Feynman Integrals \& Intersection Theory

Pierpaolo Mastrolia

LFC 19
ECT*, Villa Tambosi, Trento 10.9.2019

Based on:

- PM, Mizera,

Feynman Integrals and Intersection Theory
JHEP 1902 (2019) 139 [arXiv: 1810.03818]

- Frellesvig, Gasparotto, Laporta, Mandal, PM, Mattiazzi, Mizera,

Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers
JHEP 1095 (2019) 153 [arXiv: 1901.1151]

- Frellesvig, Gasparotto, Mandal, PM, Mattiazzi, Mizera,

Vector Space of Feynman Integrals \& Multivariate Intersection Numbers arXiv: 1907.02000

Outline

©Feynman Integrals in Dim Reg
\&Integration-by-parts Identities

Basics of Intersection Theory
©Intersection Numbers for 1 -forms
Integral Relations by Intersection Numbers
Special Functions
\&Feynman Integrals
Intersection Numbers for n -forms
©Conclusions

Scattering Amplitudes

- Very healthy status
©Progress @ High Loops
©Progress @ High Legs
\& New Ideas in the multi-loop integral evaluation
©Differential Equations and Path ordered exponential
$\not{ }^{(I t e r a t e d}$ integrals and special/pure Functions
8 New Ideas exploiting the (hidden symmetries) of the integrands
UUnitarity and on-shell methods beyond one-loop
\nsubseteq Double-copy relations
©New Ideas and tool to boost the Automated Algorithms
Exploiting Finite Field Arithmetic
Advanced linear system resolution algorithm

Scattering Amplitudes

- Very healthy status

Progress @ High Loops
Progress @ High Legs

- a couple of interesting directions I have been involved in:

MÓNe
IThe proposal of a new CERN experiments for the muon (g-2)
\& NNLO QED corrections required
Φ Calculation relevant for di-muon in e+e- collision and t-tbar production
I Effective Field Theory approach to General Relativity
\&New applications of Feynman Calculus to Gravitational Wave Physics
for the investigation of physical problems that admit a field-theoretic perturbative approach: computation of multi-loop Feynman integrals cannot be considered as optional.

Feynman Integrals

- Momentum-space Representation

L loops, $E+1$ external momenta,
$N=L E+\frac{1}{2} L(L+1)$ (generalised) denominators
total number of reducible and irreducible scalar products

N -denominator

generic Integral

- Integration-by-parts Identites

$$
\int \prod_{i=1}^{L} \frac{d^{d} k_{i}}{\pi^{d / 2}} \frac{\partial}{\partial k_{j}^{\mu}}\left(v_{\mu} \prod_{n=1}^{N} \frac{1}{D_{n}^{a_{n}}}\right)=0
$$

$$
v_{\mu}=v_{\mu}\left(p_{i}, k_{j}\right) \quad \text { arbitrary }
$$

The role of the Integration Domain is hidden

Feynman Integrals :: Baikov Representation

- Denominators as integration variables

$$
\left\{D_{1}, \ldots, D_{N}\right\} \rightarrow\left\{z_{1}, \ldots, z_{N}\right\} \equiv \mathbf{z}
$$

E $=I_{a_{1}, \ldots, a_{N}} \equiv K\left(d, s_{i j}\right) \int_{\mathcal{C}} d \mathbf{z} B(\mathbf{z})^{\gamma} \prod_{i=1}^{N} \frac{1}{z_{i}^{a_{n}}}$

$$
\begin{gathered}
\text { Volume } \\
B(\mathbf{z})=\operatorname{det}\left(q_{i} \cdot q_{j}\right) \\
\gamma \equiv(d-E-L-1) / 2 \\
q=\left\{p_{i}, k_{j}\right\} \quad s_{i j}=p_{i} \cdot p_{j} \\
B(\partial \mathcal{C}=0) \\
\quad \text { Fundamental property }
\end{gathered}
$$

N -denominator

generic Integral

- 1-loop Nonagon

$$
N=L E+\frac{1}{2} L(L+1)
$$

$$
\int_{\mathcal{C}} d z_{1} \wedge \cdots \wedge d z_{9} \frac{B(\mathbf{z})^{\gamma}}{z_{1}^{n_{1}} \cdots z_{9}^{n_{9}}}
$$

$B(\mathbf{z}), \mathcal{C}, \gamma$ depend on the graph.

- 2-loop Box

Feynman Integrals :: Baikov Representation

- Denominators as integration variables

Baikov

$$
\left\{D_{1}, \ldots, D_{N}\right\} \rightarrow\left\{z_{1}, \ldots, z_{N}\right\} \equiv \mathbf{z}
$$

$=E=I_{a_{1}, \ldots, a_{N}} \equiv K\left(d, s_{i j}\right) \int_{\mathcal{C}} d \mathbf{z} B(\mathbf{z})^{\gamma} \prod_{i=1}^{N} \frac{1}{z_{i}^{a_{n}}}$

$$
\begin{gathered}
\text { Volume } \\
B(\mathbf{z})=\operatorname{det}\left(q_{i} \cdot q_{j}\right) \\
\gamma \equiv(d-E-L-1) / 2 \\
q=\left\{p_{i}, k_{j}\right\} \quad s_{i j}=p_{i} \cdot p_{j} \\
B(\partial \mathcal{C}=0) \\
\text { Fundamental property }
\end{gathered}
$$

N -denominator

generic Integral

- Integration-by-parts Identites Zhang, Larsen; Lee;

$$
\begin{aligned}
& \int_{\mathcal{C}} d\left(h(\mathbf{z}) B(\mathbf{z})^{\gamma} \prod_{i=1}^{N} \frac{1}{z_{i}^{a_{n}}}\right)=0 \quad h(\mathbf{z}) \text { arbitrary rational function } \\
& B(\partial \mathcal{C})=0 \\
& \text { Fundamental property }
\end{aligned}
$$

Integration-by-parts identities

- Relations among Integrals in dim. reg.

Integration-by-parts identities

- Relations among Integrals in dim. reg.

Integration-by-parts identities :: byproducts

- 1st order Differential Equations for MIs $\begin{aligned} & \text { Barucchi, Ponzano; Kotikov; Remiddi, \& Gerhmann; } \\ & \ldots\end{aligned}$

Argeri, diVita, Mirabella, Schubert, Tancredi, Schlenck \& P.M.; ...

- Dimension-Shift relations
+ related work by Gluza, Kajda, Kosower;
Remiddi, Tancredi

Basics of Intersection Theory

Consider an integral I over the variables $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$

$$
I=\int_{\mathcal{C}} u(\mathbf{z}) \varphi(\mathbf{z})
$$

$u(\mathbf{z})$ is a multi-valued function

$$
u(\partial \mathcal{C})=0
$$

$$
\varphi(\mathbf{z})=\hat{\varphi}(\mathbf{z}) d^{m} \mathbf{z} \text { is a differential } m \text {-form. }
$$

Basics of Intersection Theory

Consider an integral I over the variables $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$

$$
I=\underbrace{\int_{\mathcal{C}} u(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cycle }
\end{array}} \underbrace{\varphi(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cocycle }
\end{array}}
$$

$u(\mathbf{z})$ is a multi-valued function

$$
u(\partial \mathcal{C})=0
$$

$\varphi(\mathbf{z})=\hat{\varphi}(\mathbf{z}) d^{m} \mathbf{z}$ is a differential m-form.

- Equivalence classes, Integration-by-parts Identities, and Covariant Derivative there could exist many forms φ that integrate to give the result I.
($m-1$)-differential form ξ

$$
\begin{gathered}
0=\int_{\mathcal{C}} d(u \xi)=\int_{\mathcal{C}}(d u \wedge \xi+u d \xi)=\int_{\mathcal{C}} u\left(\frac{d u}{u} \wedge+d\right) \xi \equiv \int_{\mathcal{C}} u \nabla_{\omega} \xi \\
\omega \equiv d \log u \quad \nabla_{\omega} \equiv d+\omega \wedge \\
\omega\langle\varphi|: \varphi \sim \varphi+\nabla_{\omega} \xi . \quad \int_{\mathcal{C}} u \varphi=\int_{\mathcal{C}} u\left(\varphi+\nabla_{\omega} \xi\right)
\end{gathered}
$$

- Equivalence classes, Integration-by-parts Identities, and Covariant Derivative there could exist many forms φ that integrate to give the result I.
($m-1$)-differential form ξ

$$
\begin{gathered}
0=\int_{\mathcal{C}} d(u \xi)=\int_{\mathcal{C}}(d u \wedge \xi+u d \xi)=\int_{\mathcal{C}} u\left(\frac{d u}{u} \wedge+d\right) \xi \equiv \int_{\mathcal{C}} u \nabla_{\omega} \xi \\
\omega \equiv d \log u \quad \nabla_{\omega} \equiv d+\omega \wedge \\
\left\langle\langle\varphi|: \varphi \sim \varphi+\nabla_{\omega} \xi . \quad \int_{\mathcal{C}} u \varphi=\int_{\mathcal{C}} u\left(\varphi+\nabla_{\omega} \xi\right)\right.
\end{gathered}
$$

- Space of m-forms :: Twisted cohomology Group

$$
H_{\omega}^{m} \equiv\left\{m \text {-forms } \varphi_{\mathrm{m}} \mid \nabla_{\omega} \varphi_{\mathrm{m}}=0\right\} /\left\{\nabla_{\omega} \varphi_{\mathrm{m}-1}\right\},
$$

- Dual space

$$
H_{-\omega}^{m}, \quad \nabla_{-\omega}=d-\omega \wedge
$$

Pairings of Cycles and Co-cycles

- Basic building blocks

$$
\left.\left\langle\varphi_{L}\right| \equiv \varphi_{L}(\mathbf{z}) \in H_{\omega}^{m} \quad\left|\varphi_{R}\right\rangle \equiv \varphi_{R}(\mathbf{z}) \in H_{-\omega}^{m} \quad \mid \mathcal{C}_{L}\right] \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z}) \quad\left[\mathcal{C}_{R} \mid \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z})^{-1}\right.
$$

Pairings of Cycles and Co-cycles

- Basic building blocks
$\left.\left\langle\varphi_{L}\right| \equiv \varphi_{L}(\mathbf{z}) \in H_{\omega}^{m} \quad\left|\varphi_{R}\right\rangle \equiv \varphi_{R}(\mathbf{z}) \in H_{-\omega}^{m} \quad \mid \mathcal{C}_{L}\right] \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z}) \quad\left[\mathcal{C}_{R} \mid \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z})^{-1}\right.$
- Integrals :: pairings of cycles and co-cycles

$$
\begin{aligned}
& \left.\left\langle\varphi_{L}\right| \mathcal{C}_{L}\right] \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z}) \varphi_{L}(\mathbf{z})=I \\
& {\left[\mathcal{C}_{R}\left|\varphi_{R}\right\rangle \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z})^{-1} \varphi_{R}(\mathbf{z})=\tilde{I}\right.}
\end{aligned}
$$

- Dual Integrals :: pairings of cycles and co-cycles
- Intersection numbers for cycles :: pairings of cycles $\quad\left[\mathcal{C}_{\mathrm{L}} \mid \mathcal{C}_{\mathrm{R}}\right] \equiv$ intersection number
- Intersection numbers for co-cycles :: pairings of co-cycles $\left\langle\varphi_{\mathrm{L}} \mid \varphi_{\mathrm{R}}\right\rangle \equiv \int_{\mathcal{C}} \iota\left(\varphi_{\mathrm{L}}\right) \wedge \varphi_{\mathrm{R}}$

Riemann Twisted Period Relations

$$
\left.\left\langle\varphi_{\mathrm{L}} \mid \varphi_{\mathrm{R}}\right\rangle=\left\langle\varphi_{\mathrm{L}}\right| \mathcal{C}_{\mathrm{L}}\right]\left[\mathcal{C}_{\mathrm{L}} \mid \mathcal{C}_{\mathrm{R}}\right]^{-1}\left[\mathcal{C}_{\mathrm{R}}\left|\varphi_{\mathrm{R}}\right\rangle\right.
$$

Pairings of Cycles and Co-cycles

- Basic building blocks
$\left\langle\varphi_{L}\right| \equiv \varphi_{L}(\mathbf{z}) \in H_{\omega}^{m}$
$\left|\varphi_{R}\right\rangle \equiv \varphi_{R}(\mathbf{z}) \in H_{-\omega}^{m}$
$\left.\mid \mathcal{C}_{L}\right] \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z})$
$\left[\mathcal{C}_{R} \mid \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z})^{-1}\right.$
- Integrals :: pairings of cycles and co-cycles

$$
\left.\left\langle\varphi_{L}\right| \mathcal{C}_{L}\right] \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z}) \varphi_{L}(\mathbf{z})=I
$$

- Dual Integrals :: pairings of cycles and co-cycles $\quad\left[\mathcal{C}_{R}\left|\varphi_{R}\right\rangle \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z})^{-1} \varphi_{R}(\mathbf{z})=\tilde{I}\right.$
- Intersection numbers for cycles :: pairings of cycles $\left[\mathcal{C}_{\mathrm{L}} \mid \mathcal{C}_{\mathrm{R}}\right] \equiv$ intersection number
- Intersection numbers for co-cycles :: pairings of co-cycles $\left\langle\varphi_{\mathrm{L}} \mid \varphi_{\mathrm{R}}\right\rangle \equiv \int_{\mathcal{C}} \iota\left(\varphi_{\mathrm{L}}\right) \wedge \varphi_{\mathrm{R}}$
- Riemann Twisted Period Relations

$$
\left.\left\langle\varphi_{\mathrm{L}} \mid \varphi_{\mathrm{R}}\right\rangle=\left\langle\varphi_{\mathrm{L}}\right| \mathcal{C}_{\mathrm{L}}\right]\left[\mathcal{C}_{\mathrm{L}} \mid \mathcal{C}_{\mathrm{R}}\right]^{-1}\left[\mathcal{C}_{\mathrm{R}}\left|\varphi_{\mathrm{R}}\right\rangle\right.
$$

Integral Decomposition from Differential Forms

$$
I=\langle\varphi| \mathcal{C}]
$$

Consider a set of ν MIs,

$$
\begin{gathered}
\left.J_{i}=\int_{\mathcal{C}} u(\mathbf{z}) e_{i}(\mathbf{z})=\left\langle e_{i}\right| \mathcal{C}\right], \quad i=1, \ldots, \nu \\
I=\sum_{i=1}^{\nu} c_{i} J_{i} \\
\langle\varphi|=\sum_{i=1}^{\nu} c_{i}\left\langle e_{i}\right|
\end{gathered}
$$

Vector spaces of differential forms

- Space Dimensions
$\nu \equiv \operatorname{dim} H_{ \pm \omega}^{n}$
$\nu=$ number of independent forms (twisted cocycles)
$=\{$ the number of solutions of $\omega=0$.
- Basis :: bra

$$
\begin{aligned}
& \left\langle e_{i}\right| \quad i=1,2, \ldots, \nu \\
& \left|h_{j}\right\rangle \quad j=1,2, \ldots, \nu
\end{aligned}
$$

- dual-Basis :: ket
- Metric Matrix

$$
\mathbf{C}_{i j}=\left\langle e_{i} \mid h_{j}\right\rangle
$$

intersection number

Master Decomposition Formula

- Decomposition of differential forms
projecting $\langle\varphi|$ onto a basis of $\left\langle e_{i}\right|$

$$
\langle\varphi|=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i}\right|
$$

- Proof
for an arbitrary $|\psi\rangle$
$\mathbf{M}=\left(\begin{array}{ccccc}\langle\varphi \mid \psi\rangle & \left\langle\varphi \mid h_{1}\right\rangle & \left\langle\varphi \mid h_{2}\right\rangle & \ldots & \left\langle\varphi \mid h_{\nu}\right\rangle \\ \left\langle e_{1} \mid \psi\right\rangle & \left\langle e_{1} \mid h_{1}\right\rangle & \left\langle e_{1} \mid h_{2}\right\rangle & \ldots & \left\langle e_{1} \mid h_{\nu}\right\rangle \\ \left\langle e_{2} \mid \psi\right\rangle & \left\langle e_{2} \mid h_{1}\right\rangle & \left\langle e_{2} \mid h_{2}\right\rangle & \ldots & \left\langle e_{2} \mid h_{\nu}\right\rangle \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \left\langle e_{\nu} \mid \psi\right\rangle & \left\langle e_{\nu} \mid h_{1}\right\rangle & \left\langle e_{\nu} \mid h_{2}\right\rangle & \ldots & \left\langle e_{\nu} \mid h_{\nu}\right\rangle\end{array}\right) \equiv\left(\begin{array}{ccc}\langle\varphi \mid \psi\rangle & \mathbf{A}^{\top} \\ \mathbf{B} & \mathbf{C}\end{array}\right)$

$$
\begin{aligned}
& (\nu+1) \times(\nu+1) \text { matrix } \mathbf{M} \\
& \operatorname{det} \mathbf{M}=\operatorname{det} \mathbf{C}\left(\langle\varphi \mid \psi\rangle-\mathbf{A}^{\top} \mathbf{C}^{-1} \mathbf{B}\right)=0 \\
& \langle\varphi \mid \psi\rangle=\mathbf{A}^{\top} \mathbf{C}^{-1} \mathbf{B}=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i} \mid \psi\right\rangle
\end{aligned}
$$

Intersection Numbers :: 1-forms

- 1-form $\langle\varphi| \equiv \hat{\varphi}(z) d z \quad \hat{\varphi}(z)$ rational function
- Zeroes and Poles of $\omega \quad \omega \equiv d \log u$
$\nu=\{$ the number of solutions of $\omega=0\}$
$\mathcal{P} \equiv\{z \mid z$ is a pole of $\omega\}$
\mathcal{P} can also include the pole at infinity if $\operatorname{Res}_{z=\infty}(\omega) \neq 0$.
- Intersection Numbers (for cocycles)

Matsumoto $(1996,1998)$
1-forms φ_{L} and φ_{R}

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle_{\omega}=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \varphi_{R}\right)
$$

ψ_{p} is a function (0 -form), solution to the differential equation $\nabla_{\omega} \psi=\varphi_{L}$, around p

Intersection Numbers :: 1-forms

- Solving a 1st ODE

$$
\nabla_{\omega} \psi=\varphi_{L} \quad \frac{d}{d z} \psi+\omega \psi=\varphi_{L}
$$

- Way-1 :: Laurent expansions
$\tau \equiv z-p$
known: $\varphi_{L, p}$ and ω_{p}
ansatz: $\quad \psi_{p}=\sum_{j=\min }^{\max } \psi_{p}^{(j)} \tau^{j}+\mathcal{O}\left(\tau^{\max +1}\right)$
- Fixing the coefficients ==>
==> solving a simple, triangular system
- Way-2 :: Variation of parameters NEW

$$
\psi=\frac{1}{u} \int u \varphi_{L}
$$

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left\{\left(\int u \varphi_{L}\right)\left(u^{-1} \varphi_{R}\right)\right\}
$$

- left term :: series expansion + integration
- right term :: series expansion
- Residue extraction :: no system-solving required!

Feynman Integrals \& Intersection Theory

$$
\begin{aligned}
& I_{a_{1}, a_{2}, \ldots, a_{N}}
\end{aligned}=\int \prod_{i=1}^{L} \frac{d^{d} k_{i}}{\pi^{d / 2}} \prod_{j=1}^{N} \frac{1}{D_{j}^{a_{j}}}
$$

$$
\begin{aligned}
& u=B^{\gamma}, \quad \gamma \equiv(d-E-L-1) / 2 \\
& \omega \equiv d \log (u)=\gamma d \log (B) \\
& \varphi \equiv \hat{\varphi} d^{N} \mathbf{z}, \quad \hat{\varphi} \equiv \frac{1}{z_{1}^{a_{1}} z_{2}^{a_{2}} \cdots z_{N}^{a_{N}}}, \\
& d^{N} \mathbf{z} \equiv d z_{1} \wedge d z_{2} \wedge \cdots \wedge d z_{N}
\end{aligned}
$$

Feynman Integrals \& Intersection Theory

$=E=I_{a_{1}, a_{2}, \ldots, a_{N}} \equiv \int \prod_{i=1}^{L} \frac{d^{d} k_{i}}{\pi^{d / 2}} \prod_{j=1}^{N} \frac{1}{D_{j}^{a_{j}}}$

$$
\left.\equiv K \int_{\mathcal{C}} u \varphi \equiv K\langle\varphi| \mathcal{C}\right]_{\omega}
$$

- Loop-by-Loop (LBL) Baikov repr'n

Frellesvig, Papadopoulos (2017)

$$
\begin{aligned}
& u=B_{1}^{\gamma_{1}} B_{2}^{\gamma_{2}} \cdots B_{m}^{\gamma_{m}} \\
& \omega \equiv d \log (u)=\sum_{i=1}^{m} \gamma_{i} d \log \left(B_{i}\right) \\
& \varphi \equiv \hat{\varphi} d^{M} \mathbf{z}, \quad \hat{\varphi} \equiv \frac{f\left(z_{1}, \ldots, z_{M}\right)}{z_{1}^{a_{1}} z_{2}^{a_{2}} \cdots z_{M}^{a_{M}}} \\
& d^{M} \mathbf{z} \equiv d z_{1} \wedge d z_{2} \wedge \cdots \wedge d z_{M}
\end{aligned}
$$

$(N-M)$ ISPs
integrated out
f rational function

Integrals reduction and Master Integrals

Mizera \& P.M. (2018)
$\nu=\{$ the number of solutions of $\omega=0\}$
Frellesvig, Gasparotto, Laporta, Mandal,
Mattiazzi, Mizera \& P.M. (2019)

- Basis of Master Forms

$$
\left\langle e_{i}\right| \quad\left|h_{j}\right\rangle \quad i=1,2, \ldots, \nu
$$

- Master Integrals

$$
\left.J_{i} \equiv K E_{i}, \quad \text { with } \quad E_{i} \equiv\left\langle e_{i}\right| \mathcal{C}\right]
$$

- Integral Decomposition

$$
\begin{aligned}
I & =K\langle\varphi| \mathcal{C}]=\sum_{i=1}^{\nu} c_{i} J_{i} \\
\langle\varphi| & =\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i}\right| \\
c_{i} & \equiv \sum_{j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}
\end{aligned}
$$

Basis choices

$$
\text { for } i=1,2, \ldots, \nu
$$

- dLog Basis

$$
\left\langle e_{i}\right|=\left\langle\varphi_{i}\right| \equiv \frac{d z}{z-z_{i}} \quad \quad z_{i} \text { are poles of } \omega
$$

- Monomial Basis

$$
\left\langle e_{i}\right|=\left\langle\phi_{i}\right| \equiv z^{i-1} d z
$$

- Orthonormal Basis

$$
\begin{aligned}
& \mathcal{P}=\left\{z_{1}, z_{2}, \ldots, z_{\nu+1}, z_{\nu+2}\right\} \quad \text { pick two special ones, say } z_{\nu+1} \text { and } z_{\nu+2} \\
& \qquad \begin{aligned}
\left\langle e_{i}\right| \equiv d \log \frac{z-z_{i}}{z-z_{\nu+1}}, & \left|h_{i}\right\rangle \equiv \operatorname{Res}_{z=z_{i}}(\omega) d \log \frac{z-z_{i}}{z-z_{\nu+2}} \\
\mathbf{C}_{i j}=\delta_{i j} & \langle\varphi|=\sum_{i=1}^{\nu}\left\langle\varphi \mid h_{i}\right\rangle\left\langle e_{i}\right| \quad \text { Gram-Schmidt method }
\end{aligned}
\end{aligned}
$$

- ...or any arbitrary rational basis...

Dimensional Recurrence Relation

- MIs in (d+2n) dimensions

$$
\left.J_{i}^{(d+2 n)} \equiv K(d+2 n) E_{i}^{(d+2 n)} \quad E_{i}^{(d+2 n)} \equiv\left\langle B^{n} e_{i}\right| \mathcal{C}\right]=\int_{\mathcal{C}} u\left(B^{n} e_{i}\right), \quad i=1,2, \ldots, \nu
$$

- Master Decomposition Formula

$$
\left\langle B^{\nu} e_{i}\right|=\sum_{n=0}^{\nu-1} c_{n}\left\langle B^{n} e_{i}\right| \quad n=0,1, \ldots, \nu-1
$$

- Recurrence Relations for Master Forms

$$
\sum_{n=0}^{\nu} c_{n}\left\langle B^{n} e_{i}\right|=0, \quad c_{\nu} \equiv-1
$$

- Recurrence Relations for Master Integrals

$$
\sum_{n=0}^{\nu} \alpha_{n} J_{i}^{(d+2 n)}=0 \quad \alpha_{n} \equiv c_{n} / K(d+2 n)
$$

System of Differential Equations

- External Derivative

$$
\left.\left.\partial_{x} I=\partial_{x}\langle\varphi| \mathcal{C}\right]=\partial_{x} \int_{\mathcal{C}} u \varphi=\int_{\mathcal{C}} u\left(\frac{\partial_{x} u}{u} \wedge+\partial_{x}\right) \varphi=\left\langle\left(\partial_{x}+\sigma\right) \varphi\right| \mathcal{C}\right] \quad \sigma=\partial_{x} \log u
$$

$$
\partial_{x}\left\langle e_{i}\right|=\left\langle\left(\partial_{x}+\sigma \wedge\right) e_{i}\right| \equiv\left\langle\Phi_{i}\right|
$$

- Master Decomposition Formula

$$
\left\langle\Phi_{i}\right|=\left\langle\Phi_{i} \mid h_{k}\right\rangle\left(\mathbf{C}^{-1}\right)_{k j}\left\langle e_{j}\right|=\mathbf{\Omega}_{i j}\left\langle e_{j}\right| \quad \boldsymbol{\Omega} \equiv \mathbf{F C}^{-1} \quad \mathbf{F}_{i k} \equiv\left\langle\Phi_{i} \mid h_{k}\right\rangle
$$

The C-matrix is important!

- System of DEQ for Master Forms

$$
\partial_{x}\left\langle e_{i}\right|=\boldsymbol{\Omega}_{i j}\left\langle e_{j}\right|, \quad \boldsymbol{\Omega}=\boldsymbol{\Omega}(d, x)
$$

System of Differential Equations

- System of DEQ for Master Integrals
$J_{i} \equiv K E_{i}, \quad$ with $\left.\quad E_{i} \equiv\left\langle e_{i}\right| \mathcal{C}\right]$,

$$
\partial_{x} J_{i}=\mathbf{A}_{i j} J_{j} \quad \mathbf{A} \equiv \boldsymbol{\Omega}+\mathbf{K} \quad \mathbf{K}=\partial_{x} \log (K) \mathbb{I}
$$

- (Homogenous) Solutions

For each i, the ν independent solutions

$$
\begin{gathered}
\left.\mathbf{P}_{i j}=\left\langle e_{i}\right| \mathcal{C}_{j}\right]=\int_{\mathcal{C}_{j}} u e_{i}, \quad i, j=1,2, \ldots, \nu \\
\nu \times \nu \text { matrix } \mathbf{P} \\
\bullet \text { Basic math :: Resolvent matrix } \\
\\
\bullet \text { De Rahm int. th. : (Riemann) Twisted Period matrix }
\end{gathered}
$$

- Example :: Derivative basis
ν-dimensional basis formed by $\left\langle e_{i}\right|$ and its derivatives up the $(\nu-1)^{\text {th }}$-order
$\mathbf{P}=$ Wronski matrix

Contiguity relations for Special Functions

Euler Beta Integrals

$$
I_{n} \equiv \int_{\mathcal{C}} u z^{n} d z, \quad u \equiv B^{\gamma}, \quad B \equiv z(1-z), \quad \mathcal{C} \equiv[0,1]
$$

- Direct Integration

$$
I_{n}=\frac{\Gamma(1+\gamma) \Gamma(1+\gamma+n)}{\Gamma(2+2 \gamma+n)}
$$

- Integral relation
a relation between I_{n} and $I_{0} \quad I_{n}=\frac{\Gamma(1+\gamma+n) \Gamma(2+2 \gamma)}{\Gamma(1+\gamma) \Gamma(2+2 \gamma+n)} I_{0}$
- Special case $\quad n=1 \quad I_{1}=\frac{1}{2} I_{0}$

Euler Beta Integrals

$$
I_{n} \equiv \int_{\mathcal{C}} u z^{n} d z, \quad u \equiv B^{\gamma}, \quad B \equiv z(1-z), \quad \mathcal{C} \equiv[0,1]
$$

- IBP identities

$$
\begin{gathered}
\int_{\mathcal{C}} d\left(B^{\gamma+1} z^{n-1}\right)=0 \\
(\gamma+n) I_{n-1}-(1+2 \gamma+n) I_{n}=0 \\
I_{n}=\frac{(\gamma+n)}{(1+2 \gamma+n)} I_{n-1}
\end{gathered}
$$

- Special case $n=1 \quad I_{1}=\frac{1}{2} I_{0}$

Euler Beta Integrals

- Intersection Theory

$$
\begin{gathered}
\left.I_{n} \equiv \int_{\mathcal{C}} u \phi_{n+1} \equiv \omega\left\langle\phi_{n+1}\right| \mathcal{C}\right], \quad \phi_{n+1} \equiv z^{n} d z \\
u=B^{\gamma} \quad B=z(1-z), \quad \omega=d \log u=\gamma\left(\frac{1}{z}+\frac{1}{z-1}\right) d z \quad \nu=1, \quad \mathcal{P}=\{0,1, \infty\}
\end{gathered}
$$

- Monomial Basis

1 master integral $\left.\quad I_{0}=\omega\left\langle\phi_{1}\right| \mathcal{C}\right]$

- Integral relation

$$
\begin{aligned}
I_{1}=c_{1} I_{0} \quad \Longleftrightarrow \quad\left\langle\phi_{2}\right| & =c_{1}\left\langle\phi_{1}\right| \\
c_{1} & =\left\langle\phi_{2} \mid \phi_{1}\right\rangle\left\langle\phi_{1} \mid \phi_{1}\right\rangle^{-1}
\end{aligned}
$$

- Master Decomposition Formula
$\mathbf{C}_{i j}$ has just one element $\mathbf{C}_{11}=\left\langle\phi_{1} \mid \phi_{1}\right\rangle$
$\left\langle\phi_{1} \mid \phi_{1}\right\rangle=\operatorname{Res}_{z=\infty}\left(\psi_{\infty} \phi_{1}\right)=\frac{\gamma}{2(2 \gamma-1)(2 \gamma+1)}$
$c_{1}=\frac{1}{2}$
$\left\langle\phi_{2} \mid \phi_{1}\right\rangle=\operatorname{Res}_{z=\infty}\left(\psi_{\infty} \phi_{1}\right)=\frac{\gamma}{4(2 \gamma-1)(2 \gamma+1)}$

Feynman Integrals Decomposition :: on the maximal cut :: 1 -forms

On the maximal cut $::$ simpler integrals
© 1 -forms :: univariate integral representations
\notin Operation required $::$ Intersection Numbers for 1 -forms

Two-Loop Non-Planar Triangle

$$
\begin{aligned}
& D_{1}=k_{1}^{2}, D_{2}=k_{2}^{2}-m^{2}, D_{3}=\left(p_{1}-k_{1}\right)^{2}, D_{4}=\left(p_{3}-k_{1}+k_{2}\right)^{2}-m^{2}, \quad z=D_{7}=2\left(p_{2}+k_{1}\right)^{2}-p_{1}^{2} \\
& D_{5}=\left(k_{1}-k_{2}\right)^{2}-m^{2}, D_{6}=\left(p_{2}-k_{2}\right)^{2}-m^{2} .
\end{aligned}
$$

$$
\begin{array}{ll}
u=B^{\gamma}, & B=\left(z^{2}-\tau_{1}^{2}\right)\left(z^{2}-\tau_{2}^{2}\right), \\
\gamma=\frac{d-5}{2} & \omega=\frac{2 \gamma z\left(2 z^{2}-\tau_{1}^{2}-\tau_{2}^{2}\right)}{\left(z^{2}-\tau_{1}^{2}\right)\left(z^{2}-\tau_{2}^{2}\right)} d z, \\
\nu=3, \quad \nu \sqrt{1+(4 m)^{2} / s}, \quad \tau_{2}=s \\
\mathcal{P}=\left\{-\tau_{1},-\tau_{2}, \tau_{2}, \tau_{1}, \infty\right\}
\end{array}
$$

dlog-basis.

$$
\begin{aligned}
& \varphi_{1}=\left(\frac{1}{\tau_{1}+z}-\frac{1}{\tau_{2}+z}\right) d z, \quad \varphi_{2}=\left(\frac{1}{\tau_{2}+z}-\frac{1}{z-\tau_{2}}\right) d z, \quad \varphi_{3}=\left(\frac{1}{z-\tau_{2}}-\frac{1}{z-\tau_{1}}\right) d z \\
& \mathbf{C}=\left(\begin{array}{l}
\left\langle\varphi_{1} \mid \varphi_{1}\right\rangle\left\langle\varphi_{1} \mid \varphi_{2}\right\rangle\left\langle\varphi_{1} \mid \varphi_{3}\right\rangle \\
\left\langle\varphi_{2} \mid \varphi_{1}\right\rangle\left\langle\varphi_{2} \mid \varphi_{2}\right\rangle\left\langle\varphi_{2} \mid \varphi_{3}\right\rangle \\
\left\langle\varphi_{3} \mid \varphi_{1}\right\rangle\left\langle\varphi_{3} \mid \varphi_{2}\right\rangle\left\langle\varphi_{3} \mid \varphi_{3}\right\rangle
\end{array}\right)=\frac{1}{\gamma}\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \quad \mathbf{C}^{-1}=\gamma\left(\begin{array}{ccc}
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right)
\end{aligned}
$$

the projection of $\phi_{1}=d z$ is

$$
\left\langle\phi_{1}\right|=\frac{\gamma \tau_{1}}{4 \gamma+1}\left\langle\varphi_{1}\right|+\frac{\gamma\left(\tau_{1}+\tau_{2}\right)}{4 \gamma+1}\left\langle\varphi_{2}\right|+\frac{\gamma \tau_{1}}{4 \gamma+1}\left\langle\varphi_{3}\right|
$$

verified with Reduze.

Two-Loop Non-Planar Triangle

System of Differential Equations

$$
x \equiv \frac{\tau_{1}}{\tau_{2}} \quad \sigma(x)=\partial_{x} \log \left(B(z, x)^{\gamma}\right)=-\frac{2 \gamma \tau_{2}^{2} x}{z^{2}-\tau_{2}^{2} x^{2}} .
$$

$\left\langle\Phi_{i}(x)\right| \equiv\left\langle\left(\partial_{x}+\sigma(x)\right) \varphi_{i}\right|$
$\left\langle\Phi_{1}(x)\right|=-\frac{\tau_{2}\left(2 \gamma \tau_{2}^{2} x^{2}-2 \gamma \tau_{2}^{2} x+\tau_{2}^{2} x+\tau_{2} x z-z^{2}-\tau_{2} z\right)}{\left(\tau_{2}+z\right)\left(\tau_{2} x-z\right)\left(\tau_{2} x+z\right)^{2}} d z$,
$\left\langle\Phi_{2}(x)\right|=\frac{4 \gamma \tau_{2}^{3} x}{\left(\tau_{2}-z\right)\left(\tau_{2}+z\right)\left(\tau_{2} x-z\right)\left(\tau_{2} x+z\right)} d z$,
$\left\langle\Phi_{3}(x)\right|=-\frac{\tau_{2}\left(2 \gamma \tau_{2}^{2} x^{2}-2 \gamma \tau_{2}^{2} x+\tau_{2}^{2} x-\tau_{2} x z-z^{2}+\tau_{2} z\right)}{\left(\tau_{2}-z\right)\left(\tau_{2} x-z\right)^{2}\left(\tau_{2} x+z\right)} d z$.

$$
\begin{gathered}
\mathbf{F}_{i j}=\left\langle\Phi_{i} \mid \varphi_{j}\right\rangle
\end{gathered} \quad \mathbf{F}=\left(\begin{array}{ccc}
\frac{7 x^{2}+2 x-1}{(x-1)(x+1)} & -\frac{2}{x-1} & -\frac{x-1}{x(x+1)} \\
-\frac{2}{x-1} & \frac{4 x}{(x-1)(x+1)} & -\frac{2}{x-1} \\
-\frac{x-1}{x(x+1)} & -\frac{2}{x-1} & \frac{7 x^{2}+2 x-1}{(x-1) x(x+1)}
\end{array}\right)
$$

Non-Planar Contribution to $H+j$ Production

$$
\begin{aligned}
& \text { Loop-by-Loop form of the Baikov representation } \\
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-p_{3}-p_{4}\right)^{2},
\end{aligned}
$$

$$
\begin{aligned}
& D_{7}=\left(k_{1}-k_{2}-p_{4}\right)^{2}-m_{t}^{2} \text {. } \\
& D_{9}=\left(k_{2}+p_{1}\right)^{2} \\
& \omega=\frac{q_{0}+q_{1} z+q_{2} z^{2}+q_{3} z^{3}+q_{4} z^{4}}{2 z\left(-m_{H}^{2}+s+z\right)\left(-m_{H}^{2}+s+t+z\right)\left(z\left(-m_{H}^{2}+s+z\right)-4 s m_{t}^{2}\right)} d z, \quad \nu=4, \\
& \mathcal{P}=\left\{0, m_{H}^{2}-s, \frac{1}{2}\left(m_{H}^{2}-s-\rho\right), \frac{1}{2}\left(m_{H}^{2}-s+\rho\right), m_{H}^{2}-s-t, \infty\right\}, \quad \rho=\sqrt{m_{H}^{4}-2 s m_{H}^{2}+16 s m_{t}^{2}+s^{2}} .
\end{aligned}
$$

Mixed Bases $\left.\left.\left.J_{1}=I_{1,1,1,1,1,1,1,1 ; 0}=\left\langle e_{1}\right| \mathcal{C}\right], J_{2}=I_{1,2,1,1,1,1,1: 0}=\left\langle e_{2}\right| \mathcal{C}\right], J_{3}=I_{1,1,1,2,1,1,1 ; 0}=\left\langle e_{3}\right| \mathcal{C}\right]$ and $\left.J_{4}=I_{1,1,1,1,2,2,1,1 ; 0}=\left\langle e_{4}\right| \mathcal{C}\right]$,
$\hat{e}_{1}=1$.

$$
\begin{aligned}
& \hat{\varphi}_{1}=\frac{1}{z}-\frac{1}{-m_{H}^{2}+s+z}, \\
& \hat{\varphi}_{2}=\frac{1}{-\frac{2}{2}+s+z}, \frac{1}{\frac{1}{2}\left(-m_{H}^{2}+\rho+s\right)+z}, \\
& \hat{q}_{3}=\frac{1}{-\frac{1}{2}\left(-m_{H}^{2}+\rho+s\right)+z} \frac{1}{\frac{1}{2}\left(-m_{H}^{2}-\rho+s\right)+z}, \\
& \varphi_{4}=\frac{1}{2\left(-m_{H}^{2}-\rho+s\right)+z} \frac{1}{-m_{H}^{2}+s+t+z},
\end{aligned}
$$

$$
\mathbf{C}_{i j}=\left\langle e_{i} \mid \varphi_{j}\right\rangle, \quad 1 \leq i, j \leq 4
$$

$$
\langle\varphi|=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i}\right|
$$

$$
I_{1,1,1,1,1,1,1 ;-1}=c_{1} J_{1}+c_{2} J_{2}+c_{3} J_{3}+c_{4} J_{4}
$$

Non-Planar Contribution to $H+j$ Production

$$
\begin{aligned}
& \text { Loop-by-Loop form of the Baikov representation } \\
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-p_{3}-p_{4}\right)^{2}, \\
& D_{4}=\left(k_{2}-p_{3}\right)^{2}-m_{t}^{2} \quad D_{5}=k_{2}^{2}-m_{t}^{2}, \quad D_{6}=\left(k_{1}-k_{2}\right)^{2}-m_{t}^{2}, \quad z=D_{8}=\left(k_{1}-p_{3}\right)^{2} \\
& D_{7}=\left(k_{1}-k_{2}-p_{4}\right)^{2}-m_{t}^{2} \text {. } \\
& D_{9}=\left(k_{2}+p_{1}\right)^{2} \\
& \omega=\frac{q_{0}+q_{1} z+q_{2} z^{2}+q_{3} z^{3}+q_{4} z^{4}}{2 z\left(-m_{H}^{2}+s+z\right)\left(-m_{H}^{2}+s+t+z\right)\left(z\left(-m_{H}^{2}+s+z\right)-4 s m_{t}^{2}\right)} d z, \quad \nu=4, \\
& \mathcal{P}=\left\{0, m_{H}^{2}-s, \frac{1}{2}\left(m_{H}^{2}-s-\rho\right), \frac{1}{2}\left(m_{H}^{2}-s+\rho\right), m_{H}^{2}-s-t, \infty\right\}, \quad \rho=\sqrt{m_{H}^{4}-2 s m_{H}^{2}+16 s m_{t}^{2}+s^{2}} .
\end{aligned}
$$

Mixed Bases $\left.\left.\left.J_{1}=I_{1,1,1,1,1,1,1,1 ; 0}=\left\langle e_{1}\right| \mathcal{C}\right], J_{2}=I_{1,2,1,1,1,1,1: 0}=\left\langle e_{2}\right| \mathcal{C}\right], J_{3}=I_{1,1,1,2,1,1,1 ; 0}=\left\langle e_{3}\right| \mathcal{C}\right]$ and $\left.J_{4}=I_{1,1,1,1,2,2,1 ; 1 ; 0}=\left\langle e_{4}\right| \mathcal{C}\right]$,

Checks. KIRA, leaves us with 6 MIs. 2 more: $\quad J_{5}=I_{1,1,1,1,1,2,1 ; 0,0}, \quad J_{6}=I_{1,1,2,1,1,1,1 ; ; 0,0}$.

- Higher sectors IBPs $\quad J_{6}=\frac{10-2 d}{s} J_{1}+\frac{\left(2 m_{t}^{2}-m_{H}^{2}\right) s+m_{H}^{4}}{m_{H}^{2} s} J_{3}+\frac{2 m_{t}^{2}}{s} J_{4}+\frac{s\left(m_{H}^{2}-2 m_{t}^{2}\right)+2 m_{H}^{2} m_{t}^{2}}{m_{H}^{2} s} J_{5}$. (on the cut)
- Self similarity $\quad k_{1} \rightarrow-k_{1}-p_{1}-p_{2}, \quad k_{2} \rightarrow-k_{2}+p_{3}, \quad p_{1} \leftrightarrows p_{2}, \quad J_{5}=\frac{s}{m_{H}^{2}+s} J_{3}-\frac{m_{H}^{2}}{m_{H}^{2}+s} J_{4}$
(on the cut)
after using these 2 extra relations KIRA is in perfect agreement
$\nu=4$ verified with a numerical evaluation of the integrals on the maximal cut + PSLQ [80 digits]

Other Applications :: proof of concepts

Integral family	Sec.	$\nu_{\text {LBL }}$	$\nu_{\text {std }}$	Integral family	Sec.	$\nu_{\text {LBL }}$	$\nu_{\text {std }}$
	7	1	1		14.3	4	6
$\chi^{\operatorname{mox} x}$	8	3	3		15.1	3	3
- ${ }_{\text {amb }}$	9	1	1				
					15.2	3	3
	10	2	1	\longrightarrow			
					16	3	3
	11	2	2	1			
	12	3	4	\geqslant	16	3	3
					16	3	3
	13.1	2	2				
	13.2	3	4		16	3	3
	13.3	3	4		16.1	3	3
	14.1	4	4		17.1	2	2
	14.1	4	4		17.2	3	3
	14.2	4	6		17.3	3	4

Table 1: Comparisons of the number of masters obtained by the LP criterion, from Loop-by-Loop ($\nu_{\text {LBL }}$) and standard Baikov parametrization $\left(\nu_{\text {std }}\right)$.

Feynman Integrals Decomposition :: n-forms ::

\#n-forms :: n -variable integral representations
Operation required $::$ Intersection Numbers for \mathbf{n}-forms
y n steps down in the decomposition

- 1-loop Nonagon

Int. Num. for 8 -forms

$$
N=L E+\frac{1}{2} L(L+1)
$$

- 2-loop Box

$$
\int_{\mathcal{C}} d z_{1} \wedge \cdots \wedge d z_{9} \frac{B(\mathbf{z})^{\gamma}}{z_{1}^{n_{1}} \cdots z_{9}^{n_{9}}}
$$

© Int. Num. for 7 -forms

n-Forms

$$
I=\int_{\mathcal{C}} u(\mathbf{z}) \varphi(\mathbf{z}) \quad \varphi(\mathbf{z})=\hat{\varphi}(\mathbf{z}) d^{n} \mathbf{z}, \quad d^{n} \mathbf{z} \equiv d z_{1} \wedge \ldots \wedge d z_{n}
$$

- Number of Master Integrals $\quad \nu \equiv \operatorname{dim} H_{ \pm \omega}^{n}$

1) Counting Critical Points

Lee, Pomeransky (2013)
$\omega \equiv d \log u(\mathbf{z})=\sum_{i=1}^{n} \hat{\omega}_{i} d z_{i}$
$\nu \equiv$ number of solutions of the system of equations

$$
\hat{\omega}_{i} \equiv \partial_{z_{i}} \log u(\mathbf{z})=0, \quad i=1, \ldots, n
$$

2) Euler Characteristics

Aluffi, Marcolli (2008)
Bitoun, Bogner, Klausen, Panzer (2017)

$$
\nu=(-1)^{n}\left(n+1-\chi\left(\mathcal{P}_{\omega}\right)\right)
$$

in terms of the Euler characteristic $\chi\left(\mathcal{P}_{\omega}\right)$ of the projective variety \mathcal{P}_{ω} defined as the set of poles of ω.

Multivariate Intersection Numbers

- (n-1)-form Vector Space: known!

$$
\nu_{\mathbf{n}-\mathbf{1}} \quad\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right| \quad\left|h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \quad\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}\right)_{i j} \equiv_{\mathbf{n}-\mathbf{1}}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle
$$

- \mathbf{n}-form decomposition: $\mathbf{n}=(\mathbf{n}-1)+(n)$

$$
\left\langle\varphi_{L}^{(\mathbf{n})}\right|=\sum_{i=1}^{\nu_{\mathbf{n}-1}}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right| \wedge\left\langle\varphi_{L, i}^{(n)}\right|, \quad\left|\varphi_{R}^{(\mathbf{n})}\right\rangle=\sum_{i=1}^{\nu_{\mathrm{n}-1}}\left|h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \wedge\left|\varphi_{R, i}^{(n)}\right\rangle,
$$

IIntersection Numbers for \mathbf{n}-forms :: Recursive Formula (I)

$$
\mathbf{n}\left\langle\varphi_{L}^{(\mathbf{n})} \mid \varphi_{R}^{(\mathbf{n})}\right\rangle=-\sum_{p \in \mathcal{P}_{n}} \operatorname{Res}_{z_{n}=p}\left(\mathbf{n}-\mathbf{1}\left\langle\varphi_{L}^{(\mathbf{n})} \mid h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \psi_{i}^{(n)}\right)
$$

$$
\begin{aligned}
& \nabla_{-\Omega^{(n)}} \vec{\psi}^{(n)}=\vec{\varphi}_{R}^{(n)} \\
& \partial_{z_{n}}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right|=\Omega_{i j}^{(n)}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right|
\end{aligned}
$$

Multivariate Intersection Numbers

- (n-1)-form Vector Space: known!

$$
\nu_{\mathbf{n}-\mathbf{1}} \quad\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right| \quad\left|h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \quad\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}\right)_{i j} \equiv \mathbf{n - 1}\left\langle e_{i}^{(\mathbf{n}-1)} \mid h_{j}^{(\mathbf{n}-1)}\right\rangle
$$

- \mathbf{n}-form decomposition: $\mathbf{n}=(\mathbf{n}-1)+(n)$

$$
\left\langle\varphi_{L}^{(\mathbf{n})}\right|=\sum_{i=1}^{\nu_{\mathrm{n}-1}}\left\langle e_{i}^{(\mathbf{n}-1)}\right| \wedge\left\langle\varphi_{L, i}^{(n)}\right|, \quad\left|\varphi_{R}^{(\mathbf{n})}\right\rangle=\sum_{i=1}^{\nu_{\mathrm{n}-1}}\left|h_{i}^{(\mathbf{n}-1)}\right\rangle \wedge\left|\varphi_{R, i}^{(n)}\right\rangle,
$$

IIntersection Numbers for n-forms :: Recursive Formula (II)

$$
\begin{array}{ll}
\nabla_{-\Omega^{(n)}} \psi_{i_{\mathbf{m}} i_{\mathbf{m}-\mathbf{1}}}^{(n)}=\hat{h}_{i_{\mathbf{m}} i_{\mathbf{m}-\mathbf{1}}}^{(n)} \quad\left|h_{i_{\mathbf{m}}}^{(\mathbf{m})}\right\rangle=\left|h_{i_{\mathbf{m}-1}}^{(\mathbf{m}-\mathbf{1})}\right\rangle \wedge\left|h_{i_{\mathbf{m}-1} i_{\mathbf{m}}}^{(m)}\right\rangle \\
\partial_{z_{n}}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right|=\Omega_{i j}^{(n)}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right| &
\end{array}
$$

Feynman Integrals Reduction

Massless Box

$$
u(\mathbf{z})=\left(\left(s t-s z_{4}-t z_{3}\right)^{2}-2 t z_{1}\left(s\left(t+2 z_{3}-z_{2}-z_{4}\right)+t z_{3}\right)+s^{2} z_{2}^{2}+t^{2} z_{1}^{2}-2 s z_{2}\left(t\left(s-z_{3}\right)+z_{4}(s+2 t)\right)\right)^{\frac{d-5}{2}}
$$

- Integral Decomposition

Example.

$$
=\int_{\mathcal{C}} \frac{u d^{4} \mathbf{z}}{z_{1}^{2} z_{2}^{2} z_{3} z_{4}}
$$

- Cut $_{\{1,3\}}$:

$$
:=\int_{\mathcal{C}} u_{1,3} \varphi_{1,3}, \quad \varphi_{1,3}=\hat{\varphi}_{1,3} d z_{2} \wedge d z_{4}, \quad \hat{\varphi}_{1,3}=\frac{\hat{\omega}_{1}}{z_{2}^{2} z_{4}}
$$

$$
\begin{aligned}
& u_{1,3}=z_{2}^{\rho_{2}} z_{4}^{\rho_{4}} u\left(0, z_{2}, 0, z_{4}\right) \\
& \nu_{(24)}=2 \hat{e}_{1}^{(24)}=\hat{h}_{1}^{(24)}=\frac{1}{z_{2} z_{4}}, \quad \hat{e}_{2}^{(24)}=\hat{h}_{2}^{(24)}=1 \\
& \nu_{(4)}=2 \hat{e}_{1}^{(4)}=\hat{h}_{1}^{(4)}=\frac{1}{z_{4}}, \quad \hat{e}_{2}^{(4)}=\hat{h}_{2}^{(4)}=1
\end{aligned}
$$

- Integral Decomposition

$$
\begin{gathered}
\left.:\left(c_{1}\right)+c_{2}\right\rangle, \\
c_{1}=\sum_{j=1}^{2}\left\langle\varphi_{1,3} \mid h_{j}^{(24)}\right\rangle\left(\mathbf{C}_{(24)}^{-1}\right)_{j 1}=\frac{(d-6)(d-5)}{s t}, \\
c_{2}=\sum_{j=1}^{2}\left\langle\varphi_{1,3} \mid h_{j}^{(24)}\right\rangle\left(\mathbf{C}_{(24)}^{-1}\right)_{j 2}=-\frac{4(d-5)(d-3)}{s^{3} t} .
\end{gathered}
$$

To Conclude:

Amplitudes Decomposition:

the algebraic way

$$
\mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}
$$

©Basis: $\{\mathrm{ij} \mathrm{jk}$
\&scalar product/Projection: to extract the components

$$
a x=\mathbf{a} . \boldsymbol{i} \quad \text { ay }=\mathbf{a} . j \quad a_{z}=\mathbf{a} . k
$$

Summary

- Novel Math for Quantum Field Theory
\& De Rahm (co)Homology and Intersection Theory
Rich theory :: Differential and Algebraic Geometry, Topology, Number Theory
- Novel Property Discovered

The algebra of Feynman Integrals (and not only) is controlled by Intersection Numbers
Intersection Numbers ~ Scalar Product/Projection between Feynman Integrals
Exploiting the geometric properties of the integrands, dictated by graph polynomials

- Novel Formulae for Multivariate Intersection number

Useful in Physics and Math

- (towards a) Novel Decomposition Method

Direct decomposition into a Integral Basis
Direct construction of system of differential equations for the Integral Basis
Direct construction of finite difference equations for the Integral Basis

The unreasonable effectiveness of mathematics

Wigner was referring to the mysterıous phenomenon in which areas of pure mathematics, originally constructed without regard to application, are suddenly discovered to be exactly what is required to describe the structure of the physical world.
M. Berry

Extra

Gauss ${ }_{2} F_{1}$ Hypergeometric Functions

$$
\begin{aligned}
& \beta(b, c-b){ }_{2} F_{1}(a, b, c ; x)=\int_{0}^{1} z^{b-1}(1-z)^{c-b-1}(1-x z)^{-a} d z \\
& \left.=\int_{\mathcal{C}} u \varphi={ }_{\omega}\langle\varphi| \mathcal{C}\right] \quad u=z^{b-1}(1-x z)^{-a}(1-z)^{-b+c-1}, \quad \varphi=d z \\
& \omega=d \log u=\frac{x z^{2}(c-a-2)+z(a x-c+x+2)-b x z+b-1}{(z-1) z(x z-1)} d z, \quad \nu=2, \quad \mathcal{P}=\left\{0,1, \frac{1}{x}, \infty\right\}
\end{aligned}
$$

Gauss ${ }_{2} F_{1}$ Hypergeometric Functions

- Monomial Basis $\quad\left\{\left\langle\phi_{i}\right|\right\}_{i=1,2} \quad \phi_{n+1} \equiv z^{n} d z$
- Metric $\quad \mathbf{C}=\binom{\left\langle\phi_{1} \mid \phi_{1}\right\rangle\left\langle\phi_{1} \mid \phi_{2}\right\rangle}{\left\langle\phi_{2} \mid \phi_{1}\right\rangle\left\langle\phi_{1} \mid \phi_{2}\right\rangle}$

$$
\begin{aligned}
\left\langle\phi_{1} \mid \phi_{1}\right\rangle= & \left(x^{2}(-(a-b+1))(b-c+1)-2 a x(-b+c-1)+a(c-2)\right) /\left(x^{2}(a-c+1)(a-c+2)(a-c+3)\right), \\
\left\langle\phi_{1} \mid \phi_{2}\right\rangle= & \left(x^{3}(-(a-b+1))(a-b+2)(b-c+1)-a x^{2}(-b+c-1)(2 a-3 b+c+2)+a x(a+2 c-5)(-b+c-1)-a(c-3)(c-2)\right) /\left(x^{3}(a-c+1)\right. \\
\left\langle\phi_{2} \mid \phi_{1}\right\rangle= & \left(x^{3}(-(a-b))(a-b+1)(b-c+1)-a x^{2}(-b+c-1)(2 a-3 b+c)+a x(a+2 c-3)(-b+c-1)-a(c-2)(c-1)\right) /\left(x^{3}(a-c)(a-c+1)(a-c+2)(a-c+3)(a-c+4)\right), \\
\left\langle\phi_{2} \mid \phi_{2}\right\rangle= & \left(-a x^{2}\left(a^{2} b-a^{2} c+a^{2}-3 a b^{2}+7 a b c-8 a b-4 a c^{2}+9 a c-5 a-3 b^{2} c+6 b^{2}+4 b c^{2}-10 b c+6 b-c^{3}+2 c^{2}-c\right)+x^{4}\left(-\left(a^{3}-3 a^{2} b+3 a^{2}+3 a b^{(a-c+2)(a-c+3)),}\right.\right.\right. \\
& \left.\left.+2 a x^{3}(a-b+1)\left(a b-a c+a-2 b^{2}+3 b c-2 b-c^{2}+c\right)+2 a(c-2) x(a+c-2)(b-c+1)+a\left(c^{3}-6 c^{2}+11 c-6\right)\right) /\left(x^{4}(a-c)(a-c+1)(\bar{a} a b+c+2 a)\left(a-b^{3}+c+3\right)(a)(a b)\right)(b+\bar{c})\right)^{c+1)} .
\end{aligned}
$$

- Master Decomposition Formula

$$
\left\langle\phi_{n}\right|=\sum_{i, j=1}^{2}\left\langle\phi_{n} \mid \phi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle\phi_{i}\right|
$$

- Gauss' contiguity relation

$$
\begin{aligned}
\left.\left\langle\phi_{3}\right| \mathcal{C}\right] & \equiv \beta(b+2, c-b)_{2} F_{1}(a, b+2, c+2 ; x) \\
& =\left(\frac{b}{x(a-c-1)}\right) \beta(b, c-b)_{2} F_{1}(a, b, c ; x)+\left(\frac{(b-a+1) x+c}{x(c-a+1)}\right) \beta(b+1, c-b)_{2} F_{1}(a, b+1, c+1 ; x)
\end{aligned}
$$

Gauss ${ }_{2} F_{1}$ Hypergeometric Functions

- dLog Basis $\quad \varphi_{1}=\left(\frac{1}{z}-\frac{1}{z-1}\right) d z \quad \varphi_{2}=\left(\frac{1}{z-1}-\frac{x}{x z-1}\right) d z$.

$$
\begin{aligned}
& \left.\left.I_{1}=\left\langle\varphi_{1}\right| \mathcal{C}\right]={ }_{2} F_{1}(a, b-1, c-2 ; x), \quad I_{2}=\left\langle\varphi_{2}\right| \mathcal{C}\right]=\frac{(b-1)(x-1)}{c-2}{ }_{2} F_{1}(a+1, b, c-1 ; x) \\
& \mathbf{C}_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle \quad \mathbf{C}=\frac{1}{c-b-1}\left(\begin{array}{cc}
\frac{c-2}{b-1} & -1 \\
-1 & \frac{a+b-c+1}{a}
\end{array}\right)
\end{aligned}
$$

- Canonical System of Differential Equations

$$
\begin{aligned}
& a=-\gamma, b=\gamma+1, c=2(\gamma+1) \\
& \qquad \partial_{x} I_{i}=\mathbf{A}_{i j} I_{j} \quad \mathbf{A}=\gamma\left(\begin{array}{cc}
0 & \frac{-1}{x-1} \\
\frac{-1}{x} & \frac{2}{x-1}-\frac{2}{x}
\end{array}\right)
\end{aligned}
$$

Appell F_{1} Functions

$$
\begin{array}{ll}
\beta(a, c-a) F_{1}\left(a, b_{1}, b_{2}, c ; x, y\right)=\int_{\mathcal{C}} z^{a-1}(1-z)^{-a+c-1}(1-x z)^{-b_{1}}(1-y z)^{-b_{2}} d z \\
\left.=\int_{\mathcal{C}} u \varphi={ }_{\omega}\langle\varphi| \mathcal{C}\right] & \mathcal{C}=[0,1] \\
u=z^{a-1}(1-z)^{-a+c-1}(1-x z)^{-b_{1}}(1-y z)^{-b_{2}}, \\
\omega=\left(\frac{-a+c-1}{z-1}+\frac{a-1}{z}-\frac{b_{1} x}{x z-1}-\frac{b_{2} y}{y z-1}\right) d z, & \nu=3, \quad \mathcal{P}=\left\{0,1, \frac{1}{x}, \frac{1}{y}, \infty\right\}
\end{array}
$$

- dLog Basis $\quad \varphi_{1}=\left(\frac{1}{z}-\frac{1}{z-1}\right) d z, \quad \varphi_{2}=\left(\frac{1}{z-1}-\frac{x}{x z-1}\right) d z, \quad \varphi_{3}=\left(\frac{x}{x z-1}-\frac{y}{y z-1}\right) d z$

$$
\mathbf{C}=\frac{1}{c-a-1}\left(\begin{array}{ccc}
\frac{c-2}{a-1} & -1 & 0 \\
-1 & \frac{a-c+b_{1}+1}{b_{1}} & \frac{-a+c-1}{b_{1}} \\
0 & \frac{-a+c-1}{b_{1}} & \frac{(a-c+1)\left(b_{1}+b_{2}\right)}{b_{1} b_{2}}
\end{array}\right)
$$

Lauricella F_{D} Functions

$$
\begin{gathered}
\left.\beta(a, c-a) F_{D}\left(a, b_{1}, b_{2}, \ldots, b_{m}, c ; x_{1}, \ldots, x_{m}\right)=\int_{\mathcal{C}} u \varphi={ }_{\omega}\langle\varphi| \mathcal{C}\right] \\
u=z^{a-1}(1-z)^{-a+c-1} \prod_{i=1}^{m}\left(1-x_{i} z\right)^{-b_{i}} \\
\mathcal{C}=[0,1], \quad \varphi=d z, \quad \omega=d \log (u) \\
\nu=m+1, \quad \mathcal{P}=\left\{0, \frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{m}}, 1, \infty\right\}
\end{gathered}
$$

$$
\nu=\operatorname{dim} H_{ \pm \omega}^{1}=[\text { number of P-poles }-2]=[\text { number of P-poles }-(1+1)]
$$

Is this relation accidental?

(other) Parametric Representations:

- Schwinger Parameterization
- Lee-Pomeransky Parameterization

Gamma Function :: 1 -variate InterX

$$
\begin{aligned}
& \Gamma(s)=\int_{x=0}^{\infty} x^{s-1} e^{-x} d x . \\
& u(x):=x^{s-1} e^{-x} \quad C:=[0, \infty] \\
& \omega:=d \ln u=\left(\frac{s-1}{x}-1\right) d x \quad \nu=1 \quad P=\{0, \infty\} \\
& \left.I(n):=\int_{C} u \phi_{n}:=\left\langle\phi_{n}\right| C\right], \quad \phi_{n}:=x^{n} d x \\
& \left.\phi_{0}=1 d x \quad I(0):=\left\langle\phi_{0}\right| C\right] \quad\left\langle\phi_{0} \mid \phi_{0}\right\rangle=s-1 \\
& \left.\phi_{1}=x d x \quad I(1):=\left\langle\phi_{1}\right| C\right] \quad\left\langle\phi_{1} \mid \phi_{0}\right\rangle=s(s-1) .
\end{aligned}
$$

- Master Decomposition Formula

$$
\begin{gathered}
\left\langle\phi_{1}\right|=\left\langle\phi_{1} \mid \phi_{0}\right\rangle\left\langle\phi_{0} \mid \phi_{0}\right\rangle^{-1}\left\langle\phi_{0}\right|=s\left\langle\phi_{0}\right| \quad \Longleftrightarrow \quad I(1)=s I(0) \\
\Gamma(s+1)=s \Gamma(s) .
\end{gathered}
$$

Box w/ self-energy

$$
u(\mathbf{z})=\mathcal{B}_{1}^{\frac{2-d}{2}} \mathcal{B}_{2}^{\frac{d-3}{2}} \mathcal{B}_{3}^{\frac{d-5}{2}}
$$

$$
\mathcal{B}_{1}=z_{6}, \quad \mathcal{B}_{2}=2\left(z_{5}+z_{6}\right) z_{4}-z_{4}^{2}-\left(z_{5}-z_{6}\right)^{2},
$$

$$
\mathcal{B}_{3}=t^{2} z_{1}^{2}+s^{2} z_{2}^{2}-2 t z_{1}\left((2 s+t) z_{3}+s\left(t-z_{2}-z_{6}\right)\right)-2 s z_{2}\left(s t-t z_{3}+(s+2 t) z_{6}\right)+\left(t z_{3}+s\left(z_{6}-t\right)\right)^{2}
$$

- Integral Decomposition

Example.

$$
\mathcal{S}=\int_{\mathcal{C}} \frac{u d^{6} \mathbf{z}}{z_{1} z_{2}^{2} z_{3} z_{4} z_{5} z_{6}^{2}}
$$

- Cut $_{\{1,3,4,5\}}$:

$$
\int_{\mathcal{C}} u_{1,3,4,5} \varphi_{1,3,4,5}, \quad \varphi_{1,3,4,5}=\hat{\varphi}_{1,3,4,5} d z_{2} \wedge d z_{6} \quad \hat{\varphi}_{1,3,4,5}=\frac{\hat{\omega}_{2}}{z_{2} z_{6}^{2}}
$$

$$
\begin{array}{ll}
u_{1,3,4,5}=z_{2}^{\rho_{2}} u\left(0, z_{2}, 0,0,0, z_{6}\right) \\
\nu_{(62)}=2 & \hat{e}_{1}^{(62)}=\hat{h}_{1}^{(62)}=\frac{1}{z_{2}}, \quad \hat{e}_{2}^{(62)}=\hat{h}_{2}^{(62)}=1 \\
\nu_{(2)}=2 & \hat{e}_{1}^{(2)}=\hat{h}_{1}^{(2)}=\frac{1}{z_{2}}, \quad \hat{e}_{2}^{(2)}=\hat{h}_{2}^{(2)}=1
\end{array}
$$

$$
\begin{aligned}
& c_{1}=\sum_{j=1}^{2}\left\langle\varphi_{1,3,4,5} \mid h_{j}^{(62)}\right\rangle\left(\mathbf{C}_{(62)}^{-1}\right)_{j 1}=\frac{-3(3 d-16)(3 d-14)(2 s+t)}{2(d-6) s t^{3}} \\
& c_{2}=\sum_{j=1}^{2}\left\langle\varphi_{1,3,4,5} \mid h_{j}^{(62)}\right\rangle\left(\mathbf{C}_{(62)}^{-1}\right)_{j 2}=\frac{-3(3 d-16)(3 d-14)(3 d-10)(2 d s-10 s-t)}{4(d-6)(d-5)(d-4) s^{2} t^{3}}
\end{aligned}
$$

- $\operatorname{Cut}_{\{2,4,5\}}$:

$$
=\int_{\mathcal{C}} u_{2,4,5} \varphi_{2,4,5}
$$

$$
\varphi_{2,4,5}=\hat{\varphi}_{2,4,5} d z_{1} \wedge d z_{3} \wedge d z_{6}
$$

$$
\hat{\varphi}_{2,4,5}=\frac{\hat{\omega}_{2}}{z_{1} z_{3} z_{6}^{2}}
$$

$$
\begin{aligned}
& u_{2,4,5}=z_{1}^{\rho_{1}} z_{3}^{\rho_{3}} u\left(z_{1}, 0, z_{3}, 0,0, z_{6}\right) \\
& \nu_{(631)}=2 \\
& \nu_{(31)}=2 \\
& \hat{e}_{1}^{(631)}=\hat{h}_{1}^{(631)}=\frac{1}{z_{1} z_{3}}, \quad \hat{e}_{2}^{(631)}=\hat{h}_{2}^{(631)}=1 \\
& \nu_{(1)}=2 .
\end{aligned}
$$

c_{1} is the same as found in $\mathrm{Cut}_{1,3,4,5}$

$$
c_{3}=\sum_{j=1}^{2}\left\langle\varphi_{2,4,5} \mid h_{j}^{(631)}\right\rangle\left(\mathbf{C}_{(631)}^{-1}\right)_{j 2}=\frac{3(3 d-16)(3 d-14)(3 d-10)(3 d-8)}{2(d-6)^{2}(d-4) s t^{4}}
$$

Contiguity relations for Special Functions

Hypergeometric ${ }_{3} F_{2}$

$$
\begin{aligned}
& \left.\beta\left(a_{1}, b_{1}-a_{1}\right) \beta\left(a_{2}, b_{2}-a_{2}\right)_{3} F_{2}\left(\begin{array}{c}
a_{1} a_{2} a_{3} \\
b_{1} b_{2}
\end{array} ; x\right)=\int_{\mathcal{C}} u d^{2} \mathbf{z}=\left\langle 1^{(12)}\right| \mathcal{C}\right] \\
& u=\left(1-z_{1} z_{2} x\right)^{-a_{3}} \prod_{i=1}^{2} z_{i}^{a_{i}-1}\left(1-z_{i}\right)^{b_{i}-a_{i}-1}, \quad d^{2} \mathbf{z}=d z_{1} \wedge d z_{2}, \quad \quad \mathcal{C} \text { is the square with } z_{i} \in[0,1] \\
& \begin{array}{ll}
\left(z_{1}, z_{2}\right) \text {-space } \\
\hat{\omega}_{1}=\hat{\omega}_{2}=0 & \nu_{(12)}=3 \\
& \hat{e}_{1}^{(12)}=\frac{1}{z_{1}}, \quad \hat{e}_{2}^{(12)}=\frac{1}{z_{2}}, \quad \hat{e}_{3}^{(12)}=\frac{1}{1-z_{2}}, \\
& \hat{h}_{i}^{(12)}=\hat{e}_{i}^{(12)}(i=1,2,3)
\end{array}
\end{aligned}
$$

z_{2}-subspace

$$
\hat{\omega}_{2}=0\left(\text { w.r.t. } z_{2}\right), \quad \nu_{(2)}=2 . \quad \hat{e}_{1}^{(2)}=\frac{1}{z_{2}}, \quad \hat{e}_{2}^{(2)}=\frac{1}{1-z_{2}}
$$

- Integral Decomposition

$$
\hat{h}_{i}^{(2)}=\hat{e}_{i}^{(2)}(i=1,2)
$$

$$
\begin{aligned}
\left\langle 1^{(12)}\right| & =\sum_{i=1}^{3} c_{i}\left\langle e_{i}^{(12)}\right| \\
{ }_{3} F_{2}\left(\begin{array}{c}
a_{1} a_{2} a_{3} \\
b_{1} b_{2}
\end{array} ; x\right) & =\alpha_{1}{ }_{3} F_{2}\left(\begin{array}{c}
a_{1}-1, a_{2}, a_{3} \\
b_{1}-1, b_{2}
\end{array} ; x\right),+\alpha_{2}{ }_{3} F_{2}\left(\begin{array}{c}
a_{1}, a_{2}-1, a_{3} \\
b_{1}, b_{2}-1
\end{array} ; x\right),+\alpha_{3}{ }_{3} F_{2}\left(\begin{array}{c}
a_{1}, a_{2}, a_{3} \\
b_{1}, b_{2}-1
\end{array} x\right)
\end{aligned}
$$

