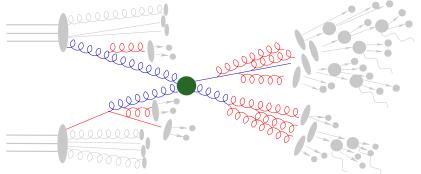
IMPACT OF THE RECOIL SCHEME ON THE ACCURACY OF ANGULAR-ORDERED PARTON SHOWERS

Silvia Ferrario Ravasio* IPPP Durham

ECT*, Trento


LFC19: Strong dynamics for physics within and beyond the Standard Model at LHC and Future Colliders

Based on Bewick, S.F.R., Richardson and Seymour [arxiv:1904.11866]

• Shower Monte Carlo (SMC) event generators can simulate fully realistic collider events, being able to reproduce much of the data from LHC and its predecessors at high accuracy.

• Shower Monte Carlo (SMC) event generators can simulate fully realistic collider events, being able to reproduce much of the data from LHC and its predecessors at high accuracy.

• The core of SMC is given by the Parton Shower.

- Shower Monte Carlo (SMC) event generators can simulate fully realistic collider events, being able to reproduce much of the data from LHC and its predecessors at high accuracy.
- The core of SMC is given by the Parton Shower.
- Higher luminosities and more precise measurements will demand for more and more accuracy.

- Shower Monte Carlo (SMC) event generators can simulate fully realistic collider events, being able to reproduce much of the data from LHC and its predecessors at high accuracy.
- The core of SMC is given by the Parton Shower.
- Higher luminosities and more precise measurements will demand for more and more accuracy.

Logharitmic accuracy of parton showers: a fixed-order study, by Dasgupta, Dreyer, Hamilton, Monni and Salam, introduced approach for assessing the logarithmic accuracy of PS algorithms based on the ability to reproduce:

- **(**) the singularity structure of multi-parton matrix elements
- **2** logarithmic resummation results

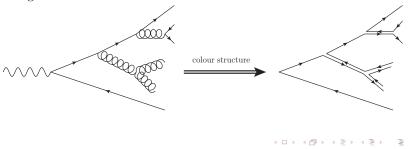
Logharitmic accuracy of parton showers: a fixed-order study (I)

• Case of study: double gluon emission, well separated in rapidity, in $e^+e^- \rightarrow q\bar{q}$:

$$dP_2 = \frac{C_F^2}{2!} \prod_{i=1}^2 \frac{2\alpha_s(p_{T,i})}{\pi} \frac{dp_{T,i}}{p_{T,i}} d\eta_i$$

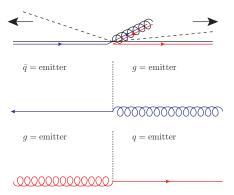
where
$$\eta_i = -\log\left(\tan\left(\frac{\theta}{2}\right)\right)$$

→ Ξ →


-

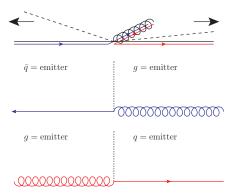
Logharitmic accuracy of parton showers: a fixed-order study (I)

• Case of study: double gluon emission, well separated in rapidity, in $e^+e^- \rightarrow q\bar{q}$:


$$dP_2 = \frac{C_F^2}{2!} \prod_{i=1}^2 \frac{2\alpha_s(p_{T,i})}{\pi} \frac{dp_{T,i}}{p_{T,i}} d\eta_i \qquad \text{where } \eta_i = -\log\left(\tan\left(\frac{\theta}{2}\right)\right)$$

• Dipole showers implemented in the Pythia8 and Sherpa generators were considered.

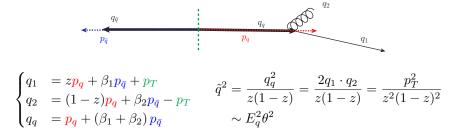
Logharitmic accuracy of parton showers: a fixed-order study (II)


Issue with dipole showers

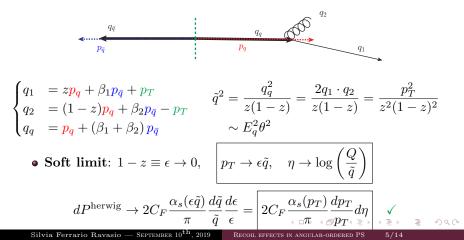
- Dipole frame: there are region where the second gluon looks closer to the first gluon
- When the gluon is identified as emitter:
 - $\ \, 0 \ \, \vec{p}_{T,1} \rightarrow \vec{p}_{T,1} \vec{p}_{T,2}$
 - Wrong colour C_A instead of $2C_F$ (subleading N_c).

Logharitmic accuracy of parton showers: a fixed-order study (II)

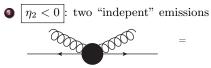
Issue with dipole showers

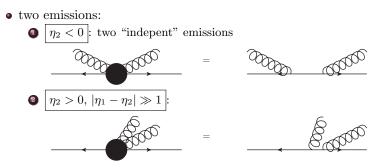

- Dipole frame: there are region where the second gluon looks closer to the first gluon
- When the gluon is identified as emitter:
 - $\ \, \vec{p}_{T,1} \to \vec{p}_{T,1} \vec{p}_{T,2}$
 - Wrong colour C_A instead of $2C_F$ (subleading N_c).

-

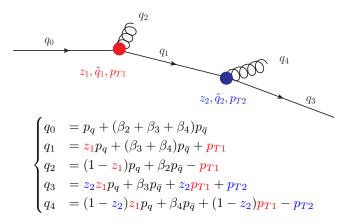

What happens for the **angular-ordered** shower implemented in Herwig7??

• The (anti-)quark is identified as **shower progenitor** and the anti-quark (quark) is its colour partner: each shower progenitor is showered independently in the frame where it is anti-collinear with the colour partner.


- The (anti-)quark is identified as **shower progenitor** and the anti-quark (quark) is its colour partner: each shower progenitor is showered independently in the frame where it is anti-collinear with the colour partner.
- Single emission from the quark:


- The (anti-)quark is identified as **shower progenitor** and the anti-quark (quark) is its colour partner: each shower progenitor is showered independently in the frame where it is anti-collinear with the colour partner.
- Single emission from the quark:

• two emissions:


-

 $|\eta_1 - \eta_2| \gg 1$: this suppress the gluon splitting; angular ordering $\mathbf{z}_1^2 \tilde{\mathbf{q}}_1^2 > \tilde{\mathbf{q}}_2^2$ imposes that the one with smallest rapidity comes first;

To do

We achieve the correct colour factor, we need to check the recoil

p_T -preserving scheme

The original (and simplest) choice of hep-ph/0310083 (Gieseke, Stephens and Webber) is to preserve the transverse momentum:

$$\tilde{q}_i^2 = \frac{p_{Ti}^2}{z_i^2 (1 - z_i)^2}$$

•
$$p_{Ti}^2 = z_i^2 (1 - z_i)^2 \tilde{q}_i^2 \to \epsilon_i^2 \tilde{q}_i^2$$

$$\eta_i \to \log\left(\frac{Q}{\tilde{q}_i}\right)$$

 \Rightarrow correct soft limit by construction.

p_T -preserving scheme

The original (and simplest) choice of hep-ph/0310083 (Gieseke, Stephens and Webber) is to preserve the transverse momentum:

$$\tilde{q}_i^2 = \frac{p_{Ti}^2}{z_i^2 (1 - z_i)^2}$$

•
$$p_{Ti}^2 = z_i^2 (1 - z_i)^2 \tilde{q}_i^2 \to \epsilon_i^2 \tilde{q}_i^2 \qquad \eta_i \to \log\left(1 - z_i^2 \tilde{q}_i^2 - z_i^2 \tilde{q}_i^2\right)$$

 \Rightarrow correct soft limit by construction.

•
$$q_0^2 = z_1(1-z_1)\tilde{q}_1^2 + \frac{z_2(1-z_2)\tilde{q}_2^2}{z_1}$$

 \Rightarrow too much hard radiation in the parton shower as there is no compensation between the transverse momentum of the branching and the virtualities of the partons produced in the branching

q^2 -preserving scheme

In Ref. 1708.01491 (Reichelt, Richardson and Siodmok) the **virtuality**-preserving scheme is introduced:

$$\tilde{q}_i^2 = \frac{q_i^2}{z_i(1-z_i)}$$

• The transverse momentum of the first emission is reduced

$$\boxed{p_{T1}^2} = \max\left[0, (1-z_1)\left[z_1^2(1-z_1)\tilde{q}_1^2 - z_2(1-z_2)\tilde{q}_2^2\right]\right] \\ \to \max\left[0, \epsilon_1\left[\epsilon_1\tilde{q}_1^2 - \epsilon_2\tilde{q}_2^2\right]\right]} \\ \boxed{\eta_1 \to \frac{1}{2}\log\left(\frac{Q^2}{\tilde{q}_1^2 - \frac{\epsilon_2}{\epsilon_1}\tilde{q}_2^2}\right)}$$

the p_T is set to 0 and the virtuality increases if the reconstruction is not possible; we need $\epsilon_2 \ll \epsilon_1$ to be sure the soft limit is ok;

3.1

q^2 -preserving scheme

In Ref. 1708.01491 (Reichelt, Richardson and Siodmok) the **virtuality**-preserving scheme is introduced:

$$\tilde{q}_i^2 = \frac{q_i^2}{z_i(1-z_i)}$$

• The transverse momentum of the first emission is reduced

$$\boxed{p_{T1}^2} = \max\left[0, (1-z_1)\left[z_1^2(1-z_1)\tilde{q}_1^2 - z_2(1-z_2)\tilde{q}_2^2\right]\right] \\ \to \max\left[0, \epsilon_1\left[\epsilon_1\tilde{q}_1^2 - \epsilon_2\tilde{q}_2^2\right]\right] \\ \eta_1 \to \frac{1}{2}\log\left(\frac{Q^2}{\tilde{q}_1^2 - \frac{\epsilon_2}{\epsilon_1}\tilde{q}_2^2}\right)$$

the p_T is set to 0 and the virtuality increases if the reconstruction is not possible; we need $\epsilon_2 \ll \epsilon_1$ to be sure the soft limit is ok;

• Better description of the tail of the distributions and in general better agreement with data

Dot-product preserving scheme

In 1904.11866 we suggested something with intermediate properties

$$\tilde{q}^2 = \frac{2q_1 \cdot q_2}{z_i(1-z_i)}$$

• The transverse momentum of the first emission is reduced by subsequent emissions

$$p_{T1}^2 = (1 - z_1)^2 \left[z_1^2 \tilde{q_1}^2 - \sum_{i=2}^n z_i (1 - z_i) \tilde{q}_i^2 \right]$$

but $\tilde{q}_{i+1} < z_i \tilde{q}_i$ implied $p_{T1} > 0$ even for infinite emissions; the **double-soft** limit is correct

$$p_{T1}^2 \to \epsilon_1^2 \left[\tilde{q}_1^2 - \epsilon_2 \tilde{q}_2^2 \right] \to \epsilon_1^2 \tilde{q}_1^2, \quad \eta_1 \to \log\left(\frac{Q}{\tilde{q}_1}\right)$$

Dot-product preserving scheme

In 1904.11866 we suggested something with intermediate properties

$$\tilde{q}^2 = \frac{2q_1 \cdot q_2}{z_i(1-z_i)}$$

• The transverse momentum of the first emission is reduced by subsequent emissions

$$p_{T1}^2 = (1 - z_1)^2 \left[z_1^2 \tilde{q_1}^2 - \sum_{i=2}^n z_i (1 - z_i) \tilde{q}_i^2 \right]$$

but $\tilde{q}_{i+1} < z_i \tilde{q}_i$ implied $p_{T1} > 0$ even for infinite emissions; the **double-soft** limit is correct

$$\boxed{p_{T1}^2 \to \epsilon_1^2 \left[\tilde{q}_1^2 - \epsilon_2 \tilde{q}_2^2 \right] \to \epsilon_1^2 \tilde{q}_1^2}, \quad \eta_1 \to \log\left(\frac{Q}{\tilde{q}_1}\right)$$

• However, the virtuality still increases ...

$$q_0^2 = z_1(1-z_1)\tilde{q}_1^2 + z_2(1-z_2)\tilde{q}_2^2$$

• In dipole-showers, the phase-space factorization is exact;

э

- In dipole-showers, the phase-space factorization is exact;
- In the Herwig7 angular-ordered parton shower, the phase-space factorization is correct only in the soft or collinear limit. The exact formula for the case under analysis

$$\frac{d\Phi_n(q,\bar{q},\ldots)}{d\Phi_2(q,\bar{q})} = \lambda \left(1,\frac{q_q^2}{s},\frac{q_{\bar{q}}^2}{s}\right) \prod_{i=1}^n \frac{d\tilde{q}_i^2}{(4\pi)^2} z_i(1-z_i) dz_i$$

where $\lambda(1, a, b) = \sqrt{1 - 2(a + b) + (a^2 - b^2)^2}$.

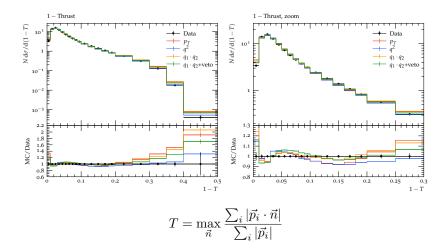
- In dipole-showers, the phase-space factorization is exact;
- In the Herwig7 angular-ordered parton shower, the phase-space factorization is correct only in the soft or collinear limit. The exact formula for the case under analysis

$$\frac{d\Phi_n(q,\bar{q},\ldots)}{d\Phi_2(q,\bar{q})} = \lambda \left(1,\frac{q_q^2}{s},\frac{q_{\bar{q}}^2}{s}\right) \prod_{i=1}^n \frac{d\tilde{q}_i^2}{(4\pi)^2} z_i(1-z_i) dz_i$$

where $\lambda(1, a, b) = \sqrt{1 - 2(a + b) + (a^2 - b^2)^2}$.

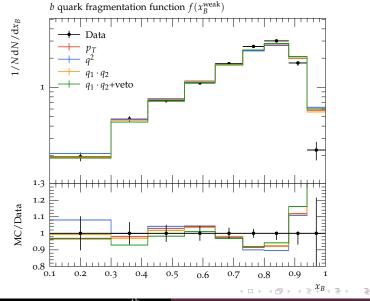
• $\lambda \approx 1$ if the emissions are all soft or collinear and is far from 1 in the hard region of the spectrum.

- In dipole-showers, the phase-space factorization is exact;
- In the Herwig7 angular-ordered parton shower, the phase-space factorization is correct only in the soft or collinear limit. The exact formula for the case under analysis


$$\frac{d\Phi_n(q,\bar{q},\ldots)}{d\Phi_2(q,\bar{q})} = \lambda \left(1,\frac{q_q^2}{s},\frac{q_{\bar{q}}^2}{s}\right) \prod_{i=1}^n \frac{d\tilde{q}_i^2}{(4\pi)^2} z_i(1-z_i) dz_i$$

where $\lambda(1, a, b) = \sqrt{1 - 2(a + b) + (a^2 - b^2)^2}$.

- $\lambda \approx 1$ if the emissions are all soft or collinear and is far from 1 in the hard region of the spectrum.
- We can accept the event with probability λ to improve the description of the tail of the distributions, (large virtualities) without spoiling the soft-collinear region (small virtualities).


Selected LEP results

Thrust, DELPHI 1996

Selected LEP results

Energy distribution of weakly-decaying b hadrons from DELPHI 2011

Summary and Outlook

- We need a recoil scheme for final-state radiation able to describe multiple soft-collinear emissions that does not overpopulate the hard region of the spectrum;
- The dot-preserving scheme together with the phase-space veto seems to achieve this task;

Summary and Outlook

- We need a recoil scheme for final-state radiation able to describe multiple soft-collinear emissions that does not overpopulate the hard region of the spectrum;
- The dot-preserving scheme together with the phase-space veto seems to achieve this task;
- The user needs to implement its own phase-space veto for more complicate processes (see e.g. FullShowerVeto documentation);

Summary and Outlook

- We need a recoil scheme for final-state radiation able to describe multiple soft-collinear emissions that does not overpopulate the hard region of the spectrum;
- The dot-preserving scheme together with the phase-space veto seems to achieve this task;
- The user needs to implement its own phase-space veto for more complicate processes (see e.g. FullShowerVeto documentation);
- Open issues:

- ordering condition in case of massive recoilers: p_T can become negative also in the dot-scheme;
- $g \rightarrow q\bar{q}$: argument of α_s and ordering condition for massive q;
- *b*-quark fragmentation (does it depend on the PS or on the hadronization model?);

BACKUP

э

• Prior the shower $p_i = \{\sqrt{m_i^2 + |\vec{q_i}|}, \vec{p_i}\}$ that satisfy

$$\sum_i \sqrt{m_i^2 + |\vec{p}_i|} = \sqrt{s}, \quad \sum_i \vec{p}_i = \vec{0}.$$

프 > 프

• Prior the shower $p_i = \{\sqrt{m_i^2 + |\vec{q_i}|}, \vec{p_i}\}$ that satisfy

$$\sum_i \sqrt{m_i^2 + |\vec{p}_i|} = \sqrt{s}, \quad \sum_i \vec{p}_i = \vec{0}.$$

• After the parton shower, the shower progenitors have acquired some virtuality and their three-momentum changed: $q_i = \{\sqrt{q_i^2 + |\vec{q_i}|^2}, \vec{q_i}\}, \text{ where } \vec{q_i} \parallel \vec{p_i}$

• Prior the shower $p_i = \{\sqrt{m_i^2 + |\vec{q_i}|}, \vec{p_i}\}$ that satisfy

$$\sum_i \sqrt{m_i^2 + |\vec{p}_i|} = \sqrt{s}, \quad \sum_i \vec{p}_i = \vec{0}.$$

- After the parton shower, the shower progenitors have acquired some virtuality and their three-momentum changed: $q_i = \{\sqrt{q_i^2 + |\vec{q_i}|^2}, \vec{q_i}\}, \text{ where } \vec{q_i} \parallel \vec{p_i}$
- To achieve three-momentum conservation we can define for each particle a boost so that

$$q_i \xrightarrow{\beta_i} q'_i = \{\sqrt{q_i^2 + \lambda^2 |\vec{p_i}|^2}, \lambda \vec{p_i}\} \quad \Rightarrow \sum_i \vec{q'_i} = \lambda \sum_i \vec{p_i} = \vec{0}$$

and the daughters are boosted along the direction of the progenitor

Image: A test is a second s

• Prior the shower $p_i = \{\sqrt{m_i^2 + |\vec{q_i}|}, \vec{p_i}\}$ that satisfy

$$\sum_i \sqrt{m_i^2 + |\vec{p_i}|} = \sqrt{s}, \quad \sum_i \vec{p_i} = \vec{0}.$$

- After the parton shower, the shower progenitors have acquired some virtuality and their three-momentum changed: $q_i = \{\sqrt{q_i^2 + |\vec{q_i}|^2}, \vec{q_i}\}, \text{ where } \vec{q_i} \parallel \vec{p_i}$
- To achieve three-momentum conservation we can define for each particle a boost so that

$$q_i \xrightarrow{\beta_i} q'_i = \{\sqrt{q_i^2 + \lambda^2 |\vec{p_i}|^2}, \lambda \vec{p_i}\} \quad \Rightarrow \sum_i \vec{q'_i} = \lambda \sum_i \vec{p_i} = \vec{0}$$

and the daughters are boosted along the direction of the progenitor

• λ is found by solving

$$\sum_{i} \sqrt{q_i^2 + \lambda^2 |\vec{p_i}|^2} = \sqrt{s}.$$

Image: A test is a second s

• Prior the shower $p_i = \{\sqrt{m_i^2 + |\vec{q_i}|}, \vec{p_i}\}$ that satisfy

$$\sum_i \sqrt{m_i^2 + |\vec{p}_i|} = \sqrt{s}, \quad \sum_i \vec{p}_i = \vec{0}.$$

- After the parton shower, the shower progenitors have acquired some virtuality and their three-momentum changed: $q_i = \{\sqrt{q_i^2 + |\vec{q_i}|^2}, \vec{q_i}\}, \text{ where } \vec{q_i} \parallel \vec{p_i}$
- To achieve three-momentum conservation we can define for each particle a boost so that

$$q_i \xrightarrow{\beta_i} q'_i = \{\sqrt{q_i^2 + \lambda^2 |\vec{p_i}|^2}, \lambda \vec{p_i}\} \quad \Rightarrow \sum_i \vec{q'_i} = \lambda \sum_i \vec{p_i} = \vec{0}$$

and the daughters are boosted along the direction of the progenitor

• λ is found by solving

$$\sum_{i} \sqrt{q_i^2 + \lambda^2 |\vec{p}_i|^2} = \sqrt{s}.$$

If only soft-emissions take place $q_i^2 = m_i^2 + O(\epsilon)$, thus this boost gives subleading contributions

Double soft-emission kinematics

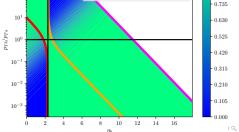
Summary of Lund variables:

Preserved quantity	p_T^2	q^2	$q_1 \cdot q_2$		
p_{T1}^2	$\epsilon_1^2 \tilde{q}_1^2$	$\epsilon_1 \left[\epsilon_1 \tilde{q}_1^2 - \epsilon_2 \tilde{q}_2^2 \right]$	$\epsilon_1^2 \tilde{q}_1^2$		
η_1	$\frac{1}{2}\log\left(\frac{Q^2}{\tilde{q}_1^2}\right)$	$\frac{1}{2} \log \left(\frac{Q^2}{\tilde{q}_1^2 - \frac{\epsilon_2}{\epsilon_1} \tilde{q}_2^2} \right)$	$\frac{1}{2}\log\left(\frac{Q^2}{\tilde{q}_1^2}\right)$		
p_{T2}^2	$\epsilon_2^2 \widetilde{q}_2^2$				
η_2	$rac{1}{2}\log\left(rac{Q^2}{ ilde q_2^2} ight)$				

- The kinematics of the second emission is always correct;
- The kinematic of the first emission is correct in the p_T and dot-product preserving schemes.

Double soft-emission kinematics

Emission of two-soft gluons with Lund variables k_{Ta}^2 , η_a and k_{Tb}^2 , η_b .


$$dP_{2}^{\text{exact}} = \frac{C_{F}^{2}}{2!} \frac{\alpha_{s}^{2}}{\pi^{2}} \left[\frac{dk_{Ta}^{2}}{k_{Ta}^{2}} d\eta_{a} \right] \left[\frac{dk_{Tb}^{2}}{k_{Tb}^{2}} d\eta_{b} \right]$$
$$\frac{dP_{2}^{\text{herwig}}}{dk_{Ta}^{2} d\eta_{a} dk_{Tb}^{2} d\eta_{b}} = \int \frac{C_{F}^{2}}{2!} \frac{\alpha_{s}^{2}}{\pi^{2}} \prod_{i=1}^{2} \left[\frac{d\tilde{q}_{i}^{2}}{\tilde{q}_{i}^{2}} \frac{d\epsilon_{i}}{\epsilon_{i}} \right] \Theta\left(\tilde{q}_{1}^{2} - \tilde{q}_{2}^{2}\right)$$
$$\times \left[\delta(\eta_{1} - \eta_{a})\delta(k_{T1}^{2} - k_{Ta}^{2})\delta(\eta_{2} - \eta_{b})\delta(k_{T2}^{2} - k_{Tb}^{2}) + a \leftrightarrow b \right]$$

- The p_T^2 and $q_1 \cdot q_2$ preserving schemes yield the correct double soft limit;
- For the q^2 scheme:

$$R = \frac{1}{1 + \frac{k_{Tb}}{k_{Ta}}e^{\eta_a - \eta_b}} \\ \times \Theta\left(\frac{k_{Tb}}{k_{Ta}} - 2\sinh(\eta_a - \eta_b)\right) \\ + a \leftrightarrow b$$

ratio of a-shower double-soft ME to correct result, a² scheme

18/14

Tuning

Each modification of the PS requires a new tuning of the hadronization parameters: interplay perturbative & non perturbative

For an and the former of the f						
Preserved	p_T	q^2	$q_i \cdot q_j$	$q_i \cdot q_j + \text{veto}$		
Light-quark hadronization and shower parameters						
AlphaMZ $(\alpha_s^{\text{CMW}}(M_Z))$	0.1074	0.1244	0.1136	0.1186		
pTmin	0.900	1.136	0.924	0.958		
ClMaxLight	4.204	3.141	3.653	3.649		
ClPowLight	3.000	1.353	2.000	2.780		
PSplitLight	0.914	0.831	0.935	0.899		
PwtSquark	0.647	0.737	0.650	0.700		
PwtDIquark	0.236	0.383	0.306	0.298		
Bottom hadronization parameters						
ClMaxBottom	5.757	2.900	6.000	3.757		
ClPowBottom	0.672	0.518	0.680	0.547		
PSplitBottom	0.557	0.365	0.550	0.625		
ClSmrBottom	0.117	0.070	0.105	0.078		
SingleHadronLimitBottom	0.000	0.000	0.000	0.000		
Charm hadronization parameters						
ClMaxCharm	4.204	3.564	3.796	3.950		
ClPowCharm	3.000	2.089	2.235	2.559		
PSplitCharm	1.060	0.928	0.990	0.994		
ClSmrCharm	0.098	0.141	0.139	0.163		
SingleHadronLimitCharm	0.000	0.011	0.000	0.000		

Silvia Ferrario Ravasio — September 10th, 2019 Recoil effects in Angular-ordered PS

19/14

w) q

э