Renormalon effects in top-mass sensitive observables

Silvia Ferrario Ravasio* IPPP Durham

ECT*, Trento

LFC19: Strong dynamics for physics within and beyond the Standard Model at LHC and Future Colliders

Based on S.F.R., P. Nason and C. Oleari

[arxiv:1810.10931]

• Top: last quark to be observed and **heaviest** elementary particle in the SM

Standard Model of Elementary Particles

< 17 ▶

- Top: last quark to be observed and **heaviest** elementary particle in the SM
 - only quark that **decays** instead of hadronizing

- Top: last quark to be observed and **heaviest** elementary particle in the SM
 - only quark that **decays** instead of hadronizing
 - \mathbf{m}_t affects significantly many parameters of the SM, e.g. the mass of the W boson and the Higgs self-coupling λ

- Top: last quark to be observed and **heaviest** elementary particle in the SM
 - only quark that **decays** instead of hadronizing
 - \mathbf{m}_t affects significantly many parameters of the SM, e.g. the mass of the W boson and the Higgs self-coupling λ
 - it may couple with exotic particles we hope to see with the new colliders (**BSM**)

- Top: last quark to be observed and **heaviest** elementary particle in the SM
 - only quark that **decays** instead of hadronizing
 - \mathbf{m}_t affects significantly many parameters of the SM, e.g. the mass of the W boson and the Higgs self-coupling λ
 - it may couple with exotic particles we hope to see with the new colliders (**BSM**)

We want a precise determination of \mathbf{m}_t in a given renormalization scheme

- Direct measurements give us the most precise determination, provided that the theoretical errors are small and under control.
 - CMS: $m_t = 172.44 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ (syst)} \text{ GeV}$
 - ATLAS: $m_t = 172.51 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst)} \text{ GeV}$
 - The projected future experimental uncertainty is 200 MeV

- Direct measurements give us the most precise determination, provided that the theoretical errors are small and under control.
 - CMS: $m_t = 172.44 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ (syst)} \text{ GeV}$
 - ATLAS: $m_t = 172.51 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst)} \text{ GeV}$
 - $\bullet\,$ The projected future experimental uncertainty is 200 MeV
- High precision \Rightarrow high level of scrutiny of extracted m_t .
- Direct mesurements are based on Monte Carlo (MC) generators. Experimental collaborations do not identify the "MC" mass with a renormalization scheme.
- Full consensus not reached by theorists, but some more precise statements can be done when looking predictions regarding the mass of the *t*-decay products $(m_{\rm rec})$.

- Direct measurements give us the most precise determination, provided that the theoretical errors are small and under control.
 - CMS: $m_t = 172.44 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ (syst)} \text{ GeV}$
 - ATLAS: $m_t = 172.51 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst)} \text{ GeV}$
 - $\bullet\,$ The projected future experimental uncertainty is 200 MeV
- High precision \Rightarrow high level of scrutiny of extracted m_t .
- Direct mesurements are based on Monte Carlo (MC) generators. Experimental collaborations do not identify the "MC" mass with a renormalization scheme.
- Full consensus not reached by theorists, but some more precise statements can be done when looking predictions regarding the mass of the *t*-decay products $(m_{\rm rec})$.
 - ✓ in NWA, $m_{\rm rec} = m_{\rm pole}$ at all-orders. SMC preserves t virtuality: $m_{\rm MC} = m_{\rm pole}$. Finite-width effects lead to $\alpha_s \Gamma_t$ difference.
 - $\checkmark\,$ Several works suggest the MC mass being close to the **pole mass**, with a theoretical error of few hundred MeV.
 - ✓ E.g Hoang, Platzer and Samitz find that the shower cutoff $Q_0 \approx 1$ GeV implies that $m_t^{\rm MC}$ s a short-distance mass and $m_t^{\rm MC}(Q_0) m_t^{\rm pole} = -\frac{2}{3}\alpha_s(Q_0)Q_0 + \mathcal{O}(\alpha_s(Q_0)^2Q_0)$

伺下 イヨト イヨト

э

- Direct measurements give us the most precise determination, provided that the theoretical errors are small and under control.
 - CMS: $m_t = 172.44 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ (syst)} \text{ GeV}$
 - ATLAS: $m_t = 172.51 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst)} \text{ GeV}$
 - $\bullet\,$ The projected future experimental uncertainty is 200 MeV
- High precision \Rightarrow high level of scrutiny of extracted m_t .
- Direct mesurements are based on Monte Carlo (MC) generators. Experimental collaborations do not identify the "MC" mass with a renormalization scheme.
- Full consensus not reached by theorists, but some more precise statements can be done when looking predictions regarding the mass of the *t*-decay products $(m_{\rm rec})$.
 - ✓ in NWA, $m_{\rm rec} = m_{\rm pole}$ at all-orders. SMC preserves t virtuality: $m_{\rm MC} = m_{\rm pole}$. Finite-width effects lead to $\alpha_s \Gamma_t$ difference.
 - $\checkmark\,$ Several works suggest the MC mass being close to the **pole mass**, with a theoretical error of few hundred MeV.
 - ✓ E.g Hoang, Platzer and Samitz find that the shower cutoff $Q_0 \approx 1$ GeV implies that m_t^{MC} s a short-distance mass and $m_t^{\text{MC}}(Q_0) m_t^{\text{pole}} = -\frac{2}{3}\alpha_s(Q_0)Q_0 + \mathcal{O}(\alpha_s(Q_0)^2Q_0)$

The pole mass has infrared renormalons!!!

IR Renormalons

• QCD is affected by **infrared slavery**:

Silvia Ferrario Ravasio — September 11th, 2019 RENORMALONS IN m_t -SENSITIVE OBSERVABLES 4/19

東下

IR Renormalons

• QCD is affected by **infrared slavery**:

$$\alpha_s(\mathbf{k}) = \frac{\alpha_s(Q)}{1 + 2b_0\alpha_s(Q)\log\left(\frac{k}{Q}\right)} = \frac{1}{2b_0\log\left(\frac{k}{\Lambda_{\rm QCD}}\right)}; \quad b_0 = \frac{11C_{\rm A}}{12\pi} - \frac{n_t T_{\rm R}}{3\pi} > 0$$

• All orders contribution coming from low-energy region

$$\underbrace{\int_{0}^{Q} \mathrm{d}k \, k^{p-1} \alpha_{s}(Q)}_{\text{NLO}} \Longrightarrow \underbrace{\int_{0}^{Q} \mathrm{d}k \, k^{p-1} \alpha_{s}(\boldsymbol{k})}_{\text{all orders}} = \boxed{Q^{p} \times \alpha_{s}(Q) \sum_{n=0}^{\infty} \left(\frac{2 \, b_{0}}{p} \, \alpha_{s}(Q)\right)^{n} \, \boldsymbol{n}!}$$

IR Renormalons

• QCD is affected by **infrared slavery**:

$$\alpha_s(\mathbf{k}) = \frac{\alpha_s(Q)}{1 + 2b_0\alpha_s(Q)\log\left(\frac{k}{Q}\right)} = \frac{1}{2b_0\log\left(\frac{k}{\Lambda_{\rm QCD}}\right)}; \quad b_0 = \frac{11C_{\rm A}}{12\pi} - \frac{n_t T_{\rm R}}{3\pi} > 0$$

• All orders contribution coming from low-energy region

$$\underbrace{\int_{0}^{Q} \mathrm{d}k \, k^{p-1} \alpha_{s}(Q)}_{\text{NLO}} \Longrightarrow \underbrace{\int_{0}^{Q} \mathrm{d}k \, k^{p-1} \alpha_{s}(\boldsymbol{k})}_{\text{all orders}} = \boxed{Q^{p} \times \alpha_{s}(Q) \sum_{n=0}^{\infty} \left(\frac{2 \, b_{0}}{p} \, \alpha_{s}(Q)\right)^{n} \, \boldsymbol{n}!}$$

• Asymptotic series $\Rightarrow \text{ Minimum for } n_{\min} \approx \frac{p}{2b_0 \alpha_s(Q)}$ $\Rightarrow \text{ Size } Q^p \times \alpha_s(Q) \sqrt{2\pi n_{\min}} e^{-n_{\min}} \approx \boxed{\Lambda_{QCD}^p}$ We are interested in p = 1, i.e. in linear renormalons

Large n_f limit

• All-orders computation can be carried out exactly in the large number of flavour n_f limit

 $\exists \rightarrow$

Large n_f limit

• All-orders computation can be carried out exactly in the large number of flavour n_f limit

$$\begin{array}{l} \overbrace{-ig^{\mu\nu}}{k^2 + i\eta} \rightarrow \frac{-ig^{\mu\nu}}{k^2 + i\eta} \times \frac{1}{1 + \Pi(k^2 + i\eta, \mu^2) - \Pi_{\rm ct}} \\ \\ \Pi(k^2 + i\eta, \mu^2) - \Pi_{\rm ct} = \alpha_s(\mu) \left(-\frac{n_f T_{\rm R}}{3\pi} \right) \left[\log\left(\frac{|k^2|}{\mu^2}\right) - i\pi\theta(k^2) - \frac{5}{3} \right] \end{array}$$

• naive non-abelianization at the end of the computation

$$\Pi(k^2 + i\eta, \mu^2) - \Pi_{\rm ct} \rightarrow \alpha_s(\mu) \underbrace{\left(\frac{11C_{\rm A}}{12\pi} - \frac{n_l T_{\rm R}}{3\pi}\right)}_{b_0} \left[\log\left(\frac{|k^2|}{\mu^2}\right) - i\pi\theta(k^2) - C\right]$$

Single-top production

 $W^* \to t \bar{b} \to W b \bar{b}$ at all orders using the (complex) pole scheme

Integrated cross section

Integrated cross section (with cuts $\Theta(\Phi)$):

$$\begin{aligned} \sigma &= \int \mathrm{d}\Phi \; \frac{\mathrm{d}\sigma(\Phi)}{\mathrm{d}\Phi} \,\Theta(\Phi) \\ &= \sigma_{_{\mathrm{LO}}} - \frac{1}{\pi b_0} \int_0^\infty \mathrm{d}\lambda \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{T(\lambda)}{\alpha_s(\mu)} \right] \arctan\left[\pi \, b_0 \, \alpha_s \left(\lambda e^{-C/2}\right) \right] \end{aligned}$$

 $\lambda =$ gluon mass

•
$$T(0) = \sigma_{_{\mathrm{NLO}}}$$

• $T(\lambda) = \overline{\sigma_{_{\mathrm{NLO}}}(\lambda)} + \frac{3\lambda^2}{2\mathrm{T}_{\mathrm{R}}\alpha_s} \int \mathrm{d}\Phi_{g^*} \mathrm{d}\Phi_{\mathrm{dec}} \frac{\mathrm{d}\sigma_{q\bar{q}}^{(2)}(\lambda,\Phi)}{\mathrm{d}\Phi} \left[\Theta(\Phi) - \underbrace{\Theta(\Phi_{g^*})}_{q\bar{q} \to q^*}\right]$

•
$$T(\lambda) \xrightarrow{\lambda \to \infty} \frac{1}{\lambda^2}$$

•
$$\alpha_s \left(\lambda e^{-C/2}\right) \approx \alpha_s(\lambda) \left[1 + \frac{K_g}{2\pi} \alpha_s(\lambda)\right] + \mathcal{O}(\alpha_s^3) = \alpha_s^{\mathrm{MC}}(\lambda)$$

-

Integrated cross section

Integrated cross section (with cuts $\Theta(\Phi)$):

$$\begin{aligned} \sigma &= \int \mathrm{d}\Phi \, \frac{\mathrm{d}\sigma(\Phi)}{\mathrm{d}\Phi} \, \Theta(\Phi) \\ &= \sigma_{_{\mathrm{LO}}} - \frac{1}{\pi b_0} \int_0^\infty \mathrm{d}\lambda \, \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{T(\lambda)}{\alpha_s(\mu)} \right] \arctan\left[\pi \, b_0 \, \alpha_s \left(\lambda e^{-C/2}\right) \right] \end{aligned}$$

So, if

$$\frac{\mathrm{d}T(\lambda)}{\mathrm{d}\lambda}\Big|_{\lambda=0} = A \neq 0$$

the low- λ contribution takes the form

$$\langle O \rangle \sim -A \sum_{n=0}^{\infty} \int_0^m \mathrm{d}\lambda \left[-2b_0 \,\alpha_s(m) \log\left(\frac{\lambda^2}{m^2}\right) \right]^n = -Am \sum_{n=0}^{\infty} \left(2 \, b_0 \,\alpha_s(m)\right)^n n!$$

Linear λ term \leftrightarrow Linear renormalons

Total cross section

 \Rightarrow If a complex mass is used, the top can never be on-shell and the only term that can develop a linear λ sensitivity is the mass counterterm.

Total cross section in NWA

For $\Gamma_t \to 0$ the cross section factorizes

$$\sigma(W^* \to W \, b \, \bar{b}) = \sigma(W^* \to t \bar{b}) \times \frac{\Gamma(t \to W \, b)}{\Gamma_t}$$

Since both terms are free from linear renormalons, also $\sigma(W^* \to W \, b \, \bar{b})$ is free from linear renormalons.

Total cross section with cuts

Cuts: a *b* jet and a separate \bar{b} jet with $k_{\perp} > 25$ GeV (anti- k_{\perp} jets).

 $\sigma(e^+e^- \to t\bar{t})$, calculated using a short-distance mass, is free from linear renormalons (in absence of cuts). For this kind of measurements, a statistical uncertainty of 20 MeV is predicted in 1611.03399 , by F. Simon.

Reconstructed-top mass in NWA

• For $\Gamma_t \to 0$, we can define the "top-decay products"

- For large R, $\langle M \rangle \approx m_{\text{pole}}$ and T'(0) = 0: no linear renormalon
- If we move to $\overline{\text{MS}}$ we add $-\frac{C_{\text{F}}}{2} \frac{\partial \langle M \rangle}{\text{Re}(m)} \approx -0.67$: physical linear renormalon

Reconstructed-top mass

For the blind analysis, restoring $\Gamma_t = 1.3279$ GeV only slightly changes this picture

 $W^* \rightarrow t\bar{b} \rightarrow Wb\bar{b}, \Gamma_t = 1.3279 \text{ GeV}, \langle M \rangle$

pole 🛶

MS -

1.4

20

10

0

 $1/\alpha_{\rm s}\,\mathrm{d}\,\widetilde{T}(k^2)/\mathrm{d}k\Big|_{k=0}$

0.4

0.8 R

Reconstructed-top mass: some numbers

$$M = \sum_{i=0}^{\infty} c_i \alpha_s^i$$

	$c_i \alpha_s^i [{ m MeV}]$				
i	$\operatorname{Re}(m_{\operatorname{pole}} - \overline{m}(\mu))$	$\langle M \rangle_{\rm pole}, R = 1.5$	$\langle M \rangle_{\overline{\mathrm{MS}}}, R = 1.5$		
5	+89	-10(1)	+79(1)		
6	+60	-11(1)	+49(1)		
7	+47	-11(1)	+35(1)		
8	+44	-12(1)	+31(1)		
9	+46	-15(1)	+31(1)		
10	+55	-19(1)	+36(1)		

More accurate estimates of $m_{\text{pole}} - \overline{m}(\mu)$ (e.g. inclusion of b and c mass effects) can be found in

- [Beneke, Marquad, Nason, Steinhauser, arXiv:1605.03609]: $\Delta m = 110 \text{ MeV}$
- [Hoang, Lepenik, Preisser, arXiv:1802.04334]: $\Delta m = 250$ MeV

Energy of the W boson, pole scheme (lab frame)

When the **pole scheme** is used we always have renormalons

- Vanishing Γ_t (left): slope ≈ 0.5 near 0;
- Large Γ_t (right): slope ≈ 0.06 near 0;

Energy of the W boson, $\overline{\text{MS}}$ scheme (lab frame)

 $\mathbf{E}_{\mathbf{W}} =$ simplified **leptonic observable**. In absence of cuts, is this observable free from physical renormalons?

Γ_t	slope (pole)	$\frac{\partial \langle E_W \rangle_b}{\partial \operatorname{Re}(m)}$	$-\frac{\mathcal{C}_{\mathcal{F}}}{2}\frac{\partial \langle E_W \rangle_b}{\partial \operatorname{Re}(m)}$	slope ($\overline{\rm MS}$)
NWA	0.53(2)	0.10(3)	-0.066(4)	0.46(2)
$10 \mathrm{GeV}$	0.058(8)	0.0936(4)	-0.0624(3)	0.004(8)
20 GeV	0.061(2)	0.0901(2)	-0.0601(1)	0.001(2)

Yes, if a **finite width** is used, but ...

Energy of the W boson (lab frame)

But $\mathcal{O}(\alpha_s^n)$ corrections are dominated by scales of the order $\mu = m_t e^{1-n}$: we can see the presence of Γ_t only for $\mathbf{n} \geq \mathbf{1} + \log(\mathbf{m_t}/\Gamma_t) \approx \mathbf{6}$

	$\langle E_W \rangle$ [GeV]				
	pole s	cheme	me \overline{MS} s		
i	c_i	$c_i \alpha^i_{ m S}$	c_i	$c_i lpha_{ m S}^i$	
0	121.5818	121.5818	120.8654	120.8654	
1	$-1.435(0) \times 10^{1}$	$-1.552(0) \times 10^{0}$	$-7.192(0) \times 10^{0}$	$-7.779(0) \times 10^{-1}$	
2	$-4.97(4) \times 10^{1}$	$-5.82(4) \times 10^{-1}$	$-3.88(4) \times 10^{1}$	$-4.54(4) \times 10^{-1}$	
3	$-1.79(5) \times 10^{2}$	$-2.26(6) \times 10^{-1}$	$-1.45(5) \times 10^2$	$-1.84(6) \times 10^{-1}$	
4	$-6.9(4) \times 10^2$	$-9.4(6) \times 10^{-2}$	$-5.7(4) \times 10^2$	$-7.8(6) \times 10^{-2}$	
5	$-2.9(3) \times 10^3$	$-4.4(5) \times 10^{-2}$	$-2.4(3) \times 10^3$	$-3.5(5) \times 10^{-2}$	
6	$-1.4(3) \times 10^4$	$-2.2(4) \times 10^{-2}$	$-1.0(3) \times 10^4$	$-1.7(4) \times 10^{-2}$	
7	$-8(2) \times 10^4$	$-1.3(4) \times 10^{-2}$	$-5(2) \times 10^4$	$-8(4) \times 10^{-3}$	
8	$-5(2) \times 10^5$	$-9(4) \times 10^{-3}$	$-2(2) \times 10^5$	$-4(4) \times 10^{-3}$	
9	$-3(2) \times 10^{6}$	$-7(4) \times 10^{-3}$	$-1(2) \times 10^{6}$	$-2(4) \times 10^{-3}$	
10	$-3(2) \times 10^7$	$-6(5) \times 10^{-3}$	$0(2) \times 10^{6}$	$-1(5) \times 10^{-4}$	
11	$-3(3) \times 10^8$	$-7(6) \times 10^{-3}$	$0(3) \times 10^{6}$	$0(6) \times 10^{-5}$	
12	$-4(3) \times 10^9$	$-9(9) \times 10^{-3}$	$0(3) \times 10^{8}$	$1(9) \times 10^{-3}$	

(ロト 《御 》 《臣 》 《臣 》 三臣 … のへ()

16/19

Warning!

Despite the fact the energy of the W boson is not affected by linear renormalons, an accurate determination of the top mass is limited by the reduced sensitivity on the top-mass value:

$$2\operatorname{Re}\left[\frac{\partial \langle E_W \rangle_{\mathrm{LO}}}{\partial m}\right] = 0.1$$
$$2\operatorname{Re}\left[\frac{\partial \langle M \rangle_{\mathrm{LO}}}{\partial m}\right] = 1$$

for E = 300 GeV, $m_W = 80.4$ GeV, $m_t = 172.5$ GeV ($\beta = 0.5$). At the threshold, (think about e^+e^- future colliders)

$$\langle E_W \rangle_{\rm LO} \approx \frac{m_t^2 + m_W^2}{2m_t} \to 2 {\rm Re} \left[\frac{\partial \langle E_W \rangle_{\rm LO}}{\partial m} \right] \approx 0.4.$$

Furthermore, the top will be produced in its rest frame, so E_W is renormalon free in NWA ...

Conclusions

- We devised a simple method that enables us to investigate the presence of linear infrared renormalons in **any infrared safe observable**.
- The inclusive cross section and $\mathbf{E}_{\mathbf{W}}$ are free from physical renormalons if $\Gamma_t > 0$ (for σ also in NWA).
- Once jets requirements are introduced, the **jet renormalon** leads to an unavoidable ambiguity.
- For large R, $\langle \mathbf{M} \rangle \approx \mathbf{m}_{\text{pole}}$. This observable has a **physical** renormalon.

THANK YOU FOR THE ATTENTION!

IR-safe observables

Average value of an observable O (e.g. reconstructed-top mass, $W\text{-}\mathrm{boson}$ energy, $\ldots)$

$$\begin{split} \langle O \rangle &= \frac{1}{\sigma} \int \mathrm{d}\Phi \; \frac{\mathrm{d}\sigma(\Phi)}{\mathrm{d}\Phi} \, O(\Phi) \\ &= \langle O \rangle_{\text{\tiny LO}} \; - \frac{1}{\pi b_0} \int_0^\infty \mathrm{d}\lambda \; \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{\tilde{T}(\lambda)}{\alpha_s(\mu)} \right] \arctan\left[\pi \, b_0 \, \alpha_s \left(\lambda e^{-C/2}\right) \right] \end{split}$$

•
$$\widetilde{T}(0) = \langle O \rangle_{\text{NLO}}$$

• $\widetilde{T}(\lambda) = \overline{\langle O(\lambda) \rangle_{\text{NLO}}} + \frac{3\lambda^2}{2n_f T_{\text{R}} \alpha_s} \int d\Phi_{g^*} d\Phi_{\text{dec}} \frac{d\sigma_{q\bar{q}}^{(2)}(\lambda, \Phi)}{d\Phi} [\overline{O}(\Phi) - \overline{O}(\Phi_{g^*})]$
with $\lambda = \text{gluon mass.}$ $\overline{O}(\Phi) = [O(\Phi) - O_{\text{LO}}] \Theta(\Phi) / \sigma_{\text{LO}}$

with
$$\lambda = \text{gluon mass}$$
, $O(\Phi) = [O(\Phi) - O_{\text{LO}}] \Theta(\Phi) / \sigma_{\text{LO}}$
• $\tilde{T}(\lambda) \xrightarrow{\lambda \to \infty} \frac{1}{\lambda^2}$

< E >

pole- $\overline{\mathrm{MS}}$ mass relation

$$\begin{split} \overline{m}(\mu) &\Rightarrow \text{UV-divergent contribution of self-energy corrections} \\ m_{\text{pole}} &\Rightarrow \text{UV-divergent} + \underbrace{\text{IR (finite)}}_{\alpha_s^{n+1}n!} \text{ contributions} \\ \bullet \text{ At } \mathcal{O}(\alpha_s): & & \\ m_{\text{pole}} - \overline{m}(\mu) = \text{Fin} \left[i \times \underbrace{\int_{p^2 = m^2}^{\sqrt{2}} \int_{p^2 = m^2}^{$$

pole- $\overline{\mathrm{MS}}$ mass relation

 $\overline{m}(\mu) \Rightarrow$ UV-divergent contribution of self-energy corrections $m_{\text{pole}} \Rightarrow \text{UV-divergent} + \text{ IR (finite) contributions}$ • At $\mathcal{O}(\alpha_s)$: $\alpha^{n+1}_{2}n!$ $m_{\text{pole}} - \overline{m}(\mu) = \operatorname{Fin} \left[i \times \underbrace{6^{000}}_{i \neq 1} \right] = \operatorname{Fin} \left[i \Sigma^{(1)}(\epsilon) \right]$ $i\Sigma^{(1)}(\epsilon) = -ig^2 \operatorname{C}_{\mathrm{F}} \left(\frac{\mu^2}{4\pi} \mathrm{e}^{\Gamma_E}\right)^{\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\gamma^{\alpha}(\not\!\!\!p + \not\!\!k + m)\gamma_{\alpha}}{[k^2 + i\eta] \left[(k+p)^2 - m^2 + i\eta\right]} \bigg|_{\not\!\!p = m}$ • At all-orders: $i\Sigma(\epsilon) = -ig^2 \operatorname{C}_{\mathrm{F}} \left(\frac{\mu^2}{4\pi} \mathrm{e}^{\Gamma_E}\right)^{\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\gamma^{\alpha}(\not\!\!\!p + \not\!\!k + m)\gamma_{\alpha}}{[k^2 + i\eta] \left[(k+p)^2 - m^2 + i\eta\right]} \Big|_{\not\!\!p = \pi}$ $\times \frac{1}{1 + \Pi(k^2 + i\eta, \mu^2, \epsilon) - \Pi_{\rm ct}}$

pole-MS mass relation

• At all-orders:

$$i\Sigma(\epsilon) = -\frac{1}{\pi} \int_{0^{-}}^{+\infty} \frac{\mathrm{d}\lambda^{2}}{2\pi} \left[i \underbrace{\Sigma^{(1)}(\epsilon, \lambda)}_{\lambda = \text{gluon mass}} \right] \operatorname{Im} \left[\frac{1}{\lambda^{2} + i\eta} \frac{1}{1 + \Pi(\lambda^{2} + i\eta, \mu^{2}, \epsilon) - \Pi_{\text{ct}}} \right]$$

Fin $[i\Sigma(\epsilon)] = -\frac{1}{\pi b_{0}} \int_{0}^{\infty} \lambda \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{r_{\text{fin}}(\lambda)}{\alpha_{s}(\mu)} \right] \arctan \left[\pi b_{0} \alpha_{s}(\lambda e^{-C/2}) \right] + \dots$
where $r_{\text{fin}}(\lambda) \xrightarrow{\lambda \ll 1} -\alpha_{s}(\mu) \frac{C_{\text{F}}}{2} \lambda$, $r_{\text{fin}}(\lambda) \xrightarrow{\lambda \to \infty} \mathcal{O}\left(\frac{m^{2}}{\lambda^{2}}\right)$

-

pole- $\overline{\mathrm{MS}}$ mass relation

• At all-orders:

$$i\Sigma(\epsilon) = -\frac{1}{\pi} \int_{0^{-}}^{+\infty} \frac{\mathrm{d}\lambda^{2}}{2\pi} \left[i \underbrace{\Sigma^{(1)}(\epsilon, \lambda)}_{\lambda = \text{gluon mass}} \right] \operatorname{Im} \left[\frac{1}{\lambda^{2} + i\eta} \frac{1}{1 + \Pi(\lambda^{2} + i\eta, \mu^{2}, \epsilon) - \Pi_{\text{ct}}} \right]$$

Fin $[i\Sigma(\epsilon)] = -\frac{1}{\pi b_{0}} \int_{0}^{\infty} \lambda \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{r_{\text{fin}}(\lambda)}{\alpha_{s}(\mu)} \right] \arctan \left[\pi b_{0} \alpha_{s}(\lambda e^{-C/2}) \right] + \dots$
where $r_{\text{fin}}(\lambda) \xrightarrow{\lambda \ll 1} - \alpha_{s}(\mu) \frac{\operatorname{CF}}{2} \lambda$, $r_{\text{fin}}(\lambda) \xrightarrow{\lambda \to \infty} \mathcal{O}\left(\frac{m^{2}}{\lambda^{2}}\right)$

• Small λ contribution (independent from C):

$$\frac{C_{\rm F}}{2} \sum_{n=0}^{\infty} \int_0^m \mathrm{d}\lambda \left[-2b_0 \,\alpha_s(m) \log\left(\frac{\lambda^2}{m^2}\right) \right]^n = \frac{C_{\rm F}}{2} m \sum_{n=0}^{\infty} \left(2 \,b_0 \,\alpha_s(m)\right)^n n!$$

The resummed series has an ambiguity proportional to Λ_{QCD} :

Linear k term \leftrightarrow Linear renormalons

pole- $\overline{\text{MS}}$ mass relation

• In the pure n_f limit: arxiV:hep-ph/9502300, Ball et all

$$b_0 = -\frac{n_f \mathrm{T}_{\mathrm{R}}}{3\pi}, C = \frac{5}{3}, \qquad \frac{m - \overline{m}(\overline{m})}{m} = \frac{4}{3} \alpha_s(\overline{m}) \left[1 + \sum_{i=1}^{\infty} d_i \left(b_0 \alpha_s(\overline{m}) \right)^i \right]$$

i	1	2	3	4	5	6	7	8
d_i	5×10^{0}	2×10^1	1×10^2	9×10^2	$9{ imes}10^3$	1×10^{5}	1×10^{6}	2×10^7

• "Realistic" large b_0 approximation:

$$\alpha_s(\lambda e^{-C/2}) = \frac{\alpha_s(\lambda)}{1 - b_0 C \alpha_s(\lambda)} \approx \underbrace{\alpha_s(\lambda) \left[1 + b_0 C \alpha_s(\lambda)\right] = \alpha_s^{\text{CMW}}(\lambda)}_{b_0 C = \frac{1}{2\pi} \left[\left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_{\text{A}} - \frac{10}{9} n_l T_{\text{R}} \right]}$$

Pole-MS mass relation

$$\begin{split} m_0 &= 172.5 \text{ GeV}, \qquad \Gamma = 1.3279 \text{ GeV}, \quad m^2 &= m_0^2 - im_0 \Gamma, \qquad \mu = m_0 \\ m &- \overline{m}(\mu) = m \sum_{i=1}^n c_i \alpha_s^i(\mu) \end{split}$$

$m-\overline{m}(\mu)$						
i	$\operatorname{Re}\left(c_{i}\right)$	$\operatorname{Im}(c_i)$	$\operatorname{Re}\left(mc_{i}\alpha_{s}^{i}\right)$	$\operatorname{Im}\left(mc_{i}\alpha_{s}^{i}\right)$		
1	4.244×10^{-1}	2.450×10^{-3}	$7.919 \times 10^{+0}$	$+1.524 \times 10^{-2}$		
2	6.437×10^{-1}	2.094×10^{-3}	$1.299 \times 10^{+0}$	-7.729×10^{-4}		
3	$1.968 \times 10^{+0}$	8.019×10^{-3}	4.297×10^{-1}	$+9.665 \times 10^{-5}$		
4	$7.231 \times 10^{+0}$	2.567×10^{-2}	1.707×10^{-1}	-5.110×10^{-5}		
5	$3.497 \times 10^{+1}$	1.394×10^{-1}	8.930×10^{-2}	$+1.240 \times 10^{-5}$		
6	$2.174 \times 10^{+2}$	8.164×10^{-1}	6.005×10^{-2}	-5.616×10^{-6}		
7	$1.576 \times 10^{+3}$	$6.133 \times 10^{+0}$	4.709×10^{-2}	$+2.009 \times 10^{-6}$		
8	$1.354 \times 10^{+4}$	$5.180 \times 10^{+1}$	4.376×10^{-2}	-1.031×10^{-6}		
9	$1.318 \times 10^{+5}$	$5.087 \times 10^{+2}$	4.608×10^{-2}	$+4.961 \times 10^{-7}$		
10	$1.450 \times 10^{+6}$	$5.572 \times 10^{+3}$	5.481×10^{-2}	-2.909×10^{-7}		

- イロト (同) (ヨ) (ヨ) (コ) (つ)

$Pole-\overline{MS}$ mass relation

$$\begin{split} m_0 &= 172.5 \text{ GeV}, \qquad \Gamma = 1.3279 \text{ GeV}, \qquad m^2 = m_0^2 - im_0 \Gamma, \qquad \mu = m_0 \\ m - \overline{m}(\mu) &= m \sum_{i=1}^n c_i \alpha_s^i(\mu) \end{split}$$

$m-\overline{m}(\mu)$						
i	$\operatorname{Re}\left(c_{i}\right)$	$\operatorname{Im}(c_i)$	$\operatorname{Re}\left(mc_{i}\alpha_{s}^{i} ight)$	$\operatorname{Im}\left(mc_{i}\alpha_{s}^{i}\right)$		
5	$3.497 \times 10^{+1}$	1.394×10^{-1}	8.930×10^{-2}	$+1.240 \times 10^{-5}$		
6	$2.174 \times 10^{+2}$	8.164×10^{-1}	6.005×10^{-2}	-5.616×10^{-6}		
7	$1.576 \times 10^{+3}$	$6.133 \times 10^{+0}$	4.709×10^{-2}	$+2.009 \times 10^{-6}$		
8	$1.354 \times 10^{+4}$	$5.180 \times 10^{+1}$	4.376×10^{-2}	-1.031×10^{-6}		
9	$1.318 \times 10^{+5}$	$5.087 \times 10^{+2}$	4.608×10^{-2}	$+4.961 \times 10^{-7}$		
10	$1.450 \times 10^{+6}$	$5.572 \times 10^{+3}$	5.481×10^{-2}	-2.909×10^{-7}		

More accurate estimates of $m_{\rm pole}-\overline{m}(\mu)$ (e.g. inclusion of b and c mass effects) can be found in

- [Beneke, Marquad, Nason, Steinhauser, arXiv:1605.03609]: $\Delta m = 110 \text{ MeV}$
- [Hoang, Lepenik, Preisser, arXiv:1802.04334]: $\Delta m = 250$ MeV

NB: Actual systematic uncertainty is 500 MeV!

→ ∃ →