A (personal) overview of recent top-quark measurements at the LHC

Davide Melini¹

¹Technion physics department - Haifa

LFC 2019 Trento, 12th September

Introduction

The top-quark was

- introduced in 1973 to explain weak CP violation
- discovered in 1995 (CDF and D0 at Tevatron)

Top-quark properties

ヘロア 人間 アメヨア 人口 ア

Data-to-theory comparsions

Inclusive cross sections

Measurements agree well with theoretical predictions

ヘロア 人間 アメヨア 人口 ア

Single-top production is the second

New CMS result - August '19 - CMS-PAS-TOP-18-005

measurement $\sigma_{t\bar{t}}$ in dileptonic final state with one τ lepton $\sigma_{t\bar{t}}(\ell \tau_h) = 781 \pm 7(\text{stat}) \pm 62(\text{syst}) \pm 20(\text{lumi}) \text{ pb}$

• hadronic au
ightarrow decay only

Inclusive tf cross section [pb]

- increased precision thanks to shape fit to $M_T(\ell, p_T^{\text{miss}})$ in signal-like and bkg-like regions.
- Lepton flavour universality preserved

 $\frac{\sigma_{\ell\tau_h}}{\sigma_{\ell\ell}} = 0.973 \pm 0.009 \text{(stat)} \pm 0.066 \text{(syst)}$

ratio of partial widths agree wih expectations

$$\frac{\Gamma_{t \to \tau_h \nu b}}{\Gamma_{t \to \text{all}}} = 0.1050 \pm 0.0009 (\text{stat}) \pm 0.0071 (\text{syst})$$

ヘロト ヘワト ヘビト ヘビト

More cross sections...

Large data sample allows to measure processes with small cross section. More recent updates are from CMS

tībb and tījj

Irriducible bkgs to $t\bar{t}H(b\bar{b})$ signal. Available at NLO (+PS), but large unc.

CMS - August results (CMS-PAS-TOP-18-002)

- semileptonic and dileptonic channels
- smaller unc. thanks to more stat and improved fit (syst as nuisance par)

ヘロア 人間 アメヨア 人口 ア

More cross sections...

Large data sample allows to measure processes with small cross section. More recent updates are from CMS

tībb and tījj

Irriducible bkgs to $t\bar{t}H(b\bar{b})$ signal. Available at NLO (+PS), but large unc.

CMS - August results (CMS-PAS-TOP-18-002)

- semileptonic and dileptonic channels
- smaller unc. thanks to more stat and improved fit (syst as nuisance par)

ttbb fully hadronic

CMS - May results (CMS-PAS-TOP-18-011)

- challenging fully hadronic final state!
- ≥ 8 jets, ≥ 4 *b*-jets
- many systematics contribute equally (*t̄t* modelling, *b*-tag, MC stat)

Top quark measurements at the LHC

D. Melini

...and more cross sections!

Searches for $t\bar{t}t\bar{t}$ production \rightarrow very very challenging experimentally! NLO QCD prediction is $\sigma_{t\bar{t}t\bar{t}}^{SM} \sim 12$ fb

ATLAS Phys. Rev. D 99 (2019) 052009

- ℓ +jets and $\ell^+\ell^-$ +jets channels
- combination with J. High EnergyPhys. 12 (2018) 039

multi- ℓ and $\ell^{\pm}\ell^{\pm}$ +jets meas.

- $\bullet \ \sigma_{t\bar{t}t\bar{t}}^{\rm meas} < 5\sigma_{t\bar{t}t\bar{t}}^{\rm SM}$
- set limit on anomalous four-top-quark coupling in EFT

D. Melini

CMS CMS-PAS-TOP-17-019

- ℓ +jets and $\ell^+\ell^-$ +jets channels
- MVA analysis on jet properties
- no observation \rightarrow 1.4 σ evidence
- σ_{tītī} < 48fb @ 95% CL
- EFT interpretation

CMS CMS-PAS-TOP-18-003

- multi- ℓ and $\ell^{\pm}\ell^{\pm}$ +jets
- Classification + BDT
- uses 137 fb⁻¹ int. lumi
- significance of 2.4σ
- constraints top-Yukawa and set limits on heavy (pseudo-)scalar

Top quark measurements at the LHC

Differential lepton cross sections in $t\bar{t}$

Increased statistics makes possible to measure $t\bar{t}$ differential cross sections with high precision. Recent results from ATLAS at 13 TeV.

ATLAS $e^{\pm}\mu^{\mp}$ +jets atlas-conf-2019-041

- $\bullet \ \ \text{clean channel} \rightarrow \text{precision}$
- measure $\sigma_{t\bar{t}}^{\text{incl}}$ and extract m_{pole}
- $\frac{\sigma_{t\bar{t}}(13\text{TeV})}{\sigma_{t\bar{t}}(7-8\text{TeV})}$ and $\frac{\sigma_{t\bar{t}}/\sigma_Z(13\text{TeV})}{\sigma_{t\bar{t}}/\sigma_Z(7-8\text{TeV})}$
- 1-D and 2-D leptonic differential distributions at particle level

Cross sections ratios and double ratios compatible with NNLO+NNLL

Lepton p_T harder than data, in POWHEG. No MC describe low $m_{e\mu}$

Differential lepton cross sections in $t\bar{t}$

Increased statistics makes possible to measure $t\bar{t}$ differential cross sections with high precision. Recent results from ATLAS at 13 TeV.

ATLAS $e^{\pm}\mu^{\mp}+$ jets atlas-conf-2019-041

- $\bullet \ \ \text{clean channel} \to \text{precision}$
- measure $\sigma_{t\bar{t}}^{\text{incl}}$ and extract m_{pole}
- $\frac{\sigma_{t\bar{t}}(13\text{TeV})}{\sigma_{t\bar{t}}(7-8\text{TeV})}$ and $\frac{\sigma_{t\bar{t}}/\sigma_Z(13\text{TeV})}{\sigma_{t\bar{t}}/\sigma_Z(7-8\text{TeV})}$
- 1-D and 2-D leptonic differential distributions at particle level

Cross sections ratios and double ratios compatible with NNLO+NNLL

Lepton p_T harder than data, in POWHEG. No MC describe low $m_{e\mu}$

Differential $t\bar{t}$ cross sections

Increased statistics makes possible to measure $t\bar{t}$ differential cross sections with high precision. Recent results from ATLAS at 13 TeV.

ATLAS semileptonic: arXiv:1908.07305

- resolved and boosted topologies
- particle and parton level
- 1-D and 2-D differential
- Data compared to MCs at particle level and also to NNLO pQCD at parton level
- not enough p_T reach to evaluate the impact of NLO EW

MCs overestimate data in the tails of p_T^{had} , $m_{t\bar{t}}$, $H_{t\bar{t}}$ at particle level

NNLO describes data better than NLO+PS, at parton level

ATLAS $t\bar{t}$ differential cross section

Overall good argreement

 $\frac{d^2\sigma}{dp_T dm_{t\bar{t}}}$ is interesting unfolded data better described at low p_T by NLO+PS at hight p_T by NNLO pQCD

ヘロト ヘヨト ヘヨト ヘ

JHEP 05 (2019) 088

ATLAS + CMS combination of 7 and 8 TeV single-*t* cross-sections allows to measure the largest CKM matrix element (V_{tb})

- assuming $|V_{td}|, |V_{ts}| \ll |V_{tb}|$
- Ieft handed Wtb weak coupling

$$|f_{LV}V_{tb}| = \sqrt{\frac{\sigma^{\text{meas}}}{\sigma^{\text{SM}}}}$$

f_{LV} form factor for left-handed coupling (==1 in the SM)

 $|f_{LV}V_{tb}| = 1.02 \pm 0.04$

largest unc. from single-*t* modelling and theo. cross section

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Charge asymmetry

ATLAS-CONF-2019-026 - July '19

Inclusive and differential charge asymmetry A_C measurements in $t\bar{t}$ with $L = 139 \text{ fb}^{-1}$ at 13 TeV

D. Melini

- asymmetry originates from beyond-LO corrections to tt
 producion
- more forward t and more central t
 are expected in pp collisions

$$A_{C} = \frac{N(|y_{t}| - |y_{\bar{t}}| > 0) - N(|y_{t}| - |y_{\bar{t}}| < 0)}{N(|y_{t}| - |y_{\bar{t}}| > 0) + N(|y_{t}| - |y_{\bar{t}}| < 0)}$$

 4σ evidence for charge asymmetry $A_C=0.0060\pm0.0015$ (from SM $A_C\sim0.0064)$ compatible with SM

resolved and boosted topologies unfolding to parton level EFT interpretation 0.07 *و* NNLOQCD + NLOEW ATLAS Preliminary 0.06 √s = 13 TeV, 139 fb⁻¹ Powheq+Pythia8 0.05 0.04E Data (stat./total) 0.03 0.02E 0.0 -0.01 -0.02 -0.03[500,750] [750.1000] [1000.1500] > 1500 m, [GeV] Top guark measurements at the LHC 12/27

l+jets final states

Top width

ATLAS-CONF-2019-038 - August '19

Measurement of top-quark decay width Γ_t with L = 139 fb⁻¹ at 13 TeV

- short lifetime \rightarrow large decay width
- at NNLO Γ_t = 1.322 GeV

for $m_t = 172.5 \text{ GeV}$

with only 6% theo unc.

sensitive to BSM physics

- dilept. final states
- Γ_t extracted **directly** from data/MC comparison of m_{ℓb} at detector level

Polarisation and spin correlations at 13 TeV

In SM $t\bar{t}$ production the spins of t and \bar{t} are predicted to be correlated. Top lifetime is shorter than hadronisation and spin decorrelation time scales Top-quark spin information is passed to top decay products

ATLAS-CONF-2016-10

- $e^{\pm}\mu^{\mp}$ only
- unfold to parton and particle levels
- measures $\Delta \eta(\ell_1, \ell_2)$ inclusively and $\Delta \phi(\ell_1, \ell_2)$ also in $m_{t\bar{t}}$ bins

Polarisation and spin correlations at 13 TeV

In SM $t\bar{t}$ production the spins of t and \bar{t} are predicted to be correlated. Top lifetime is shorter than hadronisation and spin decorrelation time scales Top-quark spin information is passed to top decay products

CMS-PAS-TOP-18-006

- $e^{\pm}\mu\mp$, $e^{+}e^{-}$, $\mu^{+}\mu^{-}$ channels
- extracts the (15) coefficients of top spin dependent parts of tt production
- measures 15 (indip) observables, unfolded to parton level

ATLAS-CONF-2016-10

- $e^{\pm}\mu^{\mp}$ only
- unfold to parton and particle levels
- measures Δη(ℓ₁, ℓ₂) inclusively and Δφ(ℓ₁, ℓ₂) also in m_{tt} bins

Top-quark mass relevance

- self-consistency checks of SM (m_t, m_W, m_H are related)
- electro-weak vacuum stability (running of Higgs quartic coupling)
- affects BSM scenarios (large mass value)

Top-quark mass (m_t) is a free parameter of the SM can be determined via:

- Global fits (PRD 96 (2017) 014011, JHEP 2016 (2016) 135, EPJC 78 (2018) 675)
- Dedicated experimental measurements

Top-quark mass experimental measurements need special attention!

Extraction can be done from data-to-MC or data-to-pQCD comparisons. No analytical relation exist between the top-quark mass as implemented in MCs (m_t^{MC}) and the parameter of the Lagrangian (m_t^{pole} , $m_t^{\overline{MS}}$, ...)

Various solutions under study / used

- theo. work for m^{MC}_t ↔ m^{pole}_t relation ongoing
- Use m^{MC}_t and add 0.5 GeV unc. (~leading one!).
- measurements of m_t^{pole} and $m_t^{\overline{\text{MS}}}$ with more precise evaluation of theo unc.

New results published by CMS and ATLAS in the past months

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

Pole mass

Needs for a m_t^{pole} or $m_t^{\overline{\text{MS}}}$ measurement:

- Observable(s) sensitive to m_t
- Calculations of the observables at least at NLO QCD
- Theo corr. under control (small unc.)

TOPQ-2017-09 $m_t^{\text{pole}} = 171.1 \pm 1.1 \text{ GeV}_1$

- $t\bar{t}$ + 1 jet topology, still 8 TeV!
- unfold to parton and particle levels *m_t* from parton level only

• one verv sensitive observable

largest unc: modelling and scale variations D. Melini

CMS-TOP-18-004 $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV}$

Top-quark mass extracted from 3-D $t\bar{t}$ differential cross section $\frac{d^3\sigma_{t\bar{t}}}{dm_{t\bar{t}} dy_{t\bar{t}} dN_{t}}$

- parton level comparsion to NLO QCD
- simultaneous fit of $m_t^{\text{pole}}, \alpha_s$, PDFs
- theo. unc. from scale varaitions

theoretical uncertainties evaluated with 100 MeV precision and total $\Delta m_t^{\text{pole}} \lesssim 1 \text{ GeV } !_{\mathcal{OQC}}$

Top quark measurements at the LHC

summary of all m_t^{pole} measurements

Global fits

EW fits prefer high mass $m_t^{
m pole} \sim 176.5 \pm 2 ~{
m GeV}$

NNLO QCD global fit gives $m_t^{
m pole} = 170.4 \pm 1.2 ~{
m GeV}$

Recent m_t^{MC} combinations of ATLAS and CMS m_t^{MC} (ATLAS) = 172.7 \pm 0.5 GeV m_t^{MC} (CMS) = 172.4 \pm 0.5 GeV

world avg. (from PDG 2018) $m_t^{\rm MC}({\rm World}) = 173.1 \pm 0.9 \, {\rm GeV}$ (no additional 0.5 GeV theo. unc. considered)

My naive combination of recent m_t^{pole} measurements $m_t^{\text{pole}} = 170.7 \pm 0.7 \text{ GeV}$

Top mass running and Yukawa coupling

Top-quark mass is a parameter of the Lagrangian:

- proportional to top-Yukawa coupling Y_t in the SM
- in MS-like schemes it has scale-dependent running

CMS-PAS-TOP-17-004

constrain Y_t from semilep. $d\sigma_{t\bar{t}}/dX$

- EW corrections to $t\bar{t}$ depend on Y_t
- Add LO EW to parton level NLO QCD (through reweighting)
- fold to detecor level and compare with data (prof likleilhood fit)

CMS-PAS-TOP-19-007 August '19

first measurement of running $m_t(\mu)$

- $e^{\pm}\mu^{\mp}$ +jets unfolded to parton level
- comparison to NLO QCD in MS renorm. scheme
- measure $\sigma_{t\bar{t}}$ in four $m_{t\bar{t}}$ bins and extract $m_{t}^{\overline{\text{MS}}}(\mu = m_{t\bar{t}})$ in each bin

Top quark measurements at the LHC

Summary and conclusions

Many top-quark related results from the LHC experiments in the last months. A personal selection of recent analyses was shown.

Onorable mentions:

- LHCb measured $t\bar{t}$ production too (JHEP 08 (2018) 174)
- CMS jet-mass of boosted hadronic tops (CMS-PAS-TOP-19-005, August '19)

Interesting since probes different fiducial volume (forward/high p_T top)

Recent results take advantage of successfull operation of the LHC and its experiments

- large dataset (up to $L = 139 \text{fb}^{-1}$, 4x increase in $t\bar{t}$ xsec from 8 to 13 TeV)
- improved knowledge of detectors behaviour (reduced syst)
- parton and particle levels give complementary information
- overall good data-theory agreement
- first time results with new approaches and methods
- there is still room for improvements!

Back-up

D. Melini Top quark measurements at the LHC

<ロト <回 > < 注 > < 注 > 、

ъ

ATLAS spin correlations

particle level better described by NNLO than parton level

D. Melini

Top quark measurements at the LHC

EFT interpreation of A_C

EFT expansion

$$\mathcal{L} = \mathcal{L}^{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i + \dots$$

can be rearranged so that only one operator, with Wilson coefficient C^- contributes to charge asymmetry.

Impact of considering first Λ^{-4} evaluated (ensures Λ expansion is under control)

ヘロア 人間 アメヨア 人口 ア

D. Melini

Top quark measurements at the LHC

ъ

Additional uncertainty on m_t^{MC} , from arXiv:1803.08153

additional 0.5 GeV unc. on m_t to cover the ambiguity in the kinematic top quark mass definition, the colour structure of the fragmentation process, and the perturbative relation between pole and MS mass

ヘロン ヘロン ヘビン ヘビン

3

23/27

ヘロト ヘワト ヘビト ヘビト

ъ

ヘロト ヘワト ヘビト ヘビト

ъ

Running mass and Yukawa

CMS running mass

 $m_t^{\overline{\text{MS}}}(\mu = m_t^{\overline{\text{MS}}})$ extracted in $m_{t\bar{t}}$ bins comparing unfolded data to MCFM (NLO accuracy)

Values are evolved to $m_t^{\overline{\text{MS}}}(\mu=m_{t\overline{t}})$ with RunDec

(since it is what is measured)

CMS Yukawa constraint

Top guark measurements at the LHC

CMS Jet mass from boosted hadronic top

ヘロト ヘアト ヘビト ヘビ