Top quark pair production at NNLO+NNLL' in QCD including NLO EW contributions

Darren Scott

September 2019 LFC19 ECT*, Trento, Italy

Nik[hef

UNIVERSITY OF AMSTERDAM

Top quark pairs at The LHC

Top quark physics is now a precision topic.

E.g. Total cross section for top pair production available at NNLO and with soft gluon resummation.

[Czakon, Fiedler, Mitov:1303.6254]

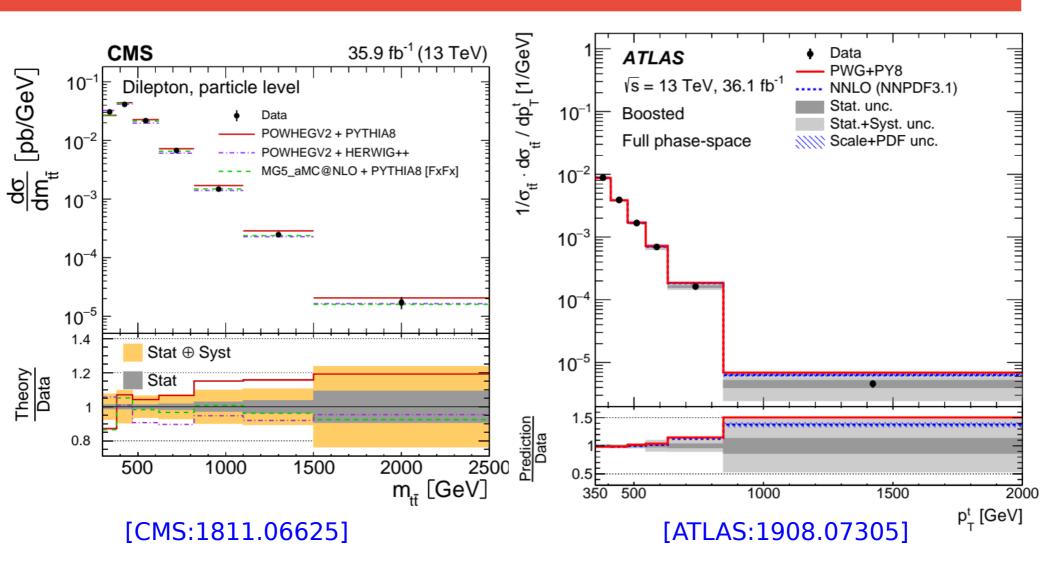
<u>13 TeV</u>

 $\sigma_{\text{NNLO}}(pp \to t\bar{t} + X) \sim 800 \text{pb}$ $\sigma_{\text{NNLO+NNLL}}(pp \to t\bar{t} + X) \sim 820 \text{pb}$ [top++2.0]

LHC will produce billions of top pairs over its operating lifetime.

Must have accurate predictions even in the tails of distributions.

Top quark pairs at The LHC



Top quark pairs and this talk

- The focus will mainly be on the impact of resummation on the fixed order results.
- Specifically, we present results at NNLO+NNLL' accuracy in QCD + NLO EW corrections.
- Focus on distributions: top-pair invariant mass, transverse momentum, rapidity.
- Culmination of the work of many contributors:
 - NNLO QCD corrections [Bärnreuther, Czakon, Fiedler, Heymes, Mitov]
 - NLO EW corrections
 [Bernreuther, Si: 1003.3926, 1205.6580] [Hollik, Pagani: 1107.2606]
 [Pagani, Tsinikos, Zaro: 1606.01915] [Denner, Pellen :1607.05571]
 (+ many other studies and calculations!)
 - NNLL and NNLL' resummation (soft gluons and mass logs) [Ferroglia, Pecjak, DS, Wang, Yang]

Top quark pairs and this talk

<u>Outline</u>

- Resummation: Soft gluons, and soft gluons in boosted limit
- Extension to include rapidity distributions
- Combining the resummed predictions
- Combination with NNLO QCD and lessons learned
- Inclusion of EW effects
- Results, effects on distributions

Fixed order calculations

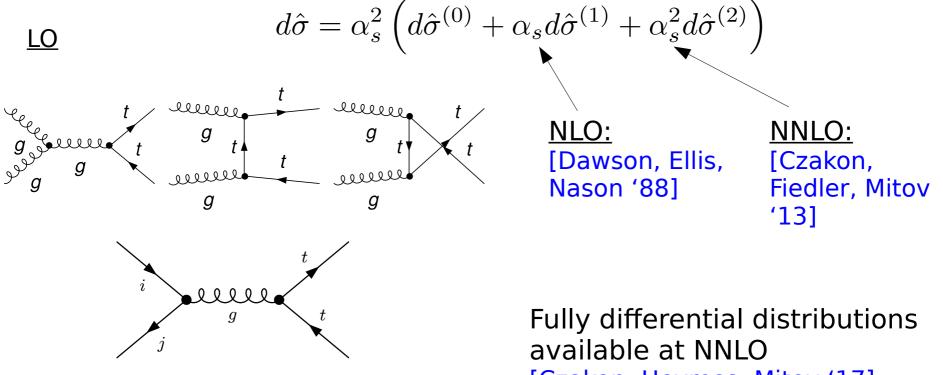
Top pair production at hadron colliders $i(p_1) + j(p_2) \to t(p_3) + \bar{t}(p_4) + X(p_X)$ $\frac{d\sigma_{h_1h_2 \to t\bar{t}X(\tau)}}{dM} = \sum_{i,i} \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ij}(\tau/z,\mu_f) \frac{d\hat{\sigma}_{ij}}{dM}(z,\alpha_s(\mu_r),M,m_t,\mu_{f/r})$ $\mathcal{L}_{ij}(y) = \int_{x}^{1} \frac{dx}{x} \phi_{h_1/i}(x) \phi_{h_2/j}(y/x)$ $t(p_3)$ $i(p_1)$ **Kinematic Quantities** $j(p_2)$ $\overline{t}(p_4)$ $\hat{s} = (p_1 + p_2)^2$ $t_1 = (p_1 - p_3)^2 - m_t^2$ $M^2 = M_{t\bar{t}}^2 = (p_3 + p_4)^2$ $\tau = \frac{M^2}{c} \quad z = \frac{M^2}{c}$

Fixed order calculations

Top pair production at hadron colliders $i(p_1) + j(p_2) \to t(p_3) + \bar{t}(p_4) + X(p_X)$ $\frac{d\sigma_{h_1h_2 \to t\bar{t}X(\tau)}}{dM} = \sum_{i,i} \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ij}(\tau/z,\mu_f) \frac{d\hat{\sigma}_{ij}}{dM}(z,\alpha_s(\mu_r),M,m_t,\mu_{f/r})$ $\mathcal{L}_{ij}(y) = \int_{x}^{1} \frac{dx}{x} \phi_{h_1/i}(x) \phi_{h_2/j}(y/x)$ $t(p_3)$ $i(p_1)$ **Kinematic Quantities** $j(p_2)$ $\overline{t}(p_4)$ $\hat{s} = (p_1 + p_2)^2$ $t_1 = (p_1 - p_3)^2 - m_t^2$ $M^2 = M_{t\bar{t}}^2 = (p_3 + p_4)^2$ $\tau = \frac{M^2}{s} \quad z = \frac{M^2}{\hat{c}}$

Fixed order calculations

Calculate perturbative corrections to the partonic cross section



[Czakon, Heymes, Mitov '17]

Calculate perturbative corrections to the partonic cross section

$$d\hat{\sigma} = \alpha_s^2 \left(d\hat{\sigma}^{(0)} + \alpha_s d\hat{\sigma}^{(1)} + \alpha_s^2 d\hat{\sigma}^{(2)} \right)$$

Corrections contain potentially large logarithms. In particular...

$$\begin{array}{ll} \text{Threshold} \\ \text{logarithms:} \end{array} & \alpha_s^n \left[\frac{\ln^p(1-z)}{1-z} \right]_+ \,, \quad 0 \leq p \leq 2n-1 \qquad \begin{array}{c} \text{Large} \\ \text{contribution as} \\ z \rightarrow 1 \end{array} \right]$$

Small mass (collinear) $\alpha_s \ln^2 \left(\frac{m_t}{M}\right)$ logarithms:

We expect these to be important for "boosted tops", $M^2 \gg m_t^2$

Factorization: soft (threshold)

Want to factorize different scales: $\hat{s}, M_{tt}^2, m_t^2 \gg \hat{s}(1-z)^2$

The partonic cross section factorizes in the threshold limit: $z \rightarrow 1$

- In Mellin moment space [Kidonakis, Sterman: 9705234]
- Using techniques from Soft Collinear Effective Theory (SCET) [Ahrens, Ferroglia, Neubert, Pecjak, Yang: 1003.5827]

$$\frac{d^2\sigma}{dM\,d\cos\theta} = \frac{8\pi\beta_t}{3sM} \sum_{ij=(\bar{q}q,gg)} \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ij}(\tau/z) C_{ij}(z,M,m_t,..)$$

$$C_{ij} = \text{Tr}[\mathbf{H}_{ij}^{m}(M_{t\bar{t}}, m_t, \mu_f, ...)\mathbf{S}_{ij}^{m}(\sqrt{\hat{s}}(1-z), m_t, \mu_f, ...)] + \mathcal{O}(1-z)$$

Factorization: soft (threshold)

Want to factorize different scales: $\hat{s}, M_{tt}^2, m_t^2 \gg \hat{s}(1-z)^2$

The partonic cross section factorizes in the threshold limit: $z \rightarrow 1$

- In Mellin moment space [Kidonakis, Sterman: 9705234]
- Using techniques from Soft Collinear Effective Theory (SCET) [Ahrens, Ferroglia, Neubert, Pecjak, Yang: 1003.5827]

$$\frac{d^2\sigma}{dM\ d\cos\theta} = \frac{8\pi\beta_t}{3sM} \sum_{ij=(\bar{q}q,gg)} \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ij}(\tau/z) C_{ij}(z,M,m_t,..)$$

Retained top mass
$$C_{ij} = \text{Tr}[\mathbf{H}_{ij}^m(M_{t\bar{t}},m_t,\mu_f,..)\mathbf{S}_{ij}^m(\sqrt{\hat{s}(1-z)},m_t,\mu_f,...)] + \mathcal{O}(1-z)$$

 \boldsymbol{z}

Factorization: soft (threshold)

$$C_{ij} = \text{Tr}[\mathbf{H}_{ij}^m(M_{t\bar{t}}, m_t, \mu_f, ...) \mathbf{S}_{ij}^m(\sqrt{\hat{s}}(1-z), m_t, \mu_f, ...)] + \mathcal{O}(1-z)$$

Factorization allows resummation! We now have single scale* functions.

Derive and solve RGEs. E.g. Hard function

- \mathbf{H}_{ij}^m Hard Function. Related to virtual corrections
 - \mathbf{S}_{ij}^m Soft function. Related to real emission of soft gluons.

$$\mathbf{H}^{m}(\mu) = \mathbf{U}^{m}(\mu_{h}, \mu) \mathbf{H}^{m}(\mu_{h}) \mathbf{U}^{m\dagger}(\mu_{h}, \mu) \qquad \mu_{h} \sim M_{t\bar{t}}$$

Run the hard function between scales, resumming logarithms of the form:

$$\ln\left(\frac{\mu_h}{\mu}\right)$$

*Caveats later

Factorization: boosted-soft

Consider the boosted-soft limit: $z \to 1$ $M_{t\bar{t}}^2 \gg m_t^2$

$$\hat{s}, t_1 \gg m_t^2 \gg \hat{s}(1-z)^2 \gg m_t^2(1-z)^2$$

Further factorization occurs in this limit [Ferroglia, Pecjak, Yang: 1205.3662]

$$C_{ij} = \operatorname{Tr}[\mathbf{H}_{ij}^{m}(M_{t\bar{t}}, m_{t}, \mu_{f}, ..)\mathbf{S}_{ij}^{m}(\sqrt{\hat{s}}(1-z), m_{t}, \mu_{f}, ...)] + \mathcal{O}(1-z)$$

$$M_{t\bar{t}}^{2} \gg m_{t}^{2}$$

$$C_{ij} = C_{D}^{2}(m_{t}, \mu_{f})\operatorname{Tr}\left[\mathbf{H}_{ij}(M, \mu_{f}, ..)\mathbf{S}_{ij}(\sqrt{\hat{s}}(1-z), \mu_{f}, ...)\right]$$

$$\otimes \mathbf{s}_{D}(m_{t}(1-z), \mu_{f}) \otimes \mathbf{s}_{D}(m_{t}(1-z), \mu_{f}) \otimes c_{ij}^{t}(z, m_{t}, \mu_{f})$$

$$+ \mathcal{O}(1-z) + \mathcal{O}(m_{t}/M)$$

Factorization: boosted-soft

$$C_{ij} = C_D^2(m_t, \mu_f) \operatorname{Tr} \left[\mathbf{H}_{ij}(M, \mu_f, ..) \mathbf{S}_{ij}(\sqrt{\hat{s}}(1-z), \mu_f, ...) \right]$$

$$\otimes \mathbf{s}_D(m_t(1-z), \mu_f) \otimes \mathbf{s}_D(m_t(1-z), \mu_f) \otimes c_{ij}^t(z, m_t, \mu_f)$$

$$+ \mathcal{O}(1-z) + \mathcal{O}(m_t/M)$$

- C_D and s_D related to soft/collinear emissions from tops
- H & S no longer depend on top mass

<u>Aside</u>: Heavy flavour matching coefficient, c_{ij}^t introduces additional $\ln(m_t)$ dependence which is not resummed. We add such contributions in fixed order. Each of these matching functions is known to NNLO

 $\mathbf{H}_{ij}-[$ Glover et. al: '00-'01]

 $\mathbf{S}_{ij}-$ [Ferroglia, Pecjak, Yang: 1207.4798]

 C_D, \mathbf{s}_D - [Melnikov, Mitov: 0404143] [Becher, Neubert: 0512208]

Mellin space

Resummation performed in Mellin space.

$$\tilde{f}(N) = \int_0^1 dx \ x^{N-1} f(x)$$

- Convolutions become products: $d\tilde{\sigma}(N) = \tilde{\mathcal{L}}(N)\tilde{C}(N)$
- $z \to 1 \;$ corresponds to $\; N \to \infty$

$$P_{n}(z) = \begin{bmatrix} \frac{\ln^{n}(1-z)}{1-z} \end{bmatrix}_{+} \quad \tilde{P}_{0}(N) = -\ln\bar{N} + \mathcal{O}(1/N)$$
$$\tilde{N} = Ne^{\gamma_{E}} \quad \tilde{P}_{1}(N) = \frac{1}{2}\left(\ln^{2}\bar{N} + \frac{\pi^{2}}{6}\right) + \mathcal{O}(1/N)$$
$$\tilde{P}_{2}(N) = -\frac{1}{3}\left(\ln^{3}\bar{N} + \frac{\pi^{2}}{2}\ln\bar{N} + 2\zeta(3)\right) + \mathcal{O}(1/N)$$

Resummed cross sections

Two formulas for resummed cross sections: <u>Threshold (soft gluon) resummation:</u>

$$\widetilde{C}_{m}(N) = \operatorname{Tr}\left[\widetilde{\mathbf{U}}_{ij}^{m}(\bar{N},\mu_{f},\mu_{h},\mu_{s}) \mathbf{H}_{ij}^{m}(\mu_{h}) \widetilde{\mathbf{U}}_{ij}^{m\dagger}(\bar{N},\mu_{f},\mu_{h},\mu_{s}) \widetilde{\mathbf{S}}_{ij}^{m}\left(\ln\frac{M^{2}}{\bar{N}^{2}\mu_{s}^{2}},\mu_{s}\right)\right] + \mathcal{O}\left(1/N\right)$$

Boosted-soft resummation:

$$\widetilde{C}_{b,ij}(N) = \operatorname{Tr}\left[\widetilde{\mathbf{U}}_{ij}(\bar{N},\mu_f,\mu_h,\mu_s) \mathbf{H}_{ij}(\mu_h) \widetilde{\mathbf{U}}_{ij}^{\dagger}(\bar{N},\mu_f,\mu_h,\mu_s) \widetilde{\mathbf{S}}_{ij} \left(\ln\frac{M^2}{\bar{N}^2 \mu_s^2},\mu_s\right)\right] \\ \times \widetilde{U}_D^2(\bar{N},\mu_f,\mu_{dh},\mu_{ds}) C_D^2(m_t,\mu_{dh}) \\ \times \widetilde{s}_D^2\left(\ln\frac{m_t}{\bar{N}\mu_{ds}},\mu_{ds}\right) + \mathcal{O}\left(1/N\right) + \mathcal{O}\left(\frac{m_t}{M}\right).$$

It is possible also to obtain results for the p_T distribution in addition to the M distribution.

Both factorization theorems derived in the soft limit – no hard emissions.

Top quarks always essentially in their Born configuration i.e. back-to-back (in the partonic c.o.m frame).

Thus relate:
$$p_T = \frac{M\beta_t}{2}\sin\theta$$

And write: $\frac{d^2\widetilde{\sigma}(N)}{dp_T d\hat{y}} = 2\sin\theta \frac{d^2\widetilde{\sigma}(N)}{dM d\cos\theta}$

$$\hat{y} = \frac{1}{2}\ln\frac{1+\beta_t\cos\theta}{1-\beta_t\cos\theta}$$

$$\beta_t \sim \text{velocity}$$
Rapidity in partonic c.o.m frame

 $1 \quad 1 \quad 0 \quad 0$

Rapidity distributions

Possible to recover the rapidity spectrum. [Pecjak, DS, Wang, Yangi: 1811.10527]

Re-introduce a δ -function for the rapidity and eliminate x_1, x_2 . For Drell-Yan: [Bonvini, Forte, Ridolfi: 1009.5691]

$$\frac{d^3\sigma(\tau)}{dM\,d\cos\theta\,dY_{t\bar{t}}} = \frac{8\pi\beta_t}{3sM}\sum_{ij}\int dz\,d\xi\,\delta(\tau-z\xi)\,C_{ij}(z,\mu_f)$$
$$\times f_{i/p}\Big(\sqrt{\xi}e^{Y_{t\bar{t}}},\mu_f\Big)\,f_{j/p}\Big(\sqrt{\xi}e^{-Y_{t\bar{t}}},\mu_f\Big)$$

Where in the soft limit:

$$Y_{t\bar{t}} = \frac{1}{2} \ln \frac{x_1}{x_2}$$

Rapidity distributions

Possible to recover the rapidity spectrum. [Pecjak, DS, Wang, Yangi: 1811.10527]

Re-introduce a δ -function for the rapidity and eliminate x_1, x_2 . For Drell-Yan: [Bonvini, Forte, Ridolfi: 1009.5691]

$$\frac{d^3\sigma(\tau)}{dM\,d\cos\theta\,dY_{t\bar{t}}} = \frac{8\pi\beta_t}{3sM}\sum_{ij}\int dz\,d\xi\,\delta(\tau-z\xi)\,C_{ij}(z,\mu_f)$$

$$\times \frac{f_{i/p}\left(\sqrt{\xi}e^{Y_{t\bar{t}}},\mu_f\right)f_{j/p}\left(\sqrt{\xi}e^{-Y_{t\bar{t}}},\mu_f\right)}{L_{ij}(\xi,Y_{t\bar{t}},\mu_f)} \equiv \underbrace{f_{i/p}\left(\sqrt{\xi}e^{Y_{t\bar{t}}},\mu_f\right)f_{j/p}\left(\sqrt{\xi}e^{-Y_{t\bar{t}}},\mu_f\right)}_{f_{j/p}\left(\sqrt{\xi}e^{-Y_{t\bar{t}}},\mu_f\right)}$$

Gives (in Mellin space):

$$\frac{d^3 \tilde{\sigma}(N)}{dM \, d \cos \theta \, dY_{t\bar{t}}} = \frac{8\pi \beta_t}{3sM} \sum_{ij} \tilde{L}_{ij}(N, Y_{t\bar{t}}, \mu_f) \, \tilde{c}_{ij}(N, \mu_f)$$

The rapidity of the (anti)top y_t is also accessible.

In the c.o.m frame (soft limit):

$$\hat{y} = \frac{1}{2} \ln \frac{1 + \beta_t \cos \theta}{1 - \beta_t \cos \theta}$$

Use that $y_{t/\bar{t}} = Y_{t\bar{t}} \pm \hat{y}$ to obtain

$$\frac{d^3 \tilde{\sigma}(N)}{dM \, d\cos\theta \, dy_t} = \frac{8\pi\beta_t}{3sM} \sum_{ij} \tilde{L}_{ij}(N, y_t - \hat{y}, \mu_f) \, \tilde{c}_{ij}(N, \mu_f)$$

Show results for average:
$$\frac{d\sigma}{dy_{\text{avt}}} \equiv \frac{1}{2} \left(\frac{d\sigma}{dy_t} + \frac{d\sigma}{dy_{\overline{t}}} \right)$$

The evolution functions have the generic form

$$\widetilde{U}(\{\mu\}) = \exp\left(L g_1(\{\mu\}) + g_2(\{\mu\}) + \alpha_s g_3(\{\mu\}) + \dots\right) \mathbf{u} \quad \text{valued}$$

$$g_i \text{ are } \mathcal{O}(1) \text{ functions} \sim \alpha_s L \sim 1 \qquad L = \ln\left(\frac{\mu_1}{\mu_2}\right)$$

Matrix

Resummation accuracy?

	g_i	$\mathbf{H}^{(m)}, \widetilde{\mathbf{s}}^{(m)}, c_D, \widetilde{s}_D$	$lpha_s^n L^k$
NLL	g_1,g_2	LO	$2n-1 \le k \le 2n$
NNLL	g_1,g_2,g_3	NLO	$2n-3 \le k \le 2n$
NNLL'	g_1,g_2,g_3	NNLO	$2n-4 \le k \le 2n$

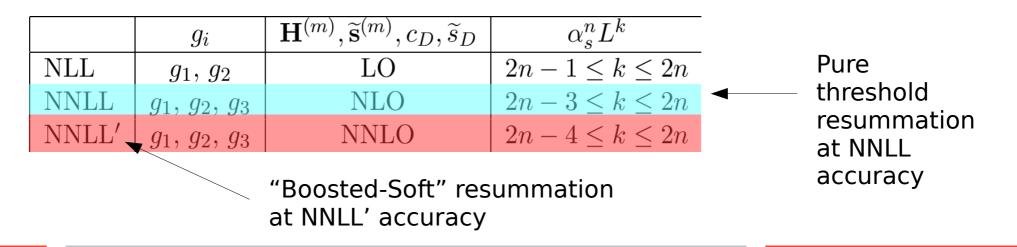
The evolution functions have the generic form

$$\widetilde{U}(\{\mu\}) = \exp\left(L g_1(\{\mu\}) + g_2(\{\mu\}) + \alpha_s g_3(\{\mu\}) + \dots\right) \mathbf{u} \quad \text{valued}$$

$$g_i \text{ are } \mathcal{O}(1) \text{ functions} \sim \alpha_s L \sim 1 \qquad L = \ln\left(\frac{\mu_1}{\mu_2}\right)$$

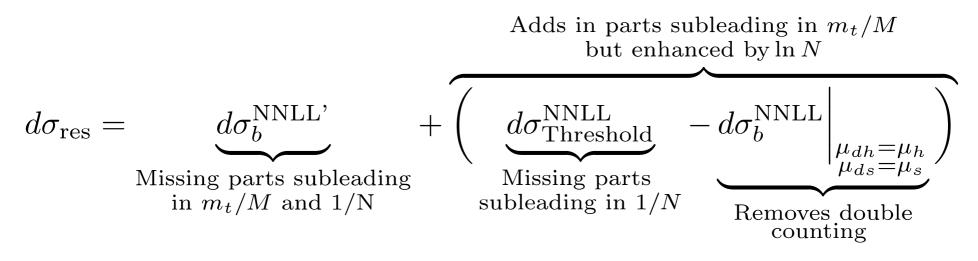
Matrix

Resummation accuracy?



Combining resummed cross sections

Combine these calculations without double counting



Include NNLO QCD, subtracting logs already included.

$$d\sigma^{\text{NNLO}+\text{NNLL'}} = \left(\left. \frac{d\sigma^{\text{NNLO}} - d\sigma_{\text{res}}}{\frac{1}{2}} \right|_{\substack{\text{NNLO} \\ \text{expansion}}} \right)$$

Adds exact NNLO results, removes logs at same order

In the boosted-soft resummed result, we have five separate scales to set...

$$\mathbf{H}, \mathbf{H}, \mathbf{\mu}_{s}, \mathbf{\mu}_{dh}, \mathbf{\mu}_{ds}$$
$$\mathbf{H}, \mathbf{S}, C_{D}, S_{D}$$

How should we pick these?

 C_D, S_D - Related to final state collinear emissions. Arise from soft limit of heavy quark fragmentation function.

$$\widetilde{D}_{t/t}(\overline{N}, m_t, \mu_f) = C_D(m_t, \mu_f)\widetilde{S}_D(m_t/\overline{N}, \mu_f) + \mathcal{O}(1/N)$$

Independent of hard scattering process.

 $\mu_{dh} = m_t, \ \mu_{ds} = m_t/\bar{N}$

The hard and soft function are a little more subtle... Depend on: $M_{t\bar{t}}^2, t_1, u_1, \cos\theta$ $t_1 = (p_1 - p_3)^2 - m_t^2$ $u_1 = (p_1 - p_4)^2 - m_t^2$ <u>Case 1:</u> $M_{t\bar{t}}^2 \sim |t_1| \sim |u_1|$ Setting $\mu_h \sim M_{t\bar{t}}$ frees the hard function of p_1 large logs. p_2 <u>Case 2</u>: $M_{t\bar{t}}^2 \gg |t_1|$ or $M_{t\bar{t}}^2 \gg |u_1|$ p_4 Setting $\mu_h \sim M_{t\bar{t}}$ Large $\ln\left(-\frac{t_1}{M_{-}^2}\right)$ Setting $\mu_h \sim \sqrt{-t_1}$

Is the region $M_{t\bar{t}}^2 \gg |t_1|$ a concern?

For Born kinematics

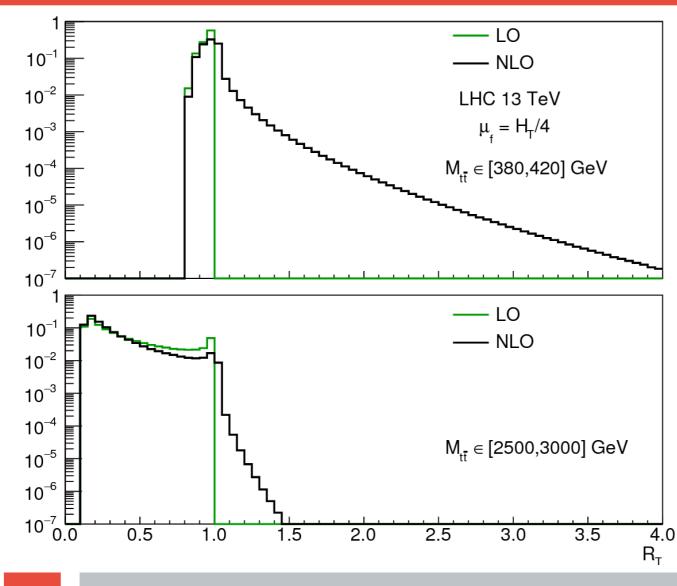
$$t_1 = -\frac{M^2}{2}(1 - \beta_t \cos \theta)$$
 $\beta_t = \sqrt{1 - \frac{4m_t^2}{M^2}}$

Expect a large scale separation $\beta_t \cos \theta \rightarrow 1$

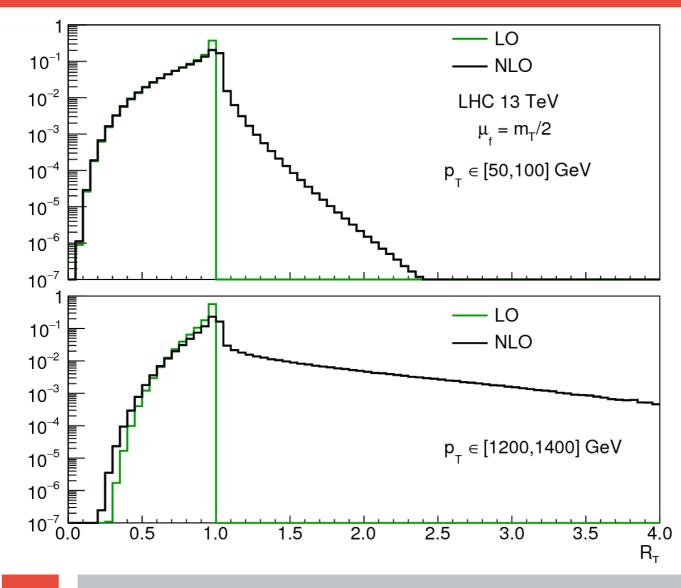
$$-t_1 \xrightarrow{\beta_t \cos \theta \to 1} p_T^2 + m_t^2 \equiv m_T^2 = H_T^2/4 \qquad \qquad H_T = \sum_{i=t\bar{t}} m_{T,i}$$

And similarly for u_1 .

Useful to look at the quantity $R_T = \frac{H_T}{M_{t\bar{t}}}$



- Cross section in two sample $M_{t\bar{t}}$ bins as a function of R_T .
- Normalised to unity
- $R_T > 1$ Inaccessible at LO
- For large $M_{t\bar{t}_{-}} \; R_{T}$ distribution peaked at $R_{T} \ll 1$
- Clearly dominated by $|\cos \theta| \sim 1$



- Cross section in two sample p_T bins as a function of R_T .
- Normalised to unity
- $R_T > 1$ Inaccessible at LO
- Long tail for $R_T > 1$ at high p_T at NLO.

The peak at low R_T in the high energy $M_{t\bar{t}}$ bin can be explained by looking into the hard function itself. In the gluon-gluon channel, we have

$$H_{gg}^{(0)}\big|_{t_1 \to 0} = \frac{1}{2x_t} \begin{pmatrix} \frac{1}{N_c^2} & \frac{1}{N_c} & \frac{1}{N_c} \\ \frac{1}{N_c} & 1 & 1 \\ \frac{1}{N_c} & 1 & 1 \end{pmatrix}, \quad x_t \equiv -t_1/M_{t\bar{t}}^2$$

$$\overset{\text{eeee}}{\underset{yyyg}{g}} \quad \underbrace{t}_{g} \quad \underbrace{t$$

Since to obtain cross sections we integrate over $\cos \theta \in [-1, 1]$ the hard function receives large corrections from this region. Thus, it would seem the most appropriate scale in the hard function is $\mu_h \sim H_T$ as opposed to $~\mu_h \sim M_{t\bar{t}}$.

We can pick an appropriate constant from a careful K-factor analysis.

For the $M_{t\bar{t}}$ distributions we pick

$$\mu_h = H_T/2 \qquad \mu_s = H_T/\bar{N}$$

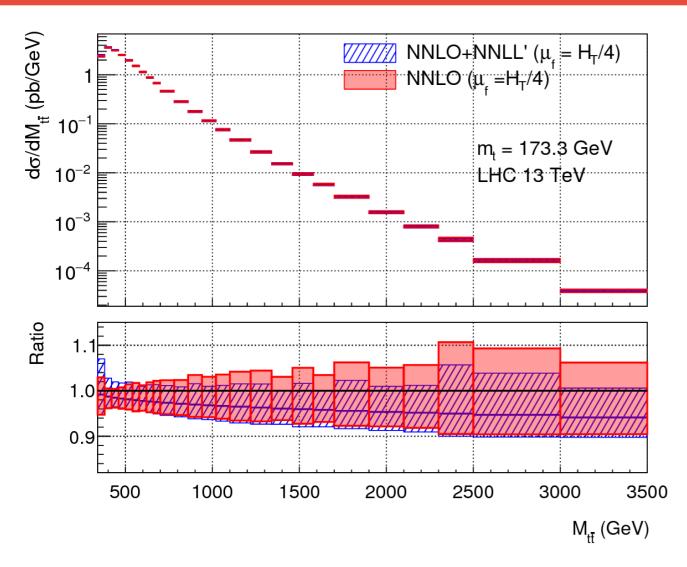
For p_T distributions we use

$$\mu_h = m_T \qquad \mu_s = 2m_T/\bar{N}$$

The choice of μ_f is motivated by a similar K-factor analysis of the NNLO results.

We employ $\mu_f = H_T/4 \operatorname{and} \mu_f = m_T/2$ for $M_{t\bar{t}}$ and p_T distributions respectively.

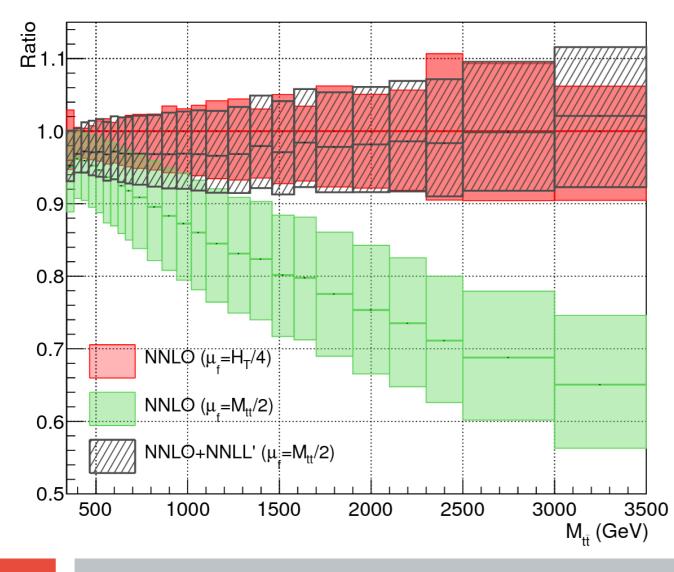
Pair invariant mass distribution



<u>NNLO+NNLL'</u> compared to NNLO:

- Reduced uncertainties in the tails
- Slight suppression of cross section at large pair invariant mass

Pair invariant mass distribution



<u>NNLO+NNLL'</u> <u>compared to NNLO:</u>

• Evaluating at parametrically different choices for μ_f provides better stability.

$$\mu_f = \{M_{t\bar{t}}/2, H_T/4\}$$

 Perturbative corrections under good control.

Inclusion of electroweak corrections

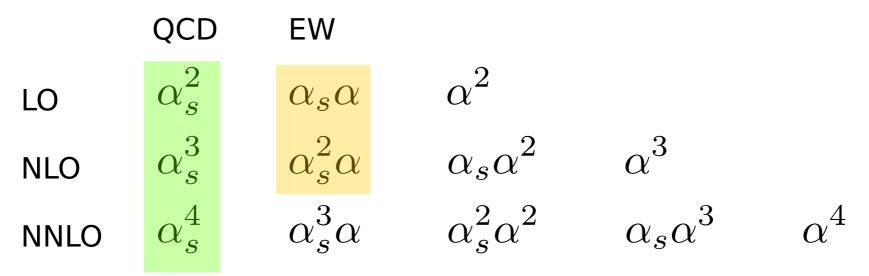
So far we have only discussed QCD corrections.

We can also include NLO electroweak corrections.

Combining NNLO QCD and NLO EW

[Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro: 1705.04105]

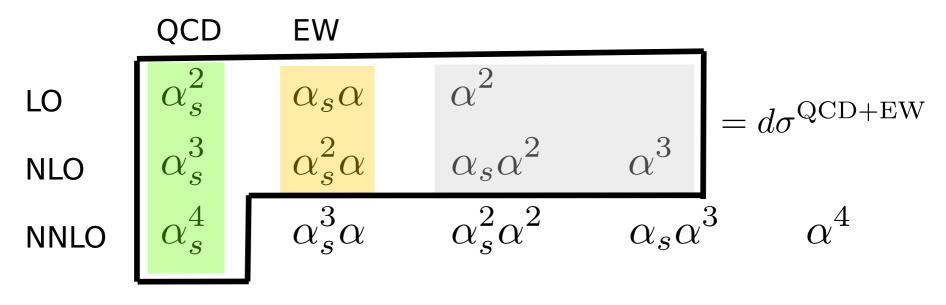
- More than one way to combine QCD and EW corrections
- Additive and multiplicative approaches



Combining NNLO QCD and NLO EW

[Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro: 1705.04105]

- More than one way to combine QCD and EW corrections
- Additive and multiplicative approaches



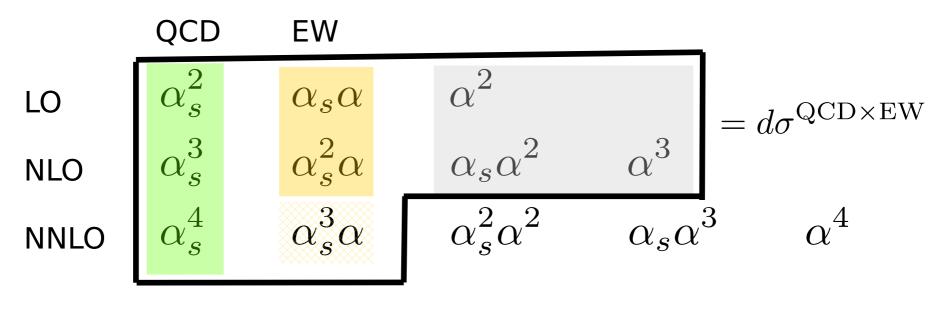
<u>Additive:</u> Include all $\alpha_s^n \alpha^m$ for $m+n \leq 3$, & α_s^4

Leads to large corrections & uncertainties in high p_T tails.

Combining NNLO QCD and NLO EW

[Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro: 1705.04105]

- More than one way to combine QCD and EW corrections
- Additive and multiplicative approaches



<u>Multiplicative</u>: Additive + approx $\alpha_s^3 \alpha$

In high p_T limit, cross section dominated by Sudakov and soft logs. These factorize, use K-factor to approximate $\sim (K_{\rm NLO}^{\rm QCD}-1)\Sigma_{\rm EW}^{\rm NLO}$

Inclusion into resummed results

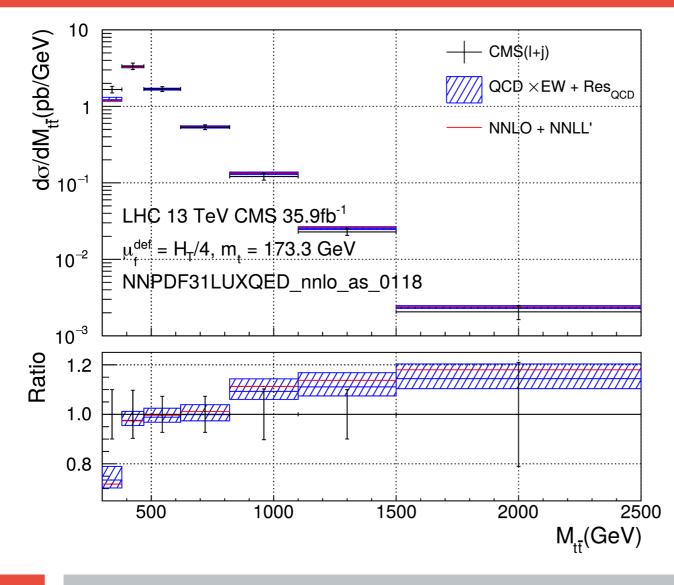
Combination proceeds as for the QCD case.

$$d\sigma^{\rm QCD\times EW+Res.} = \left(\left. d\sigma^{\rm QCD\times EW} - d\sigma_{\rm res} \right|_{\substack{\rm NNLO\\ \rm expansion}} \right)$$

The resummation knows nothing about the EW effects, there is no overlap.

Examine the effect on distributions. We also compare against data in [CMS: 1811.06625]

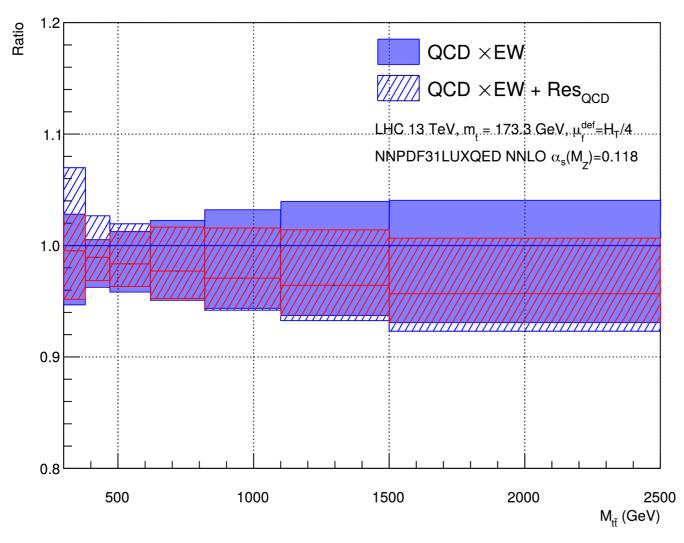
Pair invariant mass



<u>Resummed QCD v</u> <u>Resummed QCDxEW:</u>

• Electroweak corrections soften M spectrum at high M.

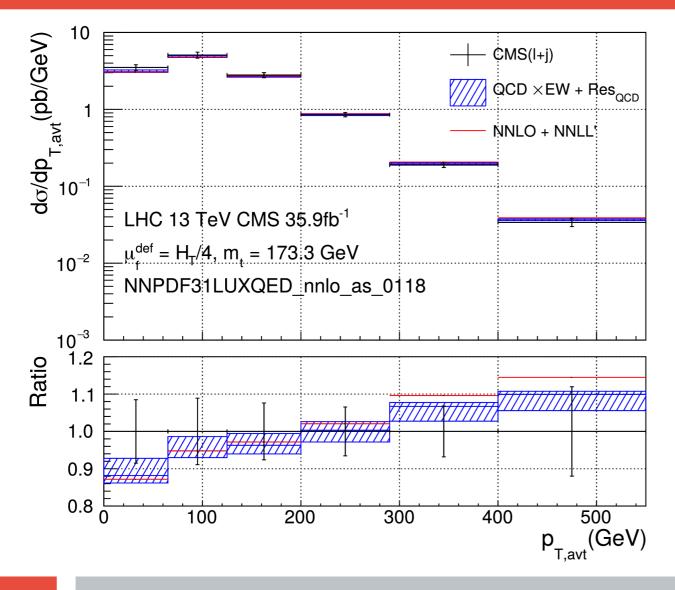
Pair invariant mass



<u>QCDxEW v</u> <u>Resummed QCDxEW:</u>

- Electroweak corrections soften M spectrum at high M.
- Resummation gives slight uncertainty reduction in tail.
 Slight softening of spectrum.

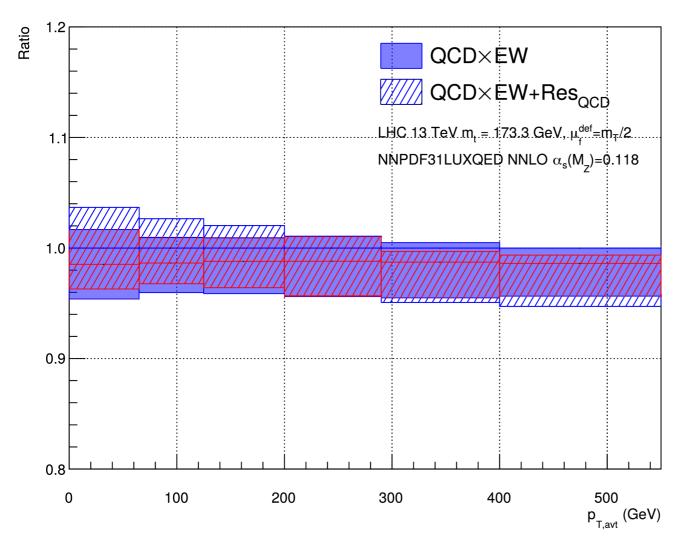
Transverse momentum



<u>Resummed QCD v</u> <u>Resummed QCDxEW:</u>

• Electroweak corrections soften p_T spectrum at high p_T .

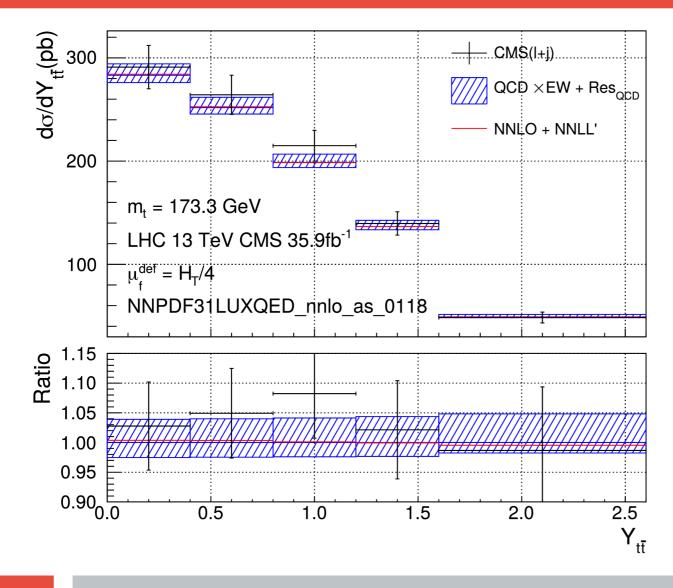
Transverse momentum



<u>QCDxEW v</u> <u>Resummed QCDxEW:</u>

- Electroweak corrections soften p_T spectrum at high p_T .
- Resummation: As in QCD only case.
 Very mild softening of spectrum.

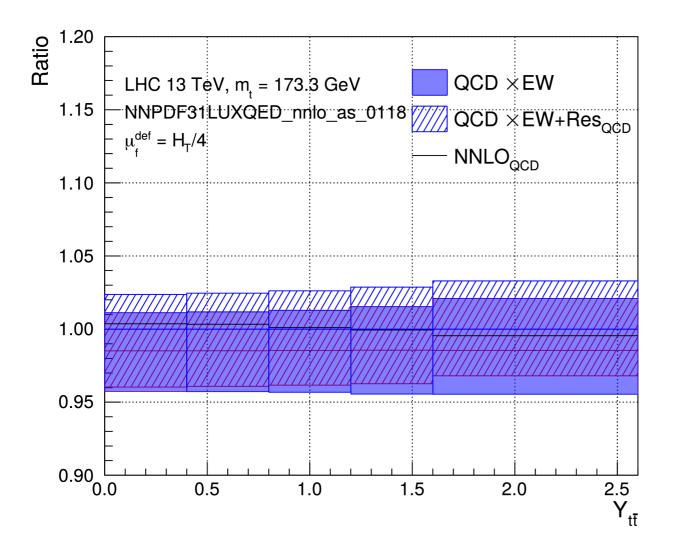
Rapidity



<u>Resummed QCD v</u> <u>Resummed QCDxEW:</u>

- Central value for resummed predictions very similar.
- Similar story for y_t distribution.

Rapidity



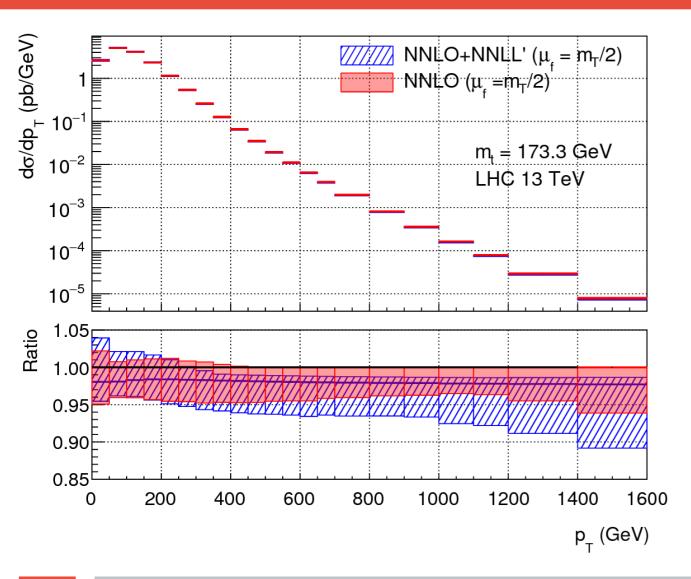
<u>QCD v</u> <u>QCDxEW v</u> <u>Resummed QCDxEW:</u>

- Resummation leads to very slight softening of the spectrum.
- Similar story for y_t distribution.

Conclusions

- Presented results for top pair production at the LHC at NNLO+NNLL' accuracy in QCD and as well as those including NLO EW effects.
- Resummation of soft gluon logs as well as small-mass logs in the soft limit.
- Insights into appropriate scale choices in top pair production.
- Predictions for invariant mass distributions under good perturbative control.
- The resummation has less impact on transverse momentum distributions – NNLO corrections most important here.

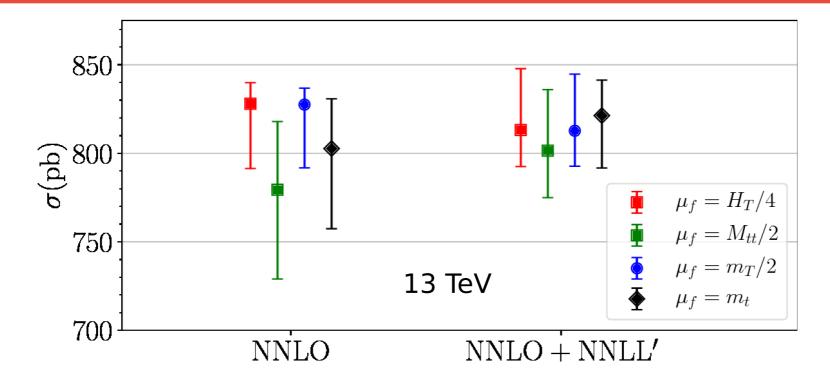
Transverse momentum distribution



<u>NNLO+NNLL'</u> compared to NNLO:

 Mild suppression of cross section at large transverse momentum

Total cross section



Resummed results agree with widely used fixed order ones.

- Can be used across phase space
- Useful for normalised distributions as well