langle \bar{Q}\gamma_5 Q'(x) \bar{Q}' \gamma_5 Q(0) \rangle \propto e^{-M_{T-meson}|x_0|}$ (quenched approx.?)

ii) $(M_W^{eff})^2$: shifted above zero due to the double *W*-pole, with residue computable from $\sum_{y} e^{i(\rho \cdot y)} \langle J_{\mu,Q}^{weak}(y) J_{\lambda,Q}^{weak}(0) \rangle$ at $g_W = g_Y = 0$

results depend / give hints on N_T (e.g. 3,2) and on N_{Q+L} (e.g. $N_c + 1 = 4$ doublets)

Hypercharge: M_Z/M_W , lepton masses

•
$$(M_Z^{eff})^2 = rac{g_W^2 + g_Y^2}{g_W^2} (M_W^{eff})^2 \,, \qquad M_\gamma^{eff} = 0$$

 $\Gamma_{LE}^{NG} \supset C_2 \Lambda_{T2}^2 \frac{1}{2} \text{Tr} \left[D_{\mu}^{W,B} U^{\dagger} D_{\mu}^{W,B} U \right] \supset C_2 \Lambda_{T2}^2 \left[g_W^2 \sum_{j=1}^3 (W^j \cdot W^j) + g_Y^2 B \cdot B + 2g_W g_Y W^3 \cdot B \right]$

⇒ diagonalization in W^3-B sector gives massless γ and $M_Z^2 = (g_W^2 + g_Y^2)C_2\Lambda_7^2$ owing to the custodial SU(2)_L × SU(2)_R symmetry of \mathcal{L}^{BSMM} in the $g_Y \rightarrow 0$ limit

• prediction $m_{ au}^{e\!f\!f}/m_{
m top}^{e\!f\!f} \sim \alpha_Y^2|_{\Lambda_T}/\alpha_S^2|_{\Lambda_T} \simeq 0.01$ from

$$\mathcal{L}_{W+Y}^{\text{top}} = \frac{1}{2} b^2 \rho_{\text{cr, t}} [(\bar{q}_L \overleftarrow{\mathcal{D}}_{\mu}^{\text{BWA}} \widetilde{\phi} \mathcal{D}_{\mu}^{\text{BA}} t_R) + \text{h.c.}] + \eta_{\text{cr, t}} [\bar{q}_L \widetilde{\phi} t_R]$$

$$\mathcal{L}_{W+Y}^{\tau} = \frac{1}{2} b^2 \rho_{\text{cr},\tau} \left[\left(\bar{\ell}_L \overleftarrow{\mathcal{D}}_{\mu}^{BW} \phi \mathcal{D}_{\mu}^{B} \tau_R \right) + \text{h.c.} \right] + \frac{\eta_{\text{cr},\tau}}{\left[\bar{\ell}_L \phi \tau_R \right]}$$

 $\Rightarrow \qquad m_{\rm top}^{\rm eff} = \mathcal{O}(g_S^4|_{\Lambda_T}(\frac{1}{4\pi})^2 \rho_{cr,t}^2 N_{Q+L} N_T) \Lambda_T \qquad m_{\tau}^{\rm eff} = \mathcal{O}(g_Y^4|_{\Lambda_T}(\frac{1}{4\pi})^2 \rho_{cr,\tau}^2 N_{Q+L}^V N_T) \Lambda_T$

Isospin splitting: approximate symmetries? why?

Imposing further approximate symmetries one can get $m_{\rm b}^{\rm eff} < m_{\rm top}^{\rm eff}$ and $m_{\nu}^{\rm eff} = 0$:

- 1) \mathcal{L}^{BSMM} -invariance under $f(x) \to f(x) + \text{const}, \bar{f}(x) \to \bar{f}(x) + \text{const}$ as $g_{S,W,Y} \to 0$ for all fermion species f [Goltermann & Petcher, 1990]
- 2) \mathcal{L}^{BSMM} -invariance under $b_R(x) \to -b_R(x)$, $\bar{b}_R(x) \to -\bar{b}_R(x)$ as $g_{S,W,Y} \to 0$

 $\mathcal{L}_{W+Y}^{b} = \frac{1}{2} b^{4} \rho_{\text{cr, b}} [\left(\bar{q}_{L} [\overleftarrow{\mathcal{D}}_{\mu}^{BWA}, \overleftarrow{\mathcal{D}}_{\nu}^{BWA}] \mathcal{D}_{\mu}^{BW} \phi \mathcal{D}_{\nu}^{BA} b_{R} \right) + \text{h.c.}] + \eta_{\text{cr, b}} [\bar{q}_{L} \phi b_{R}]$

$$\mathcal{L}^{\nu}_{W+Y} = \frac{1}{2} b^2 \rho_{cr,\nu} \left[\left(\bar{\ell}_L \overleftarrow{\mathcal{D}}^{BW}_{\mu} \widetilde{\phi} \, \partial_{\mu} \nu_R \right) + \text{h.c.} \right], \qquad \eta_{cr,\nu} = 0$$

in fact leads to: $m_{\rm b}^{\rm eff} = O(g_S^4|_{\Lambda_T}(\frac{1}{4\pi})^3 g_{S,W,Y}^2 \rho_{\rm cr, b}^2 N_Q N_T) \Lambda_T$ and $m_{\nu}^{\rm eff} = 0$

Higgs as a bound state and sub-TeV effective Lagrangian

크

125 GeV Higgs boson (*h*): a WW + ZZ bound state?

New T-strong force can lead to physical effects from Q-, L-fermions at scales $\ll \Lambda_T$

In $G_{V_3}(p) = \int dt d^3x d^3y d^3z \ e^{-ip_0 t - i\vec{p}\vec{x} + i\vec{p}\vec{z}} \ V_3^{-2} \Big\langle W(\vec{x},t)W(\vec{y},t)W^{\dagger}(\vec{z},0)W^{\dagger}(\vec{0},0) \Big\rangle$

due to a large effective WW-WW coupling $\Delta_0^2 = O(\Lambda_T^{2-2}) g_W^4 4 M_W^2$ one expects

$$G_{V_3}(p) \Rightarrow \frac{g_{analyt}(p^2)}{p^2 + 4M_W^2} \Big\{ 1 + \frac{\Delta_0^2(p^2)}{p^2 + 4M_W^2} + \dots \Big\} = \frac{g_{analyt}(p^2)}{p^2 + 4M_W^2 - \Delta_0^2(p^2)} \xrightarrow{p^2 \simeq -M_h^2} \frac{g_W^2 M_W^2}{-s + M_h^2}$$

 $V_3
ightarrow \infty$: besides a cut for $-p^2 > 4 M_W^2$, sum over all T-meson exchanges yields a pole

at
$$p^2 = -M_h^2 = -4M_W^2 + \Delta_0^2(-M_h^2) \quad \leftrightarrow \quad M_h = 2M_W \Big(1 - O(\frac{(M_{G/L}^{OP})^2}{M_{L^-meson}^2})g_W^4\Big)^{1/2}$$

Arguments for one WW + ZZ bound state

- * T-strong force \Rightarrow mass $m_{Q,L} \sim \Lambda_T$, scalar T-meson exchange in *t*-channel \Rightarrow WW-WW coupling $\stackrel{M_W^2 \ll \Lambda_T^2}{\sim} \frac{m_{Q/L}^{\text{eff}}}{\Lambda_T^2} \langle 0|\bar{Q}Q|T_{\text{meson}} \rangle \frac{O(1-10)}{M_T^2} \langle T_{\text{meson}}|\bar{Q}Q|0 \rangle \frac{m_{Q/L}^{\text{eff}}}{\Lambda_T} \sim \text{large}$ two-*W* interaction attractive & strong over distances $\sim \Lambda_T^{-1} \lesssim M_W^{-1}$
- * In non-relativistic approximation $(\frac{\Delta_0^2}{4M_{e_1}^2} \ll 1) W W$ scattering can be seen as
- a particle of mass $\mu_W = \frac{M_W}{2}$ in a potential well of height $|V_0| < 2M_W$, size $\lesssim M_W^{-1}$
- satisfying the condition that implies just one bound–state, viz. $\mu_W |V_0|size^2 < 1$
- * QFT approach à la Bethe-Salpeter & Lüscher [Comm.Math.Phys.105(1986)]
- → Lüscher's effective Schröedinger Eq. with *E*-dependent potential ($E \in [0, 4M_W]$)
- \rightarrow evaluate the effective WWWW coupling through (quenched) lattice simulations
- ★ In custodial approximation: only WW + ZZ energy is shifted; the corrections are O($\alpha_Y(3N_Q + N_L)$): about 10%, depending on the *Y*-charges of *Q*, *L*

▲ ■ ▶ ▲ 国 ▶ ▲ 国 ▶ → 国 ■ の Q @

LE effective action & experimental constraints

A mass mechanism, not yet a unique model + many experimental constraints, e.g.

- * at E < 1 TeV one expects: $\Gamma_{LE}^{NG} \supset (c\Lambda_7^2 + c'\Lambda_7 h + ...)\frac{1}{2} \text{Tr}(D_\mu^{W,B} U^{\dagger} D_\mu^{W,B} U) +$
- + $\Lambda_T [c_1^t \bar{q}_L \tilde{u} q_R^t + c_1^b \bar{q}_L u q_R^b] + \Lambda_T [0 \bar{\ell}_L \tilde{u} \ell_R^\nu + c_1^\tau \bar{\ell}_L u \ell_R^\tau] + \text{ other generations terms} + O(\Lambda_T^{-1})$ with $U = [\tilde{u}|u] = \exp\left(i\zeta^j \tau^j/\sqrt{c}\Lambda_T\right), \quad \zeta^{1,2,3} \text{ GB fields}, \quad u^{SU(2)_L \times U(1)} \phi$
- * up to $O(p^2/\Lambda_T^2)$ SM-like relation between W-mass and WWh coupling
- * SM fermion mass $m_f^{eff} \simeq y_f^{eff} 2M_W g_W^{-1} (1 + O(\alpha_W))$, y_f^{eff} effective $f\bar{f}h$ -coupling
- no tree level FCNC: due to SM-like form of all fermion effective mass terms
- * EW precision tests: S-parameter bounds "ok" owing to $m_{Q,L}^{eff} \sim O(1) \Lambda_T$
- \Rightarrow key check on Λ_{T} : (W [top] mass) / (*T*-meson mass) $\sim \frac{M_{W[top]}^{eff}}{\Lambda_{T}}$ computable
- \Rightarrow prediction: (*h* mass) / (*W* mass) computable

[by theory + lattice simulations]

Predictivity in models with $\tilde{\chi}$ -breaking & NP mass

In a renormalizable model at the critical point of minimally broken $\tilde{\chi}$ symmetry: $\partial_{\mu} \tilde{J}^{L,i}_{\mu} = 0$, (Wigner phase) $\partial_{\mu} \tilde{J}^{L,i}_{\mu} = \sum_{f} c_{1,f} \Lambda_{T} \mathcal{D}^{L,i}_{f} + \frac{ig_{W}}{2} c_{2} \Lambda^{2}_{T} \operatorname{tr} \left(U^{\dagger}[\frac{\tau^{i}}{2}, W_{\mu}] D^{WB}_{\mu} U - \operatorname{h.c.} \right), \quad (\text{NG phase})$ * RGI of l.h.s. \Rightarrow RGI (& UV-finite) NP $\tilde{\chi}$ -breaking terms on the r.h.s. with $\mathcal{D}_{f}^{L,i} = [\bar{f}_{L} \frac{\tau^{i}}{2} U f_{R} - \text{h.c.}]$ and $c_{1,f} = O(\rho_{f,cr}^{2}) \alpha_{\text{coup}(f)}^{n(f)} [1 + O(\alpha_{...})]$ * effective masses|_{scale b}=1: $c_{1,f}\Lambda_T \leftrightarrow m_f^{eff}$, $c_2 g_W^2 \Lambda_T^2 \leftrightarrow (m_W^{eff})^2$ UV cutoff $b^{-1} \rightarrow \infty$ at fixed $M_{\text{Telueball}}, M_{\text{proton}}, G_F, \sin^2 \theta_W \leftrightarrow \hat{\alpha}_{T,S,W,Y}$ $\tilde{\chi}$ -symmetry $\Rightarrow \sum_{t=1}^{N_{term}^{lot}} \rho_{t,cr}^2 (1 + O(\rho_{t,cr}^2)) = O(1)$ entails bounds for the $\rho_{t,cr}$'s $\rightarrow \rho_{Q,cr}, \rho_{L,cr}$ control m_Q^{eff}, m_L^{eff} , as well as m_W^{eff}, m_Z^{eff} $\rightarrow \rho_{t,cr}$ controls $m_t^{eff}, \dots, \rho_{\tau,cr}$ controls m_{τ}^{eff}, \dots

⇒ perhaps one can choose the $\tilde{\chi}$ -breaking action terms for all flavours *f* such that all the $\rho_{f,cr}$ coefficients have similar (equal?) magnitude: ... theory of flavour?

Conclusions

Non-perturbative mass mechanism for fermions and EW gauge bosons:

- an unnoticed feature in gauge quantum field theory \supset [A, Q, Φ]
- occurring if fermion chirality $(\tilde{\chi})$ is broken at the UV cutoff scale
- while the global chiral symmetry that once gauged describes the EW interactions is exact and forbids UV-power-divergent mass terms
- numerically demonstrated by (pioneering) lattice simulations
- maybe a solution to the naturalness problem: get EW & top mass scale
- ... if there exists a new strong interaction with RGI scale of a few TeV, and new fermions subjected to it $\Rightarrow \frac{M_W}{M_T-meson}, \frac{m_t}{M_T-meson}$ computable;
- \Rightarrow hinting at a "Higgs boson bound state" with computable M_h/M_W ;
- \Rightarrow giving insights on fermion hierarchies: m_{τ}/m_t , m_{ν}/m_{τ} , m_b/m_t

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Phenomenological prospects: consistency of mechanism with experiment requires embedding in a suitable UV complete gauge model with at least

- a new strong interaction with RGI scale Λ_T > v_{SM} and ~ a few TeV
- new fermions with mass O(Λ_T) confined in detectable resonances [decaying via SM or new strong interactions, depending on model details]
- a composite Higgs boson: possibly given by a bound WW+ZZ state [as needed to have a perturbatively unitary LE description of WW-scattering]
- a low energy (p < 1 TeV) effective action very similar to the SM: deviations of LE couplings from SM under study, possibly O(1/Λ²₇),

Hints at $\Lambda_T \sim 5\text{--}10$ TeV: to be checked in theory ... and by experiments

Backup slides follow ...

æ

イロト イヨト イヨト イヨト

Towards a realistic field content / unification?

- A few "realistic" models seem phenomenologically viable
- Models with SM particles, T-gluons, T-quarks, T-leptons:
 - * can have cold DM candidates: e.m. neutral T-hadrons

(with valence T-fermions and/or quarks)

 \star non-standard T-fermion hypercharges \Rightarrow gauge coupling unification?

 $\Lambda_{GUT} \sim 10^{18}$ GeV: mass scale of the

 $\tilde{\chi}$ -unprotected particles? $\Lambda^2_{GUT} \leftrightarrow m^2_{\zeta^0_c}$?

10²⁸ eV 10²⁵ eV Seal world m_{top} Λ_{OCD}

Mechanism in Toy Model ($g_W = 0$): lattice study

Mechanism in Toy Model ($g_W = 0$): a numerical test on the lattice

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First (as far as we know) lattice simulation of a d = 4 model with gluons, fermions, scalars: quenching & naive lattice fermions $\Rightarrow \chi$ -invariant formulation, doubling in valence NP mass mechanism expected to be at work already in quenched approximation

$$\begin{split} S_{lat} &= b^4 \sum_x \left\{ \mathcal{L}_{kin}^{\mathsf{YM},plaq}[U] + \mathcal{L}_{kin}^{sca}(\Phi) + \mathcal{V}(\Phi) + \overline{\Psi} D_{lat}[U, \Phi] \Psi \right\}, \quad \Phi = \varphi_0 \, \mathrm{fl} + i \varphi_j \tau^j, \\ \mathcal{L}_{kin}^{sca}(\Phi) + \mathcal{V}(\Phi) &= \frac{1}{2} \operatorname{Tr} \left[\Phi^{\dagger}(-\partial_{\mu}^* \partial_{\mu}) \Phi \right] + \frac{\mu_0^2}{2} \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] + \frac{\lambda_0}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2, \\ \left(D_{lat}[U, \Phi] \Psi(x) = \gamma_{\mu} \widetilde{\nabla}_{\mu} \Psi(x) + \eta F(x) \Psi(x) - b^2 \rho_2^1 F(x) \widetilde{\nabla}_{\mu} \widetilde{\nabla}_{\mu} \Psi(x) \right. \\ \left. - b^2 \rho_4^1 \left[(\partial_{\mu} F)(x) U_{\mu}(x) \widetilde{\nabla}_{\mu} \Psi(x + \hat{\mu}) + (\partial_{\mu}^* F)(x) U_{\mu}^{\dagger}(x - \hat{\mu}) \widetilde{\nabla}_{\mu} \Psi(x - \hat{\mu}) \right], \\ \end{split}$$
where $F \equiv \varphi_0 \, \mathrm{fl} + i \gamma_5 \tau^j \varphi_j$. Only derivatives $\widetilde{\nabla}_{\mu} = \frac{1}{2} (\nabla_{\mu} + \nabla_{\mu}^*)$ acting on fermions, with $\nabla_{\mu} f(x) \equiv \frac{1}{b} (U_{\mu}(x) f(x + \hat{\mu}) - f(x)), \quad \nabla_{\mu}^* f(x) \equiv \frac{1}{b} (f(x) - U_{\mu}^{\dagger}(x - \hat{\mu}))^f(x - \hat{\mu})). \end{split}$

Term $\propto \rho$: Wilson-like, but with $d = 6 \Rightarrow$ fermion doublers do not decouple Extension to 2 generations: $\bar{\Psi}_{\ell} D_{lat}[U, \Phi] \Psi_{\ell} + \bar{\Psi}_{h} D_{lat}[U, \Phi] \Psi_{h}$ in fermionic L_{lat}

Naive lattice fermions: from Ψ to flavour basis & $b \rightarrow 0$

Naive fermion action with d = 6 Wilson-like term involving only $\widetilde{\nabla}_{u}$ derivatives: exact Spectrum Doubling [SD] symmetry \Rightarrow all doublers equivalent @ b > 0i) Wigner phase: |bare mass| = 0, ii) NG phase: |bare mass| = $|(\eta - \eta_{cr})v|$ Flavour content: 2 (isospin: I) \times 4 (tastes: a) \times 4 (replica: A) species per generation $\Psi^{I}(x) \Leftrightarrow \chi^{A,I}(x) \Leftrightarrow q^{A,I}_{\alpha,a}(y)$, y_{μ} coarse, $x_{\mu} = 2y_{\mu} + \xi_{\mu}$ fine lattice coordinates $\Psi(x) = \mathcal{A}_x \chi(x)$, $\mathcal{A}_x = \gamma_1^{x_1} \gamma_2^{x_2} \gamma_3^{x_3} \gamma_4^{x_4}$ spin-diagonalizes S_{lat} in $\chi^A(x)$ basis: A = 1, ..., 4 $q_{\alpha,a}^{A,l}(y) = \frac{1}{8} \sum_{\xi} [\Gamma_{\xi}]_{\alpha,a} (1 - b\xi_{\mu} \widetilde{D}_{y,\mu}) \chi^{A,l} (2y + \xi), \quad \xi_{\mu} = 0, 1 \quad q^{A,l}(y) \leftrightarrow \text{ flavour basis}$ Following Kluberg-Stern et al. ('83), ..., Sharpe et al. ('93), Luo ('96) and adding scalars \Rightarrow the classical *b*-expansion of S_{lat}^{ferm} (fermion sector) is $S_{lat}^{ferm} = \int d^4 y \sum_{A} \{ \bar{q}^{A,l}(y)(\gamma_{\mu} \otimes 1) D_{\mu} q^{A,l}(y) + (\eta - \bar{\eta}) \bar{q}^{A,l}(y) \mathcal{F}^A(y) q^{A,l}(y) + O(b^2) \}$ $\mathcal{F}^{A}(v) \equiv \varphi_{0}(2v)(1 \otimes 1) + s^{A}i\tau^{j}\varphi_{i}(\gamma_{5} \otimes t_{5}), \quad s_{A} = \pm 1, \ t_{\mu} = \gamma_{\mu}^{*} \text{ taste matrices}$

$\tilde{\chi}$ -restoring, cutoff effects and key quark bilinears

- At a certain $\eta = \eta_{cr}(\rho, g_0, \lambda_0)$ the renormalized WTI's of $\tilde{\chi}_L \times \tilde{\chi}_R$ symmetry are restored up to cutoff effects simultaneously for all tastes and replica
- Exact $\chi_L \times \chi_R$ invariance \Rightarrow only $O(b^{2n})$ cutoff effects [n integer]
- Pseudoscalar densities, vector and axial currents (isospin matrix τ ∈ τ^{0,1,2,3}): from Ψ (code) basis to the classical continuum expansion in flavour q^{A,I} basis ∑_ξ Ψ
 ^I(x)γ₅τ_{IJ}Ψ^J(x) |_{x=2y+ξ} = Σ⁴_{A=1} s_Aq
 ^{A,I}(y)(γ₅ ⊗ t₅)τ_{IJ}q^{A,J}(y) + O(b²)
 ∑_ξ Ψ
 ^I(x)γ_μτ_{IJ}Ψ^J(x) |_{x=2y+ξ}^{1pt split} = Σ⁴_{A=1} q
 ^{A,I}(y)(γ_μ ⊗ 1)τ_{IJ}q^{A,J}(y) + O(b²)
 ∑_ξ Ψ
 ^I(x)γ_μτ_{J5}τ_{IJ}Ψ^J(x) |_{x=2y+ξ} = Σ⁴_{A=1} s_Aq
 ^{A,I}(y)(γ_μ ⊗ 1)τ_{IJ}q^{A,J}(y) + O(b²)
 ∑_ξ Ψ
 ^I(x)γ_μγ₅τ_{IJ}Ψ^J(x) |_{x=2y+ξ}^{1pt split} = Σ⁴_{A=1} s_Aq
 ^{A,I}(y)(γ_μγ₅ ⊗ t₅)τ_{IJ}q
 ^{A,J}(y) + O(b²)
 Correlators with "family" non-singlet operators ⇒ no disconnected diagrams:

e.g. $\langle \bar{\Psi}_{\ell}^{\prime}(x) \Gamma_{W} \tau_{lJ'} \Psi_{h}^{J'}(x) \bar{\Psi}_{h}^{J'}(\tilde{x}) \Gamma_{Z} \tau_{l'J} \Psi_{\ell}^{J}(\tilde{x}) \rangle$ & two degenerate quenched families give info on η_{cr} , PS-meson mass, renormalized matrix elements of $\partial_{\mu} \bar{\Psi}^{I} \gamma_{\mu} \gamma_{5} \tau_{lJ'} \Psi^{J'}$

$L_{toy}[Q, \bar{Q}, U, \Phi]$ with twisted mass and the SDE's of $\tilde{\chi}$

- Now $S_{lat}^{ferm} = \bar{Q}D_{lat}[U, \Phi_{smeared}]Q$ with locally smeared Φ for noise reduction
- Quenched (U, Φ) -configurations: known problem of exceptional conf.s with spurious zero modes of $D_{lat}(U, \Phi)$: at large $|\rho|$, $|\eta|$ enhanced by Φ -fluctuations
- Adding twisted mass term: $S_{lat}^{\text{toy-tm}} = S_{lat} + b^4 \sum_x i\mu \bar{Q}\gamma_5 \tau^3 Q(x)$ robust IR cutoff \Rightarrow soft breaking of $\chi_L \times \chi_R$ symmetry: take limit $\mu \propto \mu^{ren} \rightarrow 0$
- \tilde{A} and \tilde{V} renormalized SDE's (here generation non-singlet): $\eta_{sub} = O(\eta \eta_{cr})$

$$\begin{split} Z_{\tilde{A}}\partial \widetilde{A}^{1} &= 2\eta_{sub}\widetilde{D}^{P1} \overset{O(b^{2})}{\simeq} \delta_{ph,NG} \left[\text{NP term} \right] \quad \text{at LE: } \text{NP term} \sim 2c_{1}\Lambda_{s}(\tilde{Q}_{L}\{U, \frac{\tau^{1}}{2}\}Q_{R} - hc) \\ Z_{\tilde{V}}\partial \widetilde{V}^{2} &= 2\eta_{sub}\widetilde{D}^{S2} - i2\mu P^{1} \overset{O(b^{2})}{\simeq} \delta_{ph,NG} \left[\text{NP term} \right] \quad \text{NP term} \sim 2c_{1}\Lambda_{s}(\tilde{Q}_{L}[U, \frac{\tau^{2}}{2}]Q_{R} - hc) \\ \dots \\ \text{with } \widetilde{A}^{1}_{\mu} &= \overline{Q}\gamma_{\mu}\gamma_{5}\frac{\tau^{1}}{2}Q|^{1pt \, split} , \dots , \widetilde{D}^{P1} = \overline{Q}_{L}\{\Phi, \frac{\tau^{1}}{2}\}Q_{R} - hc , \widetilde{D}^{S2} = \overline{Q}_{L}[\Phi, \frac{\tau^{2}}{2}]Q_{R} - hc \\ \text{Note: } Z_{\overline{A}} &= Z_{\widetilde{V}} \text{ due to } \chi \text{ invariance; and with zero anomalous dimension if } \eta = \eta_{cr} \end{split}$$

Action parameters & renormalization conditions

Quenched fermion lattice setup: action reads [fermion isodoublet denoted now by *Q*] $S_{lat}^{\text{toy-tm}} = b^4 \sum_{x} \left\{ \mathcal{L}_{kin}^{\text{YM,plaq}}[U] + \mathcal{L}_{kin}^{\text{sca}}(\Phi) + \mathcal{V}(\Phi) + \overline{Q} D_{lat}[U, \Phi] Q + i\mu \overline{Q} \gamma_5 \tau^3 Q \right\},$

- ★ bare couplings: $g_0^2 = 6/\beta$ (gauge), $\mu_0^2 \& \lambda_0$ (scalar mass & selfinteraction)
- * $\vec{\chi}$ bare couplings: η (Yukawa), ρ (needs no UV-divergent CT); μ (soft mass)
- \star quenching \Rightarrow gauge and Φ sector couplings renormalize independently
- \star for observables in NG phase a renorm. condition fixing v_{Φ} is also needed
- * soft mass $\mu^{ren} = Z_P^{-1} \mu$ and $\eta_{sub} = O(\eta \eta_{cr})$ will be extrapolated to zero ...
- $r_0^2 F_{h\bar{h}}(r_0) = 1.65$ (g_s^2 from static quark-antiquark force) fixes $g_0^2 \Rightarrow$ scale $1/r_0$
- $(M_{\sigma}^{NG}r_0)^2 = 1.285$ & $(v_{\Phi}r_0)^2 = 1.458$ & $\lambda_{NP}^{NG} = (1/2)(M_{\sigma}^{NG}/v_{\Phi})^2 = 0.4408$ determine $m_{sub}^2 = \mu_0^2 - \mu_{cr}^2$ & $Z_{\Phi} = \hat{\Phi}_B/\hat{\Phi}$ & $\lambda_{NP}^{NG} = Z_\lambda \lambda_0$
- $\mu_{cr}^2 = \tau_{cr}(\lambda_0)/b^2$ evaluated from peak of $G_{\Phi\Phi^{\dagger}}(p = 0, \mu_0^2, \lambda_0)$ in μ_0^2 @ large L

Simul. step 1: scalar sector renormalization

From several simulations of the $\lambda_0 (\Phi^{\dagger} \Phi)^2$ theory with 12 < L/b < 24 and $T = 2L \Rightarrow$ scalar sector parameters matching renorm. conditions in NG phase & $\beta \leftrightarrow r_0/b$ [SU(3)-YM data for $\beta \leftrightarrow r_0/b$ from Necco and Sommer, Nucl.Phys. B622 (2002) 328-346]

β	r_0/b	$r_0^2 M_\sigma^2$	$r_{0}^{2}v_{R}^{2}$	λ_{NP}	$b^2 \mu_0^2$	λ_0	κ
5.75	3.29	1.278(4)	1.464(3)	0.437(2)	-0.5941	0.5807	0.132283
5.85	4.06	1.286(4)	1.459(3)	0.441(2)	-0.5805	0.5917	0.132000
5.95	4.91	1.290(5)	1.453(3)	0.444(2)	-0.5756	0.6022	0.131870

 $\kappa: \text{code hopping parameter, s.t. } \kappa^{-1} - 2\kappa\lambda_0 - 8 = b^2 m_0^2, \ \eta_{\textit{code}} = \eta \sqrt(2\kappa), \ \rho_{\textit{code}} = \rho \sqrt(2\kappa)$

Values of $\mu_{cr}^2 \& \mu_0^2, \lambda_0$ parameters for simulations in Wigner phase at fixed $\mu_{\Phi}^2 r_0^2 > 0$

β	r_0/b	$(\mu_0^2-\mu_{cr}^2)b^2$	$b^2 \mu_{cr}^2$	$b^2 \mu_0^2$	λ_0	κ
5.75	3.29	0.1119(12)	-0.5269(12)	-0.4150	0.5807	0.129280
5.85	4.06	0.0742(11)	-0.5357(11)	-0.4615	0.5917	0.130000
5.95	4.91	0.0504(10)	-0.5460(10)	-0.4956	0.6022	0.130521

Simul. step 2: η_{cr} determination in Wigner phase

Based on the renormalized form of the SDE's of $\tilde{A}^{1,2}$ transformations, e.g.

$$\begin{split} & Z_{\overline{A}} \partial \widetilde{A}^1 = 2 \, \eta_{sub} \, \widetilde{D}^{P1} + \mathrm{O}(b^2) \qquad \text{with} \qquad \eta_{sub} = (\eta - \eta_{cr}) [1 + \mathrm{O}(\eta - \eta_{cr})] \\ & \widetilde{A}^1_{\mu} = \bar{Q} \gamma_{\mu} \gamma_5 \frac{\tau^1}{2} Q \quad \text{and} \quad \widetilde{D}^{P1} = \bar{Q}_L \{\Phi, \frac{\tau^1}{2}\} Q_R - \mathrm{hc} \,, \end{split}$$

$$\begin{split} \eta^{A,\dots}_{cr}(g^2_0,\lambda_0;\rho) &\text{ is determined from } \lim_{\mu\to 0} r^{A,\dots}_{AWI}[g^2_0,\lambda_0;\rho,\mu,\eta^{A,\dots}_{cr}] = 0, \text{ where } \\ r_{AWI}(x_0;y_0) &\equiv \sum_{\mathbf{x}} \sum_{\mathbf{y}} \langle P^1(0) \partial^{FW}_{\mathbf{x},0} \tilde{A}^{1,BW}_0(\mathbf{x}) \phi^0(\mathbf{y}) \rangle / \sum_{\mathbf{x}} \sum_{\mathbf{y}} \langle P^1(0) D^1_P(\mathbf{x}) \phi^0(\mathbf{y}) \rangle \\ y_0 &= x_0 + \tau \quad \text{with } \tau \simeq 0.6 \text{ fm (to control noise from Φ propagator)}, \quad T \simeq 4.9 \text{ fm ,} \end{split}$$

A: $x_0 \in (0.9, 1.8)$ fm [intermediate pion dominates before x_0 , Φ state between x_0 and y_0]

B: $x_0 \in (2.7, 3.3)$ fm [vacuum dominates before x_0 , "pion + Φ " state between x_0 and y_0]

* $\mu \to 0$ limit from linear or parabolic fit in μ of $r_{AWI}^{A,B}|_{\dots,\mu,\dots}$ (mean + spread added to err.) * $r_{AWI}^B - r_{AWI}^A = O(b^2)$ entails $\eta_{cr}^B - \eta_{cr}^A = O(b^2)$, η_{cr}^A with smaller lattice artifacts

Step 2: simulation parameters, r_{AWI} -signal, M_{π}^2 vs. μ

β	$a^{-4}(L^3 \times T)$	η	$a\mu$	stat. ($N_U \times N_{\Phi}$)
5.75	$16^3 imes 32$	-1.1505	0.0180 0.0280 0.0480	60×8
(a ~ 0.152 fm)		-1.1898	0.0180 0.0280 0.0480	
		-1.3668	0.0180 0.0280 0.0480	
5.85	$16^{3} \times 40$	-1.0983	0.0224 0.0316 0.0387	60×8
(a ~ 0.123 fm)		-1.1375	0.0120 0.0172 0.0224 0.0387 0.0600	
		-1.2944	0.0224 0.0387	
5.95	$20^3 \times 48$	-0.9761	0.0186, 0.0321	60×8
(a ~ 0.102 fm)		-1.0354	0.0186, 0.0321	
		-1.0771	0.0100 0.0186, 0.0321	

QCD-inspired lattice scale: assuming $r_0 = 0.5$ fm $\Rightarrow L \in (2.0 - 2.4)$ fm and $T \simeq 4.9$ fm r_0/b has $\sim 0.5\%$ errors; zero modes of fermionic $D_{lat}[U, \Phi_{smeared}]$ regulated by $\mu > 0$.

 $\mathcal{V}(\Phi)$ with one minimum & SSB of $\tilde{\chi}$ due to strong interactions: vacuum polarized by $\mu > 0$

Frezzotti (Roma - Tor Vergata)

Step 2: $r_{AWI}^{A,B}$ vs. η and check of $\eta_{cr}^B - \eta_{cr}^A = O(b^2)$

Frezzotti (Roma - Tor Vergata)

September 12, 2019 - Trento

Results for $\eta_{cr}^{A,B}$ and $1/Z_P^{had}$, $Z_{\widetilde{V}}$, Z_{η}^{had}

β	5.75	5.85	5.95	5.85
ρ	1.96	1.96	1.96	2.94
η_{cr}^{A}	-1.271(10)	-1.207(8)	-1.145(6)	-1.820(15)
η_{cr}^B	-1.249(8)	-1.192(6)	-1.136(6)	
$1/Z_P^{had}$	20.6(7)	20.1(7)	20.7(9)	22.7(1.1)
Z_V	0.95(2)	0.94(1)	0.97(2)	0.83(4)
Z_{η}^{had}	9.1(4)	13.9(3)	15.6(4)	

Need renormalization constants of a few composite (non–isosinglet) operators to evaluate renormalized WTI fermion masses m_{AWI}^{ren} , μ^{ren} , ... in the NG phase For computational convenience we define:

 $\begin{array}{l} \star \ 1/Z_{P}^{had} = \langle 0|\bar{Q}\gamma_{5}\frac{\tau^{1}}{2}Q|P_{meson}^{1}\rangle|_{\eta_{cr},\mu\to0+} r_{0}^{2} \equiv G_{PS}^{Wg} r_{0}^{2} \quad \text{eval. in Wigner phase} \\ \star \ Z_{\overline{V}} \quad \text{s.t.} \quad Z_{\overline{V}}\langle 0|\partial_{0}\widetilde{V}_{0}^{2}|P_{meson}^{1}\rangle|_{\eta_{cr},\mu\to0+} = 2\mu\langle 0|\bar{Q}\gamma_{5}\frac{\tau^{1}}{2}Q|P_{meson}^{1}\rangle|_{\eta_{cr},\mu\to0+} \\ \quad \text{evaluated in NG phase} \\ \star \ Z_{n}^{had} = |\partial(r_{0}M_{P_{1}})/\partial\eta|_{\eta_{cr},\mu\to0+} \\ \end{array}$

Simul. step 3: NG phase around η_{cr} – Effective action

β	$a^{-4}(L^3 \times T)$	η	aµ	stat. ($N_U imes N_{\Phi}$)
5.75 (a ~ 0.152 fm)	$16^{3} \times 40$	-1.2714	0.0050 0.0087, 0.0131, 0.0183, 0.0277	60 × 1
		-1.2656	0.0131	
		-1.2539	0.0183	
		-1.2404	0.0131	
		1.2277	0.0131, 0.0183	
5.85 (a ~ 0.123 fm)	$20^3 \times 40$	-1.2105	0.0040, 0.0070, 0.0100, 0.0120	30×2
		-1.2068	0.0040, 0.0070, 0.0100 ,0.0224	
		-1.2028	0.0040, 0.0070, 0.0100, 0.0120, 0.0224	
		-1.1949	0.0100	
		-1.1776	0.0070, 0.0100, 0.0140, 0.0224 , 0.0316	
5.95 (a ~ 0.102 fm)	$24^3 imes 48$	-1.1474	0.0066, 0.0077, 0.0116, 0.0145, 0.0185	30 × 1
		-1.1449	0.0060, 0.0077, 0.0116, 0.0145	
		-1.1215	0.0077	
		-1.1134	0.0077, 0.0108	

Lattice correlators and derived observables with external momenta *p* in the range $1/b \gg p \gg \Lambda_s$ can be described by an effective Lagrangian (including possible NP mass terms) written in terms of formal fermion, gauge and $\Phi \equiv (v + \zeta_0) U$ fields:

 $\Gamma^{NG} = \Gamma_4^{NG} + b^2 \Gamma_6^{NG} + b^4 \Gamma_8^{NG} + \dots$ where

Low energy effective action in NG phase for $S_{lat}^{ m toy-tm}$

$$\begin{split} \Gamma^{NG} &= \Gamma_4^{NG} + b^2 \Gamma_6^{NG} + b^4 \Gamma_8^{NG} + \dots \quad \text{where} \\ \Gamma_{4 \text{ loc}}^{NG} &= \frac{1}{4} (G \cdot G) + \bar{Q} \mathcal{P} Q + \frac{1}{2} \text{ Tr} \left[\partial_\mu \Phi^\dagger \partial_\mu \Phi \right] + \frac{m_{\Phi}^2}{2} \text{ Tr} \left[\Phi^\dagger \Phi \right] + \frac{\lambda_{\Phi}}{4} \left(\text{ Tr} \left[\Phi^\dagger \Phi \right] \right)^2 + \\ &+ \eta_{\text{eff}} \bar{Q} F Q + \mu_{\text{eff}} \bar{Q} i \gamma_5 \tau^3 Q + c_1 \Lambda_s \bar{Q} U_F Q + (\tilde{c} \Lambda_s R + c_2 \Lambda_s^2) \frac{1}{2} \text{ Tr} \left[\partial_\mu U^\dagger \partial_\mu U \right] \\ \Gamma_{6 \text{ loc}}^{NG} \supset O_6^{\tilde{\chi} - \text{inv}}; \quad \left[D_\lambda \bar{Q}_L \Phi D_\lambda Q_R + h.c. \right], \\ &\dots; \quad \left[\sum_{\Gamma_A \Gamma_B} c_{AB} (\bar{Q} \Gamma_A Q) (\bar{Q} \Gamma_B Q) \right]^{\tilde{\chi} - \text{inv}} \\ \text{here} \quad \eta_{\text{eff}} \propto \eta - \eta_{cr}, \quad \mu_{\text{eff}} \propto \mu ; \quad \text{vacuum choice (by "\Phi-projection"): } \Phi \propto U \propto I; \\ \text{for } \tilde{\chi} - \text{breaking terms: since } \Phi = U(v + \zeta_0) \text{ separating out terms with } v \text{ we get} \\ \eta_{\text{eff}} \bar{Q} F Q + \mu_{\text{eff}} \bar{Q} i \gamma_5 \tau^3 Q + c_1 \Lambda_s \bar{Q} U_F Q = m_{\text{eff}} \bar{Q} U_F Q + \mu_{\text{eff}} \bar{Q} i \gamma_5 \tau^3 Q + \eta_{\text{eff}} \bar{Q} \sigma_F Q = \\ &= M_{\text{eff}} \bar{\Psi} \Psi + \eta_{\text{eff}} \bar{\Psi} e^{-i\frac{\omega}{2} \gamma_5 \tau^3} \sigma_F e^{-i\frac{\omega}{2} \gamma_5 \tau^3} \Psi + m_{\text{eff}} \bar{\Psi} e^{-i\frac{\omega}{2} \gamma_5 \tau^3} (U_F - 1) e^{-i\frac{\omega}{2} \gamma_5 \tau^3} \Psi \\ \text{with} \quad m_{\text{eff}} \equiv \eta_{\text{eff}} v + c_1 \Lambda_s , \qquad F \equiv (v + \zeta_0) U_F , \quad \sigma_F \equiv \zeta_0 U_F , \quad U_F = P_R U + P_L U^{\dagger} \\ M_{\text{eff}} \equiv \sqrt{m_{\text{eff}}^2 + \mu_{\text{eff}}^2} , \quad \tan \omega = \mu_{\text{eff}} / m_{\text{eff}} , \quad \Psi = \exp(i\frac{\omega}{2} \gamma_5 \tau^3) Q , \quad \bar{\Psi} = \bar{Q} \exp(i\frac{\omega}{2} \gamma_5 \tau^3) \end{split}$$

э

53 / 60

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scaling test in NG phase: $r_0^2(M_{P,0}^2 - M_{P,\pm}^2)$ at $\mu^{ren} > 0$

At fixed $\mu^{ren} > 0$ (here in *s*-quark range if $r_0 = 0.5$ fm) charged and neutral pion masses differ due to lattice artifacts – related to the misalignment in chiral space between $i\mu\bar{Q}\gamma_5\tau^3Q$ and $b^2v\bar{Q}D^2Q$: however leading O(b^2) effects cancel in the pion mass difference and one expects (can actually prove starting from the lattice Γ^{NG} above)

> $r_0^2(M_{P_0}^2 - M_{P_+}^2) \propto b^4$ for generic m_{eff} values 0.8 $r_0^2(M_0^2 - M_{\pm}^2)(\mu_{ref})$ 0.6 0.4 0.20 0.002 0.004 0.006 0.008 0.01 (b^4/r_0^4)

here data for $\eta = \eta_{cr} \leftrightarrow O(b^4)$ scaling expected independently of $c_1 \Lambda_s$ value

Frezzotti (Roma - Tor Vergata)

The "no mechanism hypothesis" and $M_{P,\pm}r_0(\mu \rightarrow 0+)$

Let us test the hypothesis of no NP mass generation: $c_1 \Lambda_s = 0$

In this case, for $\eta = \eta_{cr}$, one expects $M_{P,\pm\mu\to0} = M_{P,\pm\mu\to0}^{cont} + O(b^2) = O(b^2)$

 $\lim_{\mu\to 0+} [r_0^2 M_{P,\pm}^2](\mu)$ should have <u>zero</u> continuum limit with only O(b⁴) artifacts

Hypothesis of $c_1 \Lambda_s = 0$ (no mechanism) is not supported by numerical NP data

$M_{P,\pm}r_0(\mu \rightarrow 0+)$ at η_{cr} in the continuum limit

Assume $c_1 \Lambda_s \neq 0 \Rightarrow m_{eff} |_{\eta=\eta_{cr}}^{\eta=\eta_{cr}} = c_1 \Lambda_s$: from the NG phase lattice effective action

* at
$$\eta = \eta_{cr}$$
 expect $M_{P,\pm}^2(\mu,\eta_{cr}) = 2B\sqrt{m_{eff}^2 + \mu_{eff}^2} + O(m_{eff}^2 + \mu_{eff}^2) + O(b^2)$

★ otherwise $M_{P,\pm}^2(\mu,\eta) = M_{P,\pm}^2(\mu,\eta_{cr}) + \Delta_{\eta}(\eta-\eta_{cr}) + \Delta_{\eta\eta}(\eta-\eta_{cr})^2 + O(b^2)$

Limits $\mu \to 0+$ and $\eta \to \eta_{cr}$: use polynomial –up to 2nd order– fits in μ and $(\eta - \eta_{cr})$

56 / 60

< ロ > < 同 > < 回 > < 回 >

$2 \left| m_{AWI}^{ren} ight| r_0 \left(\mu ightarrow 0+ ight)$ at η_{cr} in the continuum limit

Assume $c_1 \Lambda_s \neq 0 \Rightarrow m_{eff} |_{\eta = \eta_{cr}} = c_1 \Lambda_s$: from the NG phase lattice effective action

- * $2m_{AWI}^{bare}(\mu,\eta) \equiv [\partial_0^{FW} \sum_{\vec{x}} \langle \tilde{A}_{0(\ell,h)}^{1BW}(\vec{x},x_0) P_{(\ell,h)}^1(0) \rangle] / [\sum_{\vec{x}} \langle P_{(\ell,h)}^1(\vec{x},x_0) P_{(\ell,h)}^1(0) \rangle](\mu,\eta)$
- $\star \ Z_{\widetilde{A}} \partial \widetilde{A}^{1} = 2 \eta_{sub} \widetilde{D}^{P1} + 2 \frac{c_{1} \Lambda_{s} \mathcal{P}^{1}}{s} \Rightarrow \quad \text{expect} \quad m_{AWI} = O((\eta \eta_{cr})) v + O(c_{1} \Lambda_{s})$
- ★ renormalization: $2m_{AWI}^{ren} = (Z_{\tilde{V}}/Z_P^{had})2m_{AWI}^{bare}$; µ-dependence is O(b²)

Limits $\mu \to 0+$ and $\eta \to \eta_{cr}$: use polynomial –up to 2nd order– fits in μ and $(\eta - \eta_{cr})$

57 / 60

$m_{AWI}(\eta_*, \mu = 0) \equiv 0$ and $[\eta_* - \eta_{cr}]^{ren}$ (continuum limit)

WTI fermion mass $m_{AWI} = O((\eta - \eta_{cr}))v + O(c_1\Lambda_s) \iff m_{eff} \equiv \eta_{eff} v + c_1\Lambda_s$ $\lim_{\mu \to 0+} m_{AWI}(\mu, \eta) = 0$ eventually at some $\eta = \eta_*$, with $\eta_* = \eta_{cr} - v^{-1}O(c_1\Lambda_s)$ $\star [\eta_* - \eta_{cr}]^{ren} = Z_{\eta}^{had}(\eta_* - \eta_{cr})$ with $Z_{\eta}^{had} = [\partial(r_0M_{P_{meson}^1})/\partial\eta]|_{\eta_{cr},\mu \to 0+}$

Determination of η_* from combined fit of $m_{AWI}(\mu, \eta)$: its uncertainty is $\ll \eta_{cr}$ -error

Frezzotti (Roma - Tor Vergata)

< ロ > < 同 > < 回 > < 回 >

Upon increasing ρ : $M_{P,\pm}$ and $|m_{AWI}^{ren}|$ at η_{cr}

Study now lattice toy model with $\rho = 2.94$ – rather than $\rho = 1.96$ as previously: Wigner phase: find that $\eta_{cr}(\rho)$ increases $\propto \rho(1 + O(\rho^2))$ – as expected In S_{lat}^{toy-tm} the $\tilde{\chi}$ breaking terms (crucial for NP mass) are controlled by ρ : mechanism details imply $M_{P,+}^2 \sim |m_{AWI}^{ren}| \sim O(\rho^2)$ [PRD92 (2015) 054505]

response to increase of ρ by a factor 1.5 is clear & consistent with expectation ...

the observed NP fermion mass appears related to $\tilde{\chi}$ breaking at the UV cutoff scale

Check of finite size effects: $M_{P,\pm}$ and $|m_{AWI}^{ren}| (\beta = 5.85)$

appropriate as NG phase spectrum contains massless (if $L \rightarrow \infty$) elementary GB's

the NP fermion mass observed at η_{cr} does not seem to vanish as $1/L^2 \rightarrow 0$...

Frezzotti (Roma - Tor Vergata)

60 / 60

A D M A A A M M