Top-quark production at NNLO using q_T subtraction

Javier Mazzitelli

LFC19, ECT*, September 11th 2019

In collaboration with S. Catani, S. Devoto, M. Grazzini, S. Kallweit, H. Sargsyan

Outline

Introduction

- \bullet NNLO corrections with q_{τ} subtraction
- Extension to heavy quark production

• Results and comparison with data

Conclusions and outlook

The top quark

- Heaviest particle in the SM
- Strongest coupling to Higgs boson
- Only quark that decays before hadronization
- Possible window to new physics
- Important background in many searches
- Standard candle at the LHC (triggering, tracking, b-tagging, energy and jet calibration)

1

Top-quark pair production

Main production mechanism of top quarks at hadron colliders

• No publicly available tool to produce NNLO distributions yet

$t\bar{t}$ production at NNLO

We need the scattering amplitudes:

... but we also need to handle their divergencies:

We need subtraction methods that allow us to perform these calculations numerically

Subtraction methods

NLO: solved, Dipole subtraction, FKS, ...

NNLO:

- Antenna [Gehrmann-de Ridder, Gehrmann, Glover '05, ...]
- CoLoRFulNNLO [Somogyi, Trócsányi, Del Duca '05, ...]

• q_T subtraction [Catani, Grazzini '07, ...]

- STRIPPER [Czakon '10, '11]
- Projection-to-Born [Cacciari et al. '15]
- N-jettiness [Gaunt et al. '15; Boughezal et al. '15, ...]
- Nested soft-collinear [Caola, Melnikov, Roentsch '17]
- Geometric [Herzog '18]
- Local analytic sector [Magnea et al. '18]

\mathbf{q}_{T} subtraction

Originally developed for the hadroproduction of colourless final states Catani, Grazzini (2007)

Slicing method, slicing parameter: \mathbf{q}_{T} (transverse momentum of final state *F*)

Master formula:

Difference computed with a cut on r = q_⊤/M

General form of hard-collinear function known at NNLO for colourless F

Implies knowledge of *correct* subtraction operator for virtual corrections

$$H \sim \langle \tilde{\mathcal{M}} | \tilde{\mathcal{M}} \rangle$$
 with $| \tilde{\mathcal{M}} \rangle = \left(1 + \tilde{I} \right) | \mathcal{M} \rangle$

Method can be applied to the production of arbitrary colour singlets at NNLO once the relevant amplitudes are available

The MATRIX project

The MATRIX project

Extension to heavy-quark production

Analogous formula, but with new contributions coming from **final state radiation**

$$d\sigma_{\rm NNLO}^{t\bar{t}} = \mathcal{H}_{\rm NNLO}^{t\bar{t}} \otimes d\sigma_{\rm LO}^{t\bar{t}} + \left[d\sigma_{\rm NLO}^{t\bar{t}+\rm jet} - d\sigma_{\rm NNLO}^{t\bar{t},\rm CT} \right]$$

- Modified subtraction counterterm fully known (ingredient: NNLO soft anomalous dimension Γ_t)
- The structure of the hard-collinear function *H* also changes:

Additional radiative soft factor Δ which includes **colour correlations**

Extension to heavy-quark production

- Specifically, we have to compute $d\sigma/d^2q_T$
- Only new soft singularities → integrate the (subtracted) **soft current**

• After integration the following NLO subtraction operator can be obtained: [Catani, Grazzini, Torre; 1408.4564]

We had to extend the above results to NNLO

Final result - H⁽²⁾

$\tau = 4m^2/s$, $\cos\theta$ scattering angle

9

- We have recently finished their computation Catani, Devoto, Grazzini, JM (to appear) See also Angeles-Martinez, Czakon, Sapeta (2018)
- Results mostly analytical, numerical integration for some pieces

Final result - H⁽²⁾

$\tau = 4m^2/s$, $\cos\theta$ scattering angle

9

- We have recently finished their computation Catani, Devoto, Grazzini, JM (to appear) See also Angeles-Martinez, Czakon, Sapeta (2018)
- Results mostly analytical, numerical integration for some pieces

Inclusive cross section

Differential results

We compute single and double differential distributions

We compare our results with recent measurements from CMS in the lepton+jets channel [CMS-TOP-17-002]

CMS measurements are extrapolated to parton level in the inclusive phase space

we carry out our calculation without cuts

Perturbative results depend on the choice of scales μ_F , μ_R which should be chosen of the order of the characteristic hard scale

- Total cross section and rapidity distribution: m_t
- Invariant mass distribution: $m_{t\bar{t}}$
- Transverse momentum distribution: m_{T}

The dynamical scale $\mu_0 = H_T/2 = (m_{T,t} + m_{T,t})/2$ is a good approximation to all these scales

Single-differential distributions

- Good perturbative behaviour, large overlap between NLO and NNLO bands
- As noted in previous analysis the measured p_{τ} is slightly softer than the NNLO prediciton

• Data and theory consistent within uncertainties

Single-differential distributions

- Higher order corrections have a larger effect on the shape
- Low $p_T(t_{high})$ region: FO instabilities associated with low $p_T(t\bar{t})$
- Good agreement with data

Single-differential distributions

- Lower scale $H_T/4$ (usually used as a benchmark) seems to lead to underestimation of perturbative uncertainties in certain $m_{t\bar{t}}$ regions
- Good description of data except for first bin ($m_{t\bar{t}}$ <360GeV) Issues in extrapolation? Smaller m_t ? CMS-TOP-18-004: leptonic channel, fit m_t =170.81±0.68GeV 14

- \bullet Again some discrepancy in the low $m_{t\bar{t}}$ region, smaller effect due to larger bin size
- Impact of radiative corrections relatively uniform in both variables

New: predictions for parton level CMS measurements using fully leptonic final state [CMS-TOP-18-004]

- Similar features in this decay channel (note these are normalized distributions)
- Using fitted top mass by CMS (170.81GeV) leads to a better agreement with data

- \bullet As for single differential distribution, $p_{\scriptscriptstyle T}$ data softer than NNLO
- This feature holds in all the rapidity intervals

- Kinematical boundary at LO: $m_{t\bar{t}} > 2 m_{T,min}$
- NLO (NNLO) is effectively LO (NLO) below that threshold \rightarrow larger uncertainties
- NNLO nicely describes the data (except only close to the physical $m_{t\bar{t}}$ threshold)

Summary and outlook

- We have presented a new computation of top-quark pair production at NNLO
- First complete application of q_T subtraction to colourful final states at NNLO
- Calculation fully implemented within the **MATRIX** framework
- We are able to evaluate arbitrary IR safe observables for stable top quarks
 - multi-differential distributions
 - cross sections with cuts in the top quarks and jets kinematics
- NNLO differential distributions in 1000-2000 CPU days
- Nice description of parton level CMS data
- Outlook:
 - inclusion of EW corrections
 - inclusion of top-quark decays

Thanks!

Backup slides

 $p_{T}(t_{high})$

 $p_T(t_{low})$

 $p_{T}(t_{had})$

m_{tt}

Other scale choices m_{tt} vs

 $m_{tt} vs p_T(t_{had})$

Comparison to existing results

Excellent agreement even in extreme kinematical regions

Comparison to existing results

Excellent agreement even in extreme kinematical regions