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I Soft-wall model for QCD

I AdS/CFT correspondence for out-of-equilibrium systems and QGP
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AdS/QCD correspondence

AdS/CFT correspondence [Maldacena, ’97]

Type IIB string theory
on AdS5 × S5

⇔
gs = g2

YM

R4 = 4πgsNα
′

N=4 SYM theory
on 4d Minkowski

SUGRA limit

gs → 0
R→∞ ⇔

large N + NP limit

N →∞
λ = g2

YMN →∞
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How can the theories be linked?

→ dictionary [Adv. Theor. Math. Phys. 2, 253 (1998), Phys. Lett. B 428, 105 (1998)]

ds2 =
R2

z2
(dt2 − dx̄2 − dz2)

z > 0

1. 5d fields ↔ 4d operators

d d+ 1

operator O(x) field φ(x, z)

∆ m2
d+1

p-form: m2
d+1R

2 = (∆− p)(∆ + p− d)

2. Boundary value of field is the source of
operator φ0(x)

3. 〈e
∫
ddxφ0(x)O(x)〉 = ZS [φ0(x)] ≈ eiSOS

〈O(x1)O(x2)〉 =
δ2SOS

δφ0(x1)δφ0(x2)

∣∣∣∣
φ0=0
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Finite temperature: metric with black hole

ds2 =
R2

z2

(
f(z)dt2 − dx̄2 − dz2

f(z)

)
0 < z < zh zh = BH horizon

f(z) = 1− z4

z4
h

with f(zh) = 0

T =
1

4π

∣∣∣∣ dfdz
∣∣∣∣
zh

=
1

πzh
z

higher T

zh0

Finite temperature and density: Reissner Nordström metric

f(z) = 1−
(

1

z4
h

+Q2z2
h

)
z4 +Q2z6 charged black hole

add A0(z) U(1) gauge field dual to µq̄γ0q

I Temperature: T =
1

4π

∣∣∣∣ dfdz
∣∣∣∣
zh

I Chemical potential: µ = A0(0)
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Application to QCD: break conformal invariance

Bottom-up approach: specify an extra-dimensional spacetime geometry and the
fields that propagate based on the properties of QCD to be incorporated

1. Hard-wall model [PRL 95, 261602 (2005)]: z 6 zm with zm ∼ O(Λ−1
QCD)

Observable Measured Hard wall

mπ 139.6 ± 0.0004 MeV 139.6 MeV ∗

mρ 775.8 ± 0.5 MeV 775.8 MeV ∗

ma1 1230 ± 40 MeV 1363 MeV
fπ 92.4 ± 0.35 MeV 92.4 MeV ∗

F
1/2
ρ 345 ± 8 MeV 329 MeV

F
1/2
a1

433 ± 13 MeV 486 MeV

gρππ 6.03 ± 0.07 MeV 4.48 MeV

parameters zm, mq, σ
fixed by *

2. Soft-wall model [PRD 74, 015005 (2006)]: “dilaton” in the metric or action

e−ϕ(z) ϕ(z) = c2z2

Also modified versions of soft wall, comprising a dynamical dilaton
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Main features of soft wall

I Regge trajectories

Example: action for scalar mesons

S = − 1

2k

∫
d5x
√
g e−ϕ(z) Tr

[
gMN∂MS

A∂NS
A +m2

5S
ASA

]
Vector mesons m2

n = c2(4n+ 4)

Scalar mesons m2
n = c2(4n+ 6)

Scalar glueballs m2
n = c2(4n+ 8)

Hybrid mesons m2
n = c2(4n+ 8)

Oddballs m2
n = c2(4n+ 16)
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mρ = 0.776 GeV → c = 0.388 GeV (orange points)

Fit from trajectory → c = 0.438 GeV (green points)
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I QQ̄ potential [PRD 74, 025023 (2006)]

dilaton in metric (string frame)

〈WC〉 = e−SNG V (r) = lim
T→∞

1

T
SNG

SNG = Nambu Goto action = area of ws spanned by the string attached
to C

SNG =
1

2πα′

∫
d2ξ

√
det [gMN ∂αXM ∂βXN ]

-r/2

r/2

T

0

z0

martedì 13 ottobre 2009

0 2 4 6 8 10
-3

-2

-1

0

1

2

r

V
Hr
L

LFC19 AdS/QCD bottom-up models and application to thermalisation 8



Outline
AdS/QCD

Plasma out of equilibrium
Conclusion

AdS/CFT
Finite temperature and density
AdS/QCD
Soft wall

I QQ̄ free energy F (r, T ) in plasma [PRD 83, 035015 (2011)]

work in Euclidean space: 〈P(~x1)P†(~x2)〉 = e−
1
T
F (r)

From AdS/QCD correspondence: F (r) = TSNG
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r
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zh
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z

zh
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x

z

µ̂=0.5

T̂=0.82T∗

T̂=1.23T∗

T̂=1.65T∗

possible string

configurations
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`
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`

(µ, T ) at which F (r) becomes flat at large r

hadron phase near the origin, deconfined phase beyond
the curve

With mass scale from ρ mass:
Tc ∼ 134 MeV, µc ∼ 248 MeV
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I Thermodynamic functions [Nucl.Phys. B 820, 148 (2009)]

Model with dynamical dilaton, 3 parameters (in dilaton potential) fixed
from β function and lattice data on latent heat and pressure at 2Tc
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Plasma out of equilibrium

Study relaxation towards the hydrodynamic regime of a boost-invariant non
Abelian plasma taken out of equilibrium.

Application: possibility to study the system produced in ultrarelativistic HIC, as
those taking place at RHIC and at LHC.

data from RHIC and LHC:
fast thermalisation O(1 fm/c)
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HIC produce a plasma-like system whose properties are similar to the ones
expected for the QGP

QGP features:

I it contains deconfined quarks and gluons

I near perfect fluid

I matter flows collectively like a fluid in local equilibrium

I it can be described by hydrodynamics with low viscosity

I strongly interacting

Result from the duality: η/s =
1

4π
[PRL 87, 081601 (2001)]
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Use AdS/CFT correspondence: introduce perturbation for short time intervals
in the boundary 4d metric and find the corresponding 5d metric at varying time.

Properties of 4d metric: boost-invariance along collision axis (x3), translation
invariance and O(2) rotation invariance in the orthogonal plane x⊥ = {x1, x2}

ds2 = −dτ2 + eγ(τ)dx2
⊥ + τ2e−2γ(τ)dy2

x0 = τ cosh y, x3 = τ sinh y

LFC19 AdS/QCD bottom-up models and application to thermalisation 13
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Solve Einstein equations to find 5d metric (Eddington Finkelstein coordinates)

ds2 = 2drdτ −Adτ2 + Σ2eBdx2
⊥ + Σ2e−2Bdy2

RMN −
1

2
gMN (R− 2Λ) = 0

Boundary condition: for r →∞ the 4d metric is reproduced, initial condition is
AdS metric.

For any distortion γ(τ), as soon as the perturbation starts, a horizon is formed
in the 5d space, meaning that a black hole has appeared.

To study thermalisation, use local and nonlocal probes:

I Local probes: boundary energy-momentum tensor.

I Nonlocal probes: equal time two-point correlation function, expectation
value of Wilson loop.

LFC19 AdS/QCD bottom-up models and application to thermalisation 14
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Local observables:

I Energy-momentum tensor is the operator dual to the metric tensor

Tµν =
N2
c

2π2
diag(−ε, p⊥, p⊥, p‖)

It can be computed from holographic renormalisation recipe [de Haro et al.

2000]

1. Start from metric in this form: ds2 =
gµν(x, z)dxµdxν + dz2

z2

2. expand metric near boundary z → 0: gµν(x, z) = ηµν + z4g
(4)
µν (x) + ...

3. compute EMT: Tµν(x) =
N2
c

2π2
g

(4)
µν (x)

I Effective temperature can be defined from the event horizon rh

Teff =
rh
π

LFC19 AdS/QCD bottom-up models and application to thermalisation 15
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Nonlocal observables:

I Equal-time two-point correlation function of operators with large ∆

〈O(t,x)O(t,x′)〉 ' e−∆L

L is the length of the extremal string
connecting the points on the boundary

I Expectation value of spatial Wilson loop (circular or rectangular)

〈WC〉 ∼ e−SNG

SNG is the Nambu Goto action, i.e.
the area of the surface spanned by
the extremal string attached to the
contour C
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Compare observables with viscous hydrodynamics

Local and nonlocal observables computed in 5dmodel dual to viscous hydrodynamics,
in which deviations from the ideal behaviour described by late time expansion
[PRD 76, 025027 (2007); JHEP 0804, 100 (2008)]

I Energy-momentum tensor

ε(τ) =
3π4Λ4

4(Λτ)4/3

[
1− 2c1

(Λτ)2/3
+

c2
(Λτ)4/3

+O
(
(Λτ)−2)]

p‖(τ) =
π4Λ4

4(Λτ)4/3

[
1− 6c1

(Λτ)2/3
+

5c2
(Λτ)4/3

+O
(
(Λτ)−2)]

p⊥(τ) =
π4Λ4

4(Λτ)4/3

[
1− c2

(Λτ)4/3
+O

(
(Λτ)−2)]

c1 =
1

3π
, c2 =

1 + 2 log 2

18π2

I Effective temperature:

Teff (τ) =
Λ

(Λτ)1/3

[
1− 1

6π(Λτ)2/3
+
−1 + log 2

36π2(Λτ)4/3
+O

(
(Λτ)−2) ]

I Nonlocal probes computed numerically
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Model with two pulses of different intensity, describing phenomena where a small
number of collisions takes place before the system starts evolving to thermal
equilibrium [JHEP 1507, 053 (2015)]
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τ

γ
(τ
)

boundary metric

ds2 = −dτ2 + eγ(τ)dx2
⊥+ τ2e−2γ(τ)dy2

Perturbation ends at τf = 3.25

Λ fitted from Teff → Λ = 1.73
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slight delay in the onset of thermalization,

depending on size [PRD 94, 025005 (2016)]
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Soon at the end of perturbation ε ∼ εhydro
Define equilibration time τ∗ from∣∣∣ ε(τ∗)− εH(τ∗)

ε(τ∗)

∣∣∣ = 0.05 → τ∗ = τf

After a short time interval pressure anisotropy similar to expected by viscous
hydrodynamics
Define isotropisation time τp from∣∣∣p||(τp)/p⊥(τp)− (p||(τp)/p⊥(τp))H

p||(τp)/p⊥(τp)

∣∣∣ = 0.05 → τp = 6

Fix energy scale such that Teff = 500 MeV at the end of perturbation
→ τp − τ∗ ∼ 1.03 fm/c

Nonlocal probes: thermalisation depends on the size of the probe in the boundary
theory (distance between the points at which the correlation function is evaluated,
the size of Wilson loops)
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Model with one pulse plus slow deformation, effects with different time scales
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τ

γ
(τ
)

boundary metric

ds2 = −dτ2 + eγ(τ)dx2
⊥+ τ2e−2γ(τ)dy2

Perturbation almost constant at τf = 5

In this case, Λ = 1.12
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Soon at the end of perturbation ε ∼ εhydro and Trh ∼ Tε
Define equilibration time τ∗ from∣∣∣ ε(τ∗)− εH(τ∗)

ε(τ∗)

∣∣∣ = 0.05 → τ∗ = τf

After a short time interval pressure anisotropy similar to expected by viscous
hydrodynamics
Define isotropisation time τp from∣∣∣p||(τp)/p⊥(τp)− (p||(τp)/p⊥(τp))H

p||(τp)/p⊥(τp)

∣∣∣ = 0.05 → τp = 6.74

Fix energy scale such that Teff = 500 MeV at the end of perturbation
→ τp − τ∗ ∼ 0.42 fm/c

Nonlocal probes: thermalisation depends on the size of the probe in the boundary
theory (distance between the points at which the correlation function is evaluated,
the size of Wilson loops)
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Conclusions

I Reproduce key features of QCD

I Able to reach finite density

I Able to study a process out of equilibrium, with main results:

I isotropisation and thermal equilibration have different time scales

I hydrodynamic behaviour reached after a time of a few fm/c in all the considered
models

I energetic (local) modes equilibrate first, as in strongly coupled theories

I Future: study hadronisation and confinement/deconfinement phase transition
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