

LFC19 Trento, 10/09

Elisabetta Spadaro Norella on behalf of LHCb collaboration

LHCb THCp

Hadron Spectroscopy and Exotic Searches at LHCb

Outline

- Introduction
- LHCb experiment
- Highlights on exotic searches at LHCb
- The 'pentaquark' case
 - New results on $\Lambda_b \rightarrow J/\psi pK$
 - study of $B^0_{(s)}$ →J/ψpp̄ decay

Quark model

SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqqq), etc., while mesons are made out of (q \bar{q}), (qq $\bar{q}\bar{q}$), etc. It is assuming that the lowes

- Multiquark hadrons are called exotics:
 - 'tetraquark' with 4 quarks
 - 'pentaquarks' with 5 quarks
- Many exotic searches in the <u>light-quarks sector</u> without success:
 - too many broad overlapping states
 - Relativistic treatment of *u*, *d*, *s* quark components

30 exotics states seen in heavy-quark sector

general, we would expect that baryons are built not only from the product of three aces, AAA, but also from \overline{AAAAA} , $\overline{AAAAAAA}$, etc., where \overline{A} denotes an anti-ace. Similarly, mesons could be formed from \overline{AA} , \overline{AAAA} etc. For the low mass mesons and baryons we will assume the simplest possibilities, \overline{AA} and AAA, that is, "deuces and treys".

MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

G.Zweig

CERN - Geneva

AN SU.,

Elisabetta Spadaro Norella

LFC19

LFC19

Heavy-quarkonia spectra

[S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod. Phys. 90 (2018) 015003]

 Charmonium (cc-bar) and bottonium (bb-bar) spectra can be described by a semi-relativistic phenomenological potential (effective Cornell pot.)

$$V(r) = -\frac{4}{3}\frac{\alpha_s(r)}{r} + \sigma r + \delta(1/r^2)$$

- short-distance color potential
- long distance confinement term
- spin-spin, spin-orbit corrections

Good place to search for exotics:

- Few missing states below open-charm (bottom) threshold
- narrow and non overlapping states

LFC1<u>9</u>

Heavy-quarkonia spectra

- Exotics states classify as
 - qqqq: X, Y (neutral), Z⁺ (charged, J^{PC}=1⁻)
 - \circ qqqqq: P⁺_c
- composed by cc-bar because they decay to charmonia
- not standard hadrons because do not overlap with predicted levels
- too much narrow to be above open charm threshold
 - example of X(3872): first exotic measured by Belle (2003)

\rightarrow more complex internal structures

LFC1<u>9</u>

Multiquark models

Not clear picture, a lot of different models:

- tight tetra or pentaquarks
- molecules of meson-meson, meson-baryon
- hybrid-meson
- ...
- or rescattering effects \rightarrow triangle diagrams

What is the role of LHCb in this framework?

The LHCb experiment

Forward single arm spectrometer $2 < \eta < 5$

JINST 3 (2008) S08005

LFC1<u>9</u>

LHCb: state of art at \sqrt{s}

- Run 1: ~ 3 fb⁻¹ of pp collisions at s = 7-8 TeV
- Run 2: ~ 6 fb⁻¹ of pp collisions at s = 13 TeV
- Goal for Run3 and Run4: 50 fb⁻¹

By design: CP violation and b, c-physics

- > $10^4 \times \text{larger } b \text{ production rate than the B factories } @ Y(4S)$
- Access to all b-hadrons: B^+ , B^0 , B_s , B_{c}^+ , b-baryons

 \Rightarrow Excellent results not only in CP violation and rare decays but also in LFU, **exotic and conventional spectroscopy**, EW and QCD physics

Highlights on exotic searches at LHCb

'Tetraquark' candidates:

- Confirmation of the $Z_c(4430)^+$
- Neutral exotics in $B^+ \rightarrow J/\psi \phi K^+$ decays

'Pentaquark' candidates:

- $\Lambda_b \rightarrow J/\psi pK^+$ decays: old and new results
- New searches with $B^0_{(s)} \rightarrow J/\psi p\bar{p}$ decay

$Z_{c}(4430)$ + state in $B^{0} \rightarrow \psi(2S)K^{+}\pi^{-}$ decays

- **Belle** first observation of $Z_c(ccud)$: $J^P = 1^+$ at 3.4 σ level [Phys. Rev. Lett. 100, 142001]
- **BABAR** didn't find a significant deviation from $K^+\pi^-$ reflections
- LHCb results consistent with Belle (13.9σ) with 3 fb⁻¹
 - Amplitude analysis: simultaneous fit in kinematic variables to extract parameters like quantum numbers [Phys. Rev. Lett. 112 (2014) 222002]
 - Model-independent analysis: without any modelling of the resonance lineshapes demonstrates that the peaks aren't K⁺ π^{-} reflections [Phys. Rev. D92 (2015) 112009]

Neutral exotics in $B_+ \rightarrow J/\psi \phi K_+$ decays

[Phys. Rev. Lett. 118 (2016) 022003], [Phys. Rev. D95 (2016) 012002]

- Analysis with 3 fb⁻¹
- Only $K^* \rightarrow \phi K^+$ cannot describe the J/ $\psi \phi$ invariant mass
- Confirmation of 2 states: X(4140), X(4274)
- 2 new observed states: X(4500), X(4700) with > 5σ

Interpretations:

- X(4140) with larger width and $\int_{V}^{OPC} = 1^{++}$.
- Molecular model with 0⁺⁺ or 2⁺⁺ D⁺_sD^{*-}_s states is ruled out [Phys. Lett. B 678, 186.]

Elisabetta Spadaro Norella

LFC19

Pentaquark candidates

LFC1<u>9</u>

$\Lambda_b \rightarrow J/\psi pK$ decays: Run 1 results

[PRL 115, 072001 (2015)]

LHCb observed pentaquark candidates in 2015 after 50 years of searches

2 states with 6D amplitude analysis:

- $P_c(4450) \rightarrow clearly visible$
- $P_{c}(4380) \rightarrow$ broader, in order to fit data

Consistent with pentaquarks with minimal quark content of uudcc'

LFC1<u>9</u>

Interpretations

Tightly-bound pentaquark

Maiani,Polosa, Riquer, PLB 749 (2015) 289 Lebed, PLB 749 (2015) 454 Anisovich,Matveev,Nyiri, Sarantsev PLB 749 (2015) 454 and others

Loosely-bound pentaquark

Wu,Molina,Oset,Zou, PRL105 (2010) 232001 Wang,Huang,Zhang,Zou, PRC84 (2011) 015203 Karliner,Rosner, PRL 115 (2015) 122001 and others

 $M_{P_c^+} = M_{\overline{D}^{*0}} + M_{\Sigma_c^+} - \sim \text{few MeV}$

- Low binding energy, narrow states
- Only S-wave, few states predicted
- Independently decaying components

Triangle diagram

Guo,Meissner,Wang,Yang, PRD 92 (2015) 071502 Liu, Wang, Zhao, PLB 757 (2016) 231 Mikhasenko, arXiv:1507.06552 Szczepaniak, PLB 757 (2016) 61 and others

 $P_c(4450)^+ = \chi_{c1}p$ threshold?

- Tightly bound states
- Large widths in principle
- Many states expected in isospin multiplets

 $M_{P_{c}^{+}} = M_{I/\psi} + M_{p} + \sim 400 \text{MeV}$

LFC19

$\Lambda_b \rightarrow J/\psi pK Run1 + Run2 analysis$

[PRL 122, 222001 (2019)]

9 times statistics of 2015 analysis (~9 fb⁻¹) \rightarrow 246k events

Fit to $m_{J/\psi p}$ invariant-mass distribution (full amplitude analysis in preparation)

Three narrow peaks clearly visible but a lot of background

- New $P_c(4312)^+ \to 7.3\sigma$
- Peak at 4450 MeV resolved in 2 narrower peaks \rightarrow 5.4 σ
- No sensitive to broad P_c(4380)⁺

State	$M \;[\mathrm{MeV}\;]$	$\Gamma \;[\mathrm{MeV}\;]$	(95% CL)	$\mathcal{R}~[\%]$
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-}~^{3.7}_{4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

LFC1<u>9</u>

Molecular system?

[PRL 122, 222001 (2019)]

Near threshold masses and narrow resonances favor the hypothesis of molecules of baryon-meson

Only **below** this molecule threshold

Two molecules: $\Sigma_c^+ D^0$, $\Sigma_c^+ D^{*0} \rightarrow 2$ states with different spin

BUT the 1D fit cannot exclude other models

- need an amplitude analysis for J^P quantum numbers
- find isospin partners

LFC19

Previous predictions

Several theoretical predictions for molecular models before 2015 are in agreement with LHCb results

- Predicted three states with energy very closed to what is observed
- Also for M~4314 MeV

PR C85 044002 (2012)

	-	PR C85 044002 (201			
		ΣD ⁰	Σ_ D*0		
$J^p = \frac{1}{2}^-$	Λ	$M-i\Gamma/2$	ΔE	$M - i\Gamma/2$	ΔE
	650	-	-	-	-
	800	-	-	4462.178 - 0.002i	0.002
	1200	4318.964 - 0.362i	1.826	4459.513 - 0.417i	2.667
	1500	4314.531 - 1.448i	6.259	4454.088 - 1.662i	8.092
	2000	4301.115 - 5.835i	19.68	4438.277 - 7.115i	23.90
$J^{p} = \frac{3}{2}^{-}$					
	650	-	-	-	-
	800	-	-	4462.178 - 0.002i	0.002
	1200	-	-	4459.507 - 0.420i	2.673
	1500	-	-	4454.057 - 1.681i	8.123
	2000	-	-	4438.039 - 7.268i	23.14

 Λ : cut off on exchanged meson mass $\Delta E = E_{\text{thr}} - M$: "binding energy"

LFC1<u>9</u>

Tight Pentaquark

Ali et al, PLB 793, 365 (2019); Ali et al, 1907.06507 predicts more states with $(ud)_{S=1}$

Tight-pentaquark models:

- very rich spectra
- Predict a lot of different J^{PC} for the observed P_c states

LFC1<u>9</u>

Triangle diagrams?

Can produce peaking structure at or above mass threshold, but not below

 $\Lambda_c^+(2595)\overline{D}^0$

- $P_c(4312)^+$ and $P_c(4440)^+$ too far from threshold
- $P_c(4457)^+$: at the threshold of $\Lambda_c^+ D^0$
- BUT to reproduce reasonable width for D_{s1}*(2860), the fit is not as good as with BW

New exotic searches

LFC1<u>9</u>

New exotic analysis: $B^{0}_{(s)} \rightarrow J/\psi p\bar{p} decay$

[Phys. Rev. Lett. 122, 191804]

- Candidate for pentaquark searches in $J/\psi p$ and $J/\psi p$ and for glueball in pp system
- Both processes are suppressed due to Cabibbo and OZI suppression

LFC19

New exotic analysis: B^o_(s)→J/ψpp̄ decay

[Phys. Rev. Lett. 122, 191804]

- Candidate for pentaquark searches in $J/\psi p$ and $J/\psi p$ and for glueball in pp system
- Both processes are suppressed due to Cabibbo and OZI suppression

• Limit on BR of B_s with no resonant structure:

 $\mathcal{B}(\bar{B}^0_s \to J/\psi p \bar{p}) \le 10^{-9}$

Eur. Phys. J. C75 (2015), no. 3 101 Resonant state $f_i(2220) \rightarrow p\bar{p}$, peak at 2.2 GeV 100 dB10 $dB(J/\psi)/dm_{B\overline{B}}(I/GeV)$ 80 dm $dB10^7$ 60 $dm_{\Lambda\overline{\Lambda}}$ 40 20 2.162.182.202.222.242.262.282.30 $m_{B\overline{B}'}(GeV)$

LFC1<u>9</u>

New exotic analysis: $B^{0}_{(s)} \rightarrow J/\psi p\bar{p} decay$

[Phys. Rev. Lett. 122, 191804]

- Candidate for pentaquark searches in $J/\psi p$ and $J/\psi p$ and for glueball in pp system
- Both processes are suppressed due to Cabibbo and OZI suppression

LFC1<u>9</u>

New exotic analysis: B^o_(s)→J/ψpp̄ decay

[Phys. Rev. Lett. 122, 191804]

First observation of $B^{0}_{(s)} \rightarrow J/\psi p \bar{p}$ decays with 2011-2016 data (5.2 fb⁻¹)

Mode	Yield	
$B^0 \to J/\psi p \bar{p}$	256 ± 22	
$B_s^0 \to J/\psi p \bar{p}$	609 ± 31	

 $\mathcal{B}(B^0 \to J/\psi \, p\bar{p}) = (4.51 \pm 0.40 \text{ (stat)} \pm 0.44 \text{ (syst)}) \times 10^{-7},$ $\mathcal{B}(B^0_s \to J/\psi \, p\bar{p}) = (3.58 \pm 0.19 \text{ (stat)} \pm 0.33 \text{ (syst)}) \times 10^{-6},$

• BR of B_s: 2 order of magnitude higher than expected

• Best single measurement of
$$B_s$$
 and B^0 masses
 $m(B_s) = 5366.85 \pm 0.19 \pm 0.13 \text{ MeV}$
 $m(B_d) = 5279.74 \pm 0.30 \pm 0.10 \text{ MeV}$

Amplitude analysis is ongoing with data till 2018 \rightarrow around twice the statistics

LFC19

Conclusions

- Exotics searches very active both in experimental and theoretical side → a lot of models: how can we
 experimentally distinguish between them?
- A lot of interesting results from LHCb, in addition to the ones already mentioned
 - Observation of the $\Lambda_{b}^{0} \rightarrow \chi_{c1}(3872) pK^{-}$ decay JHEP, arXiv:1907.00954 (2019)
 - Evidence of $\eta_c(1S)\pi^-$ resonance in $B^0 \rightarrow \eta_c(1S)K^+\pi^-$, EPJ. C78 1019(2018)
 - Observation of Exotic Contributions to $B^0 \rightarrow J/\psi K^+ \pi^-$, PRL 122 152002(2019)
 - Beautiful tetraquarks in the $Y(1S)\mu^+\mu^-$ invariant mass spectrum, JHEP 10 086(2018)
 - A search for weakly decaying b-flavored pentaquarks, PRD 97, 032010 (2017)
- Excellent long term prospects for exotic searches at LHCb

LFC1<u>9</u>

Long term prospects

Study X(3872) lineshape

Study charged exotic mesons Z(4430)⁺

Exotic charm states - doubly charm tetraquark

P_c observation channel

Search for hidden-charm pentaquark with strangeness -1st observation with ~300 events (PLB 772 265 (2017))

CERN-LHCC-2018-027 arXiv:1808.08865

Thank you for the attention!

BACKUP SLIDES

Triangle diagrams

- First fit with small widths ~ 1 MeV \rightarrow unrealistic value
- Second fit with more plausible widths not performing well

P_{c} (4450)⁺ decaying to χ_{c1} p Rev. Lett. 119, 062001 (2017)

An observation of $P_{c}(4450)^{+}$ decaying in the χ_{c1} p final state (and not $\chi_{c0,c2}$ p) would confirm exotic nature of the resonance

First observation of the decays $\Lambda_b^0 \to \chi_{c1} p K^-$ and $\Lambda_b^0 \to \chi_{c2} p K^-$

- irst observation of the decays $\Lambda_b^0 \to \chi_{c1} p K^-$ and $\Lambda_b^0 \to \chi_{c2} p K^-$ First investigation, with limited statistics (3 fb⁻¹, full LHCb Run 1)
- $N(\Lambda_b^0 \to \chi_{c1} p K^-) = 453 \pm 25$
- Not enough to analyse the $\chi_{c1}p$ mass spectrum, will be updated with Run 2 data
- First measurement of the branching fractions relative to $\Lambda_h^0 \to J/\psi p K^-$
- $\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)}{\mathcal{B}(\Lambda_c^0 \to J/\psi p K^-)} = 0.242 \pm 0.014 \pm 0.013 \pm 0.009$
- $\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)}{\mathcal{B}(\Lambda^0 \to J/\psi n K^-)} = 0.248 \pm 0.020 \pm 0.014 \pm 0.009$

