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@ for gr = Q collinear factorisation at fixed perturbative order 1s appropriate:
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Introduction

@ The gr distribution of a generic high-mass (Q) system produced 1n
hadronic collisions has two main regimes:

[

@ for gr = Q collinear factorisation at fixed perturbative order 1s appropriate:

I ) 1 1 do AQCD h
(£), - [ st o (5]

4

@ for gr € Q transverse-momentum-dependent (TMD) factorisation at
fixed logarithmic accuracy is appropriate:  Main subject of this talk
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@ the renormalisation scale y, originating from the UV renormalisation,
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Evolution (Sudakov) factor Ho = Do/ br
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@ Anomalous dims. and matching funcs. perturbatively computable.
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@ The single TMD distributions are then given by:
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TMD factorisation

@ The single TMD distributions are then given by:

© matching to the collinear region at bt < 1/Aqgcp,

© factorises as fiard (perturbative) and longitudinal (1.e.
collinear, non-perturbative).
© CGS and RGE evolution,
© evolution to large b,
© perturbative.
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@ When integrating over br, large values of bt give raise to low scales in
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Non-perturbative,

@ Properties of fne: determine from data

@ has to go to one as br goes to zero: reproduce the fully perturbative regime,
@ has to got to zero as bt becomes large: mimic the Sudakov suppression.

@ Bottom line: avoidance ot the non-perturbative region upon integration
in bt implies the presence of both b«prescription and fnp.
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Fep(x,bryp, () = Zcf/j(wab*;ﬂb,CF)®fj/P(iU,Mb)
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© matching to the collinear region at bt < 1/Aqgcp,

© factorises as fiard (perturbative) and longitudinal (1.e.
collinear, non-perturbative).
© CGS and RGE evolution,
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TMD factorisation

@ Final expression:

% Moy CF) @ fi/p (T, 1p)

© matching fo the collinear region at b1 <« 1/Aqcp,

factorisesfas fhard (perturbative) and longitudinal (1.e.
collinear,jnon-perturbative).

(

. ~ @GS and RGE evolution,
© avoid the Landau pole, - evolution to large br,

© Jxp accounts for the mtroduction of b+, & perturbative.
© fnp 1s non-perturbative thus fit to data.
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Logarithmic counting

@ TMD factorisation provides resummation of large logs . = log(g1/Q)
implemented through the Sudakov form factor

/ wog. .
exXp {K(b*Sﬂb)ln o | / d—, {’YF — Yk In - CF}}
Ho T

1/

ol asl3 sl | aiL | O(a2) || (NLO)

allen | ol2n=1 | o212r=2 1 .. | O(af) | (N"LO)
LL NLL NNLL

@ A perturbative expansion of the Sudakov at LI, NLL, NNLL, ...
would (roughly) give the terms in the lst, 2nd, 3rd, ... columns

@ Multuplying it by a power p of as would generate N2 terms

@ Bottom line: any additional power of a, causes a shift of two units in
the logarithmic ordering w the observable.



Logarithmic counting

Accuracy VK VF K Cyj H
LL s - - 1 1
NLL Os? Qs s 1 1
NLL’ Os? s Qs s Qs
NZLL s’ Os? Os? s Qs
N2LL’ o3 Os? Os? Os? Os?
N3LL oLs? s> s’ Os? Os?

N.B. 1f matching is performed, primed quantities are mandatory

(NLL+LO, NNLL'+NLO, ...)
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@ Processes tor which leading-power 'T'MD factorisation has been proven:

Drell-Yan Semi-inclusive DIS

PP — (FIT X PrE s pEn X
@ Two TMD PDFs: @ One TMD PDF one FF:
@ Lots of data: @ many precise data points:
@ low-energy: FNAL, @ HERMES at DESY,
@ mid-energy: RHIC, @ COMPASS at CERN.

@ high-energy:
Tevatron, LHC.



Factorising processes

@ Processes tor which leading-power 'T'MD factorisation has been proven:

Drell-Yan Semi-inclusive DIS ete- annihilation
r* .
V4
X
as
ho
PP — (F1F X Pt x (E0F = hhy X
@ Two TMD PDFs: @ One TMD PDF one FF: @ Two IMD FFs:
@ Lots of data: @ many precise data points: @ di-hadron prod. from:
@ low-energy: FNAL, @ HERMES at DESY, @ BELLE at KEK,
@ mid-energy: RHIC, @ COMPASS at CERN. @ BABAR at SLAC.

@ high-energy:
Tevatron, LHC.



Unpolarised TMD extractions
A selection of resulls

Low-ener / .
Accuracy | HERMES | COMPASS Iy . N. of points
DY production
KN 2006
hep-ph/0506225 NLL X X v v 98
Pavia 2013
(+Amsterdam, Bilbao) [ NO evolution o/ X X X 1538
arXiv:1309.3507
Torino 2014 | v v 576 (H)
L ntan) | Noevolution | orarately) | (separately) ¥ X 6284 (C)
DEMS 2014
arXiv:1407.3311 NNLL X X v/ v 223
Pavia 2017
arXiv:1703.10157 NLL v 4 v 4 8059
SV 2017 ‘
arXiv:1706.01473 NNLL() X X v v (LHC) 309
BSV 2019 ‘
arXiv:1902.08474 NNLL() X X v v (LHC) 457
Pavia 2019 | up to NSLL X (V) X (V) v v (LHC) O(400)



http://arxiv.org/abs/hep-ph/0506225
http://arxiv.org/abs/arXiv:1309.3507
http://arxiv.org/abs/arXiv:1312.6261
http://arxiv.org/abs/arXiv:1407.3311
http://arxiv.org/abs/arXiv:1703.10157
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T he dataset

@ Semi-Inclusive DIS data:

HeErRMES | HERMES | HERMES | HERMES | COMPASS CoMPASS HERMES | HERMES | HERMES | HERMES
D—at|D—n |D>K"|D—-K | D—h" D — h~ poat |posn |po KT | po K-
Reference [74] [75] Reference [74]
Q* > 1.4 GeV? Q? > 1.4 GeV?
Cuts 020 <z <07 Cuts 0.20 < z < 0.74
Pur < Min[0.2 Q,0.7 Q2] + 0.5 GeV
Points 190 190 189 189 3125 3127 Pnr < Min[O.Q Q,0.7 Qz] + 0.5 GeV
Mox. OF 03 Gov? 10 Gav? Points 190 190 189 187
£ range 0.04 <z < 0.4 0.005 < < 0.12 Max. Q° 9.2 GeV?
Notes Observable: Muorm (2, 2, Pir, Q%), Eq. (41) x range 0.04 <x<0.4
@ Low-energy Drell-Yan production data:
E288 200 | E288 300 E288 400 E605
Reference [79] [79] [79] 180]
Cuts qr < 0.2 Q + 0.5 GeV
Points 45 45 78 35
Vs 19.4 GeV | 23.8 GeV 27.4 GeV 38.8 GeV
Q range | 4-9 GeV | 4-9 GeV | 5-9, 11-14 GeV | 7-9, 10.5-11.5 GeV
Kin. var. | 7=0.40 n=0.21 1n1=0.03 zrp = 0.1

@ High-energy Drel

l-Yan production data at the Z peak:

CDF RunI | DO Run I | CDF Run IT | DO Run II
Reference [81] [82] [83] 184]
Cuts qr < 0.2 Q + 0.5 GeV = 18.7 GeV
Points 31 14 37 8
Vs 1.8 TeV 1.8 TeV 1.96 TeV 1.96 TeV
Normalization 1.114 0.992 1.049 1.048
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1.2 _bmax

@ b+ prescription: o

=08

44 N\ 1/4 -
1 — _b /bmaX — —YE *:0 i
b* (bT) — bmax ( ‘ Z ) with { bmax 2e =

4
1 — €_bT/bmin bmin — bmax/Q 0.4
0.2 Fp—

0.0

1 1 1 1 1 1 1
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00
br
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The settings oL T

1.2 'bmax

@ b+ prescription: o

=08

1/4 Q
1 — G_b%/bfnax . bmax = 2e” 7F So6f
P 0r) = e (1 — e~ b7 /b with { bnin = bmax/Q  o4r

0.2 _bmin
@ Non-perturbative function fp: ] S S S —
@ evolution: 1 i
gr (br) = —5925%

@ PDFs: , ,

~ 1 &7 g S

a 2 — —Y91a la T

X, — 4 1 —

@ FFs: ixe (2, &7) o ( 14+ Ag1, 4 )

E% 2 2 6%
—93a—h -3 2\ 2 § — 014
g3a—sh € 70072 4 ()\F/Z )g4a—>h (1 — J4a—h 452) e Jta—hg;2

2r (s + (o))

D%I?Ph(zv 5%) —



Pavia 2017
T he settings oL T

1.2 'bmax

@ b+ prescription: o

EO.B ~
b*(bT) — bmax (

7 Drmin = bmaX/Q 0-4T

1/4
1 — e_b%ﬂ/bfnax ] bmax p— 26_7E EO.G -
. mrewre with
— € T/ “min

0.2 " b
@ Non-perturbative function fnp: o o T T T T b
@ evolution: 1 ’
2
9K (br) = _592bT
@ PDFs: >
_ 1 3 Aia  §
a 2 — —Y91a 1 _ la I
fine (2, €7) o ( 1+ Ag1q 4 )

@ FFs:
gBCL—)h e 3a—h 42 ‘I‘ (AF/Z )g4a—>h (1 _g4a—>h#) e da—h 4,2
2mz? (93a,—>h + ()\F/ZZ)gza%h)

@ 11 free parameters to fit to data.

5%?}_?(2, &%) —

@ Perturbative accuracy: NLL

@ Monte Carlo method for the experimental error propagation.
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Fit quality

Points

Parameters
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1/0 do/dg[GeV ]

b

CDF
Vs=1.8TeV |

Vs=1.8TeV |

DO

5 10

qr[GeV]

15 20

5 10 15 2

qr[GeV]

(Q?)=4.3 GeV? (Q?)=4.8 GeV? (Q%)=4.8 GeV? (Q?)=4.8 GeV?
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@ PROs: @ CONs:

@ almost a global fit of quark @ no flavour dependence,

unpolarised TMDs,
@ theoretical accuracy not the

@ 1ncludes TMD evolution state of the art,

@ Monte Carlo (replica) method, @ no LHC data,

@ kinematic dependence of the @ only “low” gt (no matching to fixed
Intrinsic gr, order),

@ beyond Gaussian assumption for @ no “pure” info on TMD FFs (would
INtrinsic gr. need e*e- data).

@ Actively working to improve on the downsides.
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Higher-order corrections

@ Measurements of gr distributions have reached the percent level uncs.:
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@ Measurements of gr distributions have reached the percent level uncs.:
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@ State-of-the-art calculations are thus necessary to hope to describe this data:

@ higher-order corrections and possibly matching between TMD and collinear.
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Higher-order corrections
® (Current state-of-the-art: N3LL + NNLO:

[10.1007/JHEP12(2018)132]
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® required to describe the precise AT'LAS {-production data.

to determine the non-pert. component.
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Higher-ovder corrections

@ In Pavia, we are actively working to reach the “state-of-the-art” accuracy:

@ 1n fact, in the T'’MD region we already got there!
Vs =13 TeV, Q =Mz, y =0, (NangaParbat/APFEL++)
| | | |

3.5

0) 5 10 15 20 25 30
qr [GeV]

@ A fast computation of this observable(s) 1s implemented in a dedicated
framework conceived to extract TMD distributions: NangaParbat.
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Prelimmnary: N3LL fit of LHC data
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@ Chi-square (all LHC data):
@ NLL: 30.82
@ NNLL: 2.40

@ N3LL: 1.32
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@ Let us start considering gr-integrated SIDIS multiplicities:
d3o" /dxdzdQ?
d?c /dxd(Q)?

@ computable in collinear factorisation (to O(0L)).

M"(z,2,Q?) =
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@ Let us start considering gr-integrated SIDIS multiplicities:

COMPASS data

M"(z,2,Q?) =

d3o" /dxdzdQ?

d20 [ dzdQ?

A

"U~.~,ﬁ :

‘N'\“N. :

S

putable in collinear factorisation (to O(aL)).
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SIDIS studies: gy-integrated multiplcities

@ Let us start considering gr-integrated SIDIS multiplicities:
d3o" /dxdzdQ?
d?c /dxd(Q)?

@ computable in collinear factorisation (to O(aL)).

M"(z,2,Q?) =
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his works pretty nicely.

his data has actually be included in the DSS14 fit of collinear FFs.

¢
or Bl
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SIDIS studies: gr-differential multiplicities

@ Now, let us have a look at gr-differential SIDIS multiplicities:

—h d3o" /dxdz2dQ?dg?
M 2 _ T
) (:E)Z)Q 7QT) d2 /dajd 2

@ TMD factorisation at small gr, collinear factorisation at large gr.
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@ Now, let us have a look at gr-differential SIDIS multiplicities:
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SIDIS studies: gy-differential multiplicities

@ Now, let us have a look at gr-differential SIDIS multiplicities:

h

M (xa 2 Q27 QT) —

@ TMD factorisation at small gr, collinear factorisation at large gr.
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@ Unlikely that non-perturbative etfects can accommodate such differences.

@ How comes that gr-integrated works and gr-differential does not?
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SIDIS studies: gr-differential multiplicities

@ One may try to integrate analytically the O(a,) fixed-order gr-dift:

, dSO.h dSO.h
d _
/ T drdzdQ?de. ~ drdzdQ?

@ T'his should give the gr-integrated cross section that we know to work.
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SIDIS studies: gy-differential multiplicities

@ One may try to integrate analytically the O(a,) fixed-order gr-dift:

3 ~h 3 ~h
/ A2 d°o _ d°o
drdzd@Q?dq;.  drdzdQ?
@ This should give the gr-integrated cross section that we know to work.

@ If one tries, one finds that this 1s not the case:

@ the general finding 1s that all terms involving virtuals (gt = 0) are absent:
O(1) contributions are not included

@ One can the try to reintroduce this terms by expanding the resummed
cross section and retain only the terms proportional to 0(gr):

-

@ this reproduces the O(1) term, but still not enough

@ threshold-enhanced terms are still missing from the O(a) corrections
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@ One may try to integrate analytically the O(a,) fixed-order gr-dift:

3 ~h 3 ~h
/ A2 d°o _ d°o
drdzd@Q?dq;  dxdzd(Q)?
@ This should give the gr-integrated cross section that we know to work.

@ If one tries, one finds that this 1s not the case:

@ the general finding 1s that all terms involving virtuals (gt = 0) are absent:
O(1) contributions are not included

@ One can the try to reintroduce this terms by expanding the resummed
cross section and retain only the terms proportional to 0(gr):

@ this reproduces the (1) term, but still not enough

@ threshold-enhanced terms are still missing from the O(0) corrections

@ preliminary: soft-gluon (threshold) resummation possibly crucial!



Conclusions

@ TMD factorisation provides a valuable tool to descrive gt distributions
at small values of gt (resummation of large logs),

@ written in terms of TMD distributions,
@ Non-perturbative component of TMDs to be determined from data

@ A lotof effort 1s being invested on the extraction of TMD PDFs and FFs:

@ wide and precise datasets (COMPASS, HERMES, LHC and Tevatron exps.),

@ state-of-the-art theoretical computation (N3LL at small gr),

@ SIDIS multuplicities from COMPASS and HERMES are challenging:

@ neither TMD nor collinear factorisations seem to describe them,

o

@ more corrections needed (e.g soft-gluon (threshold) resummation)

-

@ find the optimal matching prescription



