High energy lepton colliders: Higgs, top and direct BSM

SEP. 13 2019

ROBERTO FRANCESCHINI (ROMA 3 UNIVERSITY)

● ● ● < > □

CERN Accelerating science

European Strategy Update

- the least well known
- the highest mass scale
- the most central to the origin of EW scale

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

*of any shape

- the several "goals"
- ... which is good and bad!

All projects under discussion are "slow" (decades to run them)

All projects require different dedicated runs to achieve each of

All the projects are somewhat similar to 20th century machines^{*}

*except maybe CLIC and its drive-beam accelerator

Challenges we can see already from here

TIME

 $\mathscr{L} \cdot \sigma(ab \to cd) \sim \text{const}$

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

 $\sigma(ab \rightarrow cd) \sim 1/E^2 \Rightarrow$ you want $\mathscr{L} \sim E^2$

Challenges we can see already from here

Keyissues

• Time

Open Questions on the "big picture" on fundamental physics circa 2020

EFT

EFT

- why QCD does not violate CP?
- how have baryons originated in the early Universe?
- what is the dark matter in the Universe?
- what originates flavor mixing and fermions masses?
- what gives mass to neutrinos?
- why gravity and weak interactions are so different?
- what fixes the cosmological constant?

end of "The Boltzmann Way"

Open Questions on the "big picture" on fundamental physics circa 2020

EFT

EF1

- why QCD does not violate CP?
- how have baryons originated in the early Universe?
- what is the dark matter in the Universe?
- what originates flavor mixing and fermions masses?
- what gives mass to neutrinos?
- why gravity and weak interactions are so different?
- what fixes the cosmological constant?

STRONG INTERACTIONS

WEAK INTERACTION S

Open Questions on the "big picture" on fundamental physics circa 2020

EFT

EFT

- why QCD does not violate CP?
- how have baryons originated in the early Universe?
- what is the dark matter in the Universe?
- what originates flavor mixing and fermions masses?
- what gives mass to neutrinos?
- why gravity and weak interactions are so different?
- what fixes the cosmological constant?

Keyissues

• Time

• Need to understand the EW interactions

- quantum structure of the proton exposed at short time-scale
- anything appears in the beam at sufficiently large momentum transfer

- "never" collide at full center-of-mass energy
- "light" particles can be made very easily, e.g. $gg \rightarrow h$

- quantum structure of the proton exposed at short time-scale
- anything appears in the beam at sufficiently large momentum transfer

- "never" collide at full center-of-mass energy
- "light" particles can be made very easily, e.g. $gg \rightarrow h$

- quantum structure of the lepton exposed at short time-scale
- anything appears in the beam at sufficiently large momentum transfer

- "always" collide at full center-of-mass energy
- "light" particles can be made very easily, e.g. $WW \rightarrow h$
- no "overwhelming" QCD background

- quantum structure of the lepton exposed at short time-scale
- anything appears in the beam at sufficiently large momentum transfer

yet when we say eter we think LEP and Z-pole

- "always" collide at full center-of-mass energy
- "light" particles can be made very easily, e.g. $WW \rightarrow h$
- no "overwhelming" QCD background

Indirect tests of BSM

COMPOSITENESS

1+ LOOPS ABOVE WEAK SCALE

DARK MATTER

ACCIDENTAL @ 15 TEV

CLOSER TO PERTURBATIVE THERMAL LIMIT

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

SUPERSYMMETRY

MSSM

TENS OF TEV

SQUARKS MASS SUM RULES

HIGGS MASS FORMULA

Direct Production

COMPOSITENESS

1+ LOOPS ABOVE WEAK SCALE

DARK MATTER

ACCIDENTAL @ 15 TEV

CLOSER TO PERTURBATIVE THERMAL LIMIT

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

TENS OF TEV

HEAVY/(MINI-)SPLIT

SUPERSYMMETRY

MSSM

SQUARKS MASS SUM RULES

HIGGS MASS FORMULA

When does the transition happen?

ℓ⁺ℓ⁻ @TeV

BEAM STRUCTURE EXPOSED

 \sqrt{s} > few TeV clearly makes W collisions "ordinary"

The luminosity challenge

HIGH-ENERGY

BLESSING AND CURSE

Number of events = $\mathscr{L} \cdot \sigma(ab \rightarrow cd)$ tends to decrease

The luminosity challenge

HIGH-ENERGY

BLESSING AND CURSE

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

Number of events = $\mathscr{L} \cdot \sigma(ab \rightarrow cd)$ tends to decrease

The luminosity challenge

HIGH-ENERGY

BLESSING AND CURSE

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

Number of events = $\mathscr{L} \cdot \sigma(ab \rightarrow cd)$ tends to decrease

Muon colliders

MASS AND LIFETIME **BLESSING AND CURSE**

Luminosity Comparison

1.2

1.1

1

0.9

8.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

L/P_{beam} [10³⁴cm⁻²s⁻¹/MW]

2

E_{cm} [TeV]

MuColl ·····×·····

The luminosity per beam power is about constant in linear colliders

It can increase in protonbased muon colliders

Strategy CLIC: Keep all parameters at IP constant (charge, norm. emittances, betafunctions, bunch length)

 \Rightarrow Linear increase of luminosity with energy (beam size reduction)

Strategy muon collider:

Keep all parameters at IP constant

With exception of bunch length and betafunction

 \Rightarrow Quadratic increase of luminosity with energy (beam size reduction)

D. Schulte

Muon Colliders, EPS, July 2019

5

23

Muon colliders

MASS AND LIFETIME **BLESSING AND CURSE**

Luminosity Comparison

1.2

1.1

1

0.9

8.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

2

E_{cm} [TeV]

MuColl ·····×·····

The luminosity per beam power is about constant in linear colliders

It can increase in protonbased muon colliders

L/P_{beam} [10³⁴cm⁻²s⁻¹/MW] **Strategy CLIC:**

Keep all parameters at IP constant

(charge, norm. emittances, betafunctions, bunch length)

 \Rightarrow Linear increase of luminosity with energy (beam size reduction)

Strategy muon collider:

Keep all parameters at IP constant

With exception of bunch length and betafunction

 \Rightarrow Quadratic increase of luminosity with energy (beam size reduction)

D. Schulte

Muon Colliders, EPS, July 2019

5

23

https://indico.cern.ch/event/831718/

µµ→ new physics?

MUON COLLIDER

CHALLENGE

10-11 April 2019 CERN Europe/Zurich timezone

Roberto Franceschini LFC19 ht

µµ→ new physics?

MUON COLLIDER

CHALLENGE

µµ→ new physics?

MUON COLLIDER

CHALLENGE

Muon Source

Goals

- **Neutrino Factories**: Rate > $10^{14} \mu$ /sec within the acceptance of a μ ring
- luminosities >10³⁴/cm⁻²s⁻¹ at TeV-scale ($\approx N_{\parallel}^2 1/\epsilon_{\parallel}$) Muon Collider:

Options

Tertiary production through proton on target: cooling needed, baseline for Fermilab design study

production Rate > $10^{13}\mu$ /sec N_µ = $2 \cdot 10^{12}$ /bunch (5 10⁸ μ /sec today @PSI)

- e⁺e⁻ annihilation: positron beam on target: very low emittance and no cooling needed, baseline for our proposal here production Rate $\approx 10^{11} \,\mu/\text{sec}$ N_{II} $\approx 5.10^9/\text{bunch}$ **10-20Hz cycle**
- **by Gammas (** $\gamma N \rightarrow \mu^+ \mu^- N$ **): GeV-scale Compton** γs not discussed here production Rate $\approx 5.10^{10} \,\mu/sec$ $N_{II} \approx 10^6$ (Pulsed Linac) production Rate >10¹³ μ /sec N_{II} \approx few·10⁴ (High Current ERL) see also: W. Barletta and A. M. Sessler NIM \overrightarrow{A} 350 (1994) 36-44 ($e^-N \rightarrow \mu^+\mu^-e^-N$)

Roberto Franceschini LFC19 ht

10⁸ HIGGS BOSONS

100×MEGA-HIGGS FACTORY

$\sigma \sim log(s) \simeq const$

$\mathscr{L} \sim E^2$

$\sqrt{s} = 30 \,\mathrm{TeV}$

$\sigma \cdot \mathscr{L} \Rightarrow 10^8 \,\mathrm{h}$

- ultra-rare Higgs decays
- differential distribution
- off-shell Higgs bosons
- rare production modes

108 HIGGS BOSONS

100×MEGA-HIGGS FACTORY

$\sigma \sim log(s) \simeq const$

$\sqrt{s} = 30 \,\mathrm{TeV}$

$\sigma \cdot \mathscr{L} \Rightarrow 10^8 \,\mathrm{h}$

- ultra-rare Higgs decays
- differential distribution
- off-shell Higgs bosons
- rare production modes

$\rightarrow hvv$

10⁸ HIGGS BOSONS

100×MEGA-HIGGS FACTORY

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

$$\mathscr{L} \simeq 90 \cdot \left(\frac{\sqrt{s}}{30 \,\mathrm{TeV}}\right)^2 \mathrm{ab}^{-1}$$

 $\sigma(\ell^+\ell^- \to \nu\nu(h \to bb)) = 1 \text{ pb at 30 TeV}$

- most Higgs decays in acceptance
- O(10⁴) $H \rightarrow \mu^+\mu^-$ decays!
- clean decays where systematic may be small will be a key. E.g. 4ℓ , $\ell\ell$ Z, $\gamma\gamma$, $Z\gamma$

"The size of the Higgs boson"

it matters because being "point-like" is the source of all the theoretical questions on the Higgs boson and weak scale

... and if it is not ... well, that is physics beyond the Standard Model!

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

LOW ENERGY CIRCULAR COLLIDER

The size of the Higgs boson

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

LOW ENERGY LINEAR COLLIDER

Lumivs. Energy

New Physics may fit well in a EFT (new contact interactions) • effects grow at larger energies like $ve \rightarrow ve^{-1}$ in Fermi Theory

$m_W, m_Z, \sin \theta_W, A_{FR}^{whatever}, h \to Z\gamma, h \to ZZ, t \to b\tau\nu$

measurements dominated by a single mass scale

- dominant energy scale is low
- measurement is simple to grasp

LESSON FROM LHC

EFT EPOCH

progress is easy to measure (in)significant digits

$$d\sigma$$

 dp_T

measurements sensitive to a range of mass scales

- sensitive to a range of energy scales
- measurement of a spectrum (not so?!?) simple to grasp
- progress is easy to measure: bounds on new Fermi constants

Lumivs. Energy

New Physics may fit well in a EFT (new contact interactions)

LESSON FROM LHC

EFT EPOCH

• effects grow at larger energies like $ve \rightarrow ve^{-1}$ in Fermi Theory

HIGH-LUMI PROBES

$m_W, m_Z, \sin \theta_W, A_{FR}^{whatever}, h \to Z\gamma, h \to ZZ, t \to b\tau\nu$

measurements dominated by a single mass scale

- dominant energy scale is low
- measurement is simple to grasp
- progress is easy to measure (in)significant digits

- sensitive to a range of energy scales
- measurement of a spectrum (not so?!?) simple to grasp
- progress is easy to measure: bounds on new Fermi constants

Lumivs. Energy

New Physics may fit well in a EFT (new contact interactions)

LESSON FROM LHC

EFT EPOCH

• effects grow at larger energies like $ve \rightarrow ve^{-1}$ in Fermi Theory

HIGH-LUMI PROBES

$m_W, m_Z, \sin \theta_W, A_{FR}^{whatever}, h \to Z\gamma, h \to ZZ, t \to b\tau\nu$

measurements dominated by a single mass scale

- dominant energy scale is low
- measurement is simple to grasp
- progress is easy to measure (in)significant digits

- sensitive to a range of energy scales
- measurement of a spectrum (not so?!?) simple to grasp
- progress is easy to measure: bounds on new Fermi constants

as NP effects may grow quadratically with energy $\sim - 2$ $\Delta O = O_{NP} - O_{SM} \sim \left(\frac{E}{v}\right)$ 1% at m_z is worse than 10% at 1 TeV

Effects of the size of the Higgs boson

h~π

STRONGLY INTERACTING LIGHT HIGGS

$$\begin{aligned} \mathcal{L}_{universal}^{d=6} &= c_{H} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{H} + c_{T} \frac{N_{c} \epsilon_{q}^{4} g_{*}^{4}}{(4\pi)^{2} m_{*}^{2}} \mathcal{O}_{T} + c_{6} \lambda \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{6} + \frac{1}{m_{*}^{2}} [c_{W} \mathcal{O}_{W} + c_{B} \mathcal{O}_{B}] \\ &+ \frac{g_{*}^{2}}{(4\pi)^{2} m_{*}^{2}} [c_{HW} \mathcal{O}_{HW} + c_{HB} \mathcal{O}_{HB}] + \frac{y_{t}^{2}}{(4\pi)^{2} m_{*}^{2}} [c_{BB} \mathcal{O}_{BB} + c_{GG} \mathcal{O}_{GG}] \\ &+ \frac{1}{g_{*}^{2} m_{*}^{2}} \left[c_{2W} g^{2} \mathcal{O}_{2W} + c_{2B} g'^{2} \mathcal{O}_{2B} \right] + c_{3W} \frac{3! g^{2}}{(4\pi)^{2} m_{*}^{2}} \mathcal{O}_{3W} \\ &+ c_{y_{t}} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{y_{t}} + c_{y_{b}} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{y_{b}} \end{aligned}$$

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

$$1/f \sim g_{\star}/m_{\star}$$

 $1/(g_{\star}f) \sim 1/m_{\star}$

$$g_{SM}/(g_{\star}f) \sim g_{SM}/m_{\star}$$

Effects of the size of the Higgs boson

h~π

STRONGLY INTERACTING LIGHT HIGGS

$$\begin{aligned} \mathcal{L}_{universal}^{d=6} &= c_{H} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{H} + c_{T} \frac{N_{c} \epsilon_{q}^{4} g_{*}^{4}}{(4\pi)^{2} m_{*}^{2}} \mathcal{O}_{T} + c_{6} \lambda \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{6} + \frac{1}{m_{*}^{2}} [c_{W} \mathcal{O}_{W} + c_{B} \mathcal{O}_{B}] \\ &+ \frac{g_{*}^{2}}{(4\pi)^{2} m_{*}^{2}} [c_{HW} \mathcal{O}_{HW} + c_{HB} \mathcal{O}_{HB}] + \frac{y_{t}^{2}}{(4\pi)^{2} m_{*}^{2}} [c_{BB} \mathcal{O}_{BB} + c_{GG} \mathcal{O}_{GG}] \\ &+ \frac{1}{g_{*}^{2} m_{*}^{2}} \left[c_{2W} g^{2} \mathcal{O}_{2W} + c_{2B} g'^{2} \mathcal{O}_{2B} \right] + c_{3W} \frac{3! g^{2}}{(4\pi)^{2} m_{*}^{2}} \mathcal{O}_{3W} \\ &+ c_{y_{t}} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{y_{t}} + c_{y_{b}} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{y_{b}} \end{aligned}$$

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

$$1/f \sim g_{\star}/m_{\star}$$

 $1/(g_{\star}f) \sim 1/m_{\star}$

$$g_{SM}/(g_{\star}f) \sim g_{SM}/m_{\star}$$

$$r_{Higgs} \sim f^{-1} \sim g_{\star}/m_{\star}$$

Buttazzo, RF, Wulzer

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

ZH	Cross-Section	m 95% CL	
3 TeV	1362 ab	12 TeV	
14 TeV	62 ab	57 TeV	
30 TeV	13 ab	120 TeV	

$$\ell^+\ell^- \longrightarrow W^-W^+$$

POLAR

ANGLE DISTRIBUTION

$$\left|A_{SM}^{(00)}\right|^{2} + A_{SM}^{00} \cdot A_{BSM}^{00} + \dots$$

 $d\sigma$ [ab] $d\theta_1^{\star}d\theta_2^{\star}$ $\bar{\theta}_{1,2}$

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

AZIMUTHAL

ANGLE DISTRIBUTION

$$\left|A_{SM}^{(TT)}\right|^2 + A_{SM}^{TT} \cdot A_{BSM}^{00} + \dots$$

High-Energy lepton collider has large flux of "partonic" W bosons

less powerful than Zh in general on m* but tests different operators, e.g. OH

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

 $m_{\star} \gtrsim 14 \cdot g_{\star} \text{ TeV}$

EFT EPOCH

LESSON FROM LHC

Amplitude	High-energy primaries	Low-energy primaries
$\boxed{\bar{u}_L d_L \to W_L Z_L, W_L h}$	$\sqrt{2}a_q^{(3)}$	$\sqrt{2}\frac{g^2}{m_W^2} \left[c_{\theta_W} (\delta g_{uL}^Z - \delta g_{dL}^Z) / g - c_{\theta_W}^2 \delta g_1^Z \right]$
$\bar{u}_L u_L \to W_L W_L$ $\bar{d}_L d_L \to Z_L h$	$a_q^{(1)} + a_q^{(3)}$	$-\frac{2g^2}{m_W^2} \left[Y_L t_{\theta_W}^2 \delta \kappa_\gamma + T_Z^{u_L} \delta g_1^Z + c_{\theta_W} \delta g_{dL}^Z / g \right]$
$ \begin{array}{c} \bar{d}_L d_L \to W_L W_L \\ \bar{u}_L u_L \to Z_L h \end{array} $	$a_q^{(1)} - a_q^{(3)}$	$-\frac{2g^2}{m_W^2} \left[Y_L t_{\theta_W}^2 \delta \kappa_\gamma + T_Z^{d_L} \delta g_1^Z + c_{\theta_W} \delta g_{uL}^Z / g \right]$
$\overline{f_R f_R} \to W_L W_L, Z_L h$	a_f	$-\frac{2g^2}{m_W^2} \left[Y_{f_R} t_{\theta_W}^2 \delta \kappa_\gamma + T_Z^{f_R} \delta g_1^Z + c_{\theta_W} \delta g_{f_R}^Z / g \right]$

Even higher energy colliders can exploit "precise" measurements at the 10% level

on mass scale of new physics is possible

m* 95% CL	
60 TeV (g*/4)	\mathcal{O}_H
84 ⊕ 76 TeV ≃113 TeV	$a_q^{(3)}$
120 TeV	$a_{q}^{(1)}$
120 TeV (4/g*)	W,Y

All-round progress up to m* ~ 10³ m_{Higgs}

https://indico.ectstar.eu/event/55/contributions/1354/

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

The size of the Higgs boson

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

HIGH ENERGY HADRONIC COLLIDER

LOW ENERGY LINEAR COLLIDER

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

ilr IIL

HIGH ENERGY

HADRONIC

COLLIDER

Top quark production

ELECTRO-WEAK

HIGH AND LOW MOMENTUM TRANSFERRED

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

low momentum transfer

\sqrt{S}	$\sigma(\ell^+\ell^- \to \nu\nu t\bar{t})$	\mathcal{L}	$\sigma \cdot \mathcal{L}$
$0.5 \mathrm{TeV}$	0.23 fb	4/ab	0.9K
3 TeV	5.4 fb	5/ab	27K
$30 \mathrm{TeV}$	31 fb	90/ab	$2.7\mathrm{M}$

large number of top quarks for "pole precision" (e.g. mass, Vtb, rare decays, ...)

• large enough number for "tail precision" (contact interactions)

1 million top quarks

ILC-CLIC-FCC-LIKE TOP QUARK PROGRAM

- top quark mass (off-threshold, reasonable target 100 MeV)
- rare production modes $\ell^+ \ell^- \rightarrow t c \vee V$
- rare decays e.g. t \rightarrow H c, ϕ c, γ c
- contact interaction "intensity studies"

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

MEGA-TOP

e.g. 1807.02441, 1903.01629, CERN-ACC-2018-0056

Each top is a "single top"

ELECTRO-WEAK

PRODUCTION EVERYWHERE

$V_{tb} \& g_{Ztt}, y_t, g_{hWW}$ intertwined in many processes

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

Each top is a "single top"

ELECTRO-WEAK

PRODUCTION EVERYWHERE

$V_{tb} \& g_{Ztt}, y_t, g_{hWW}$ intertwined in many processes

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

Lots of new studies!

Contents

Introdu	ction	11
Standar	rd Model effective field theory	15
2.1	Higgs couplings	17
2.2	Determination of the Higgs trilinear self-coupling	22
2.3	Probing the Higgs with ZH angular observables	31
2.4	Diboson W^+W^- processes as new physics probes $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	35
2.5	Multiboson processes	41
2.6	Sensitivity to universal theories via $e^+e^- \rightarrow \psi \bar{\psi}$	45
2.7	Global effective-field-theory analysis of top-quark pair production	53
2.8	Determination of the top-quark Yukawa coupling at lower energy	58
2.9	Global effective field theory fit	61
2.10	BSM interpretation	63
Flavou	r physics	68
3.1	Direct probes of FCNC point interactions	68
3.2	Lepton flavour violating processes and neutrino mass generation	73
3.3	Implications of LFUV anomalies	79
3.4	Exotic top decays	85
3.5	Determining Higgs couplings to light fermions	90
	Introdu Standar 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Flavour 3.1 3.2 3.3 3.4 3.5	IntroductionStandard Model effective field theory2.1Higgs couplings2.2Determination of the Higgs trilinear self-coupling2.3Probing the Higgs with ZH angular observables2.4Diboson W^+W^- processes as new physics probes2.5Multiboson processes2.6Sensitivity to universal theories via $e^+e^- \rightarrow \psi\bar{\psi}$ 2.7Global effective-field-theory analysis of top-quark pair production2.8Determination of the top-quark Yukawa coupling at lower energy2.9Global effective field theory fit2.10BSM interpretationS11Direct probes of FCNC point interactions3.2Lepton flavour violating processes and neutrino mass generation3.3Implications of LFUV anomalies3.4Exotic top decays3.5Determining Higgs couplings to light fermions

http://clicdp.web.cern.ch/content/wg-physics-potential

4	Electr	oweak symmetry breaking
	4.1	Supersymmetry
	4.2	Higgs plus singlet
	4.3	Extended Higgs sectors
	4.4	Discovering naturalness
5	Dark 1	matter
	5.1	Mono-photon
	5.2	Degenerate higgsino DM stub tracks
	5.3	Dark matter in loops: minimal dark matter and milli-charged
	5.4	Co-annihilation
	5.5	Inert doublet model
6	Baryo	genesis
	6.1	General Higgs plus singlet model
	6.2	WIMP baryogenesis and displaced vertex
7	New n	neutrinos and see-saw mediators
	7.1	New neutrinos and large mixing see-saw models in the W^+W^-H process
	7.2	Doubly-charged mediators from type-2 see-saw models
	7.3	SU(2) singlets and neutrino mass from higher dimensional operators
	7.4	Zee left-right model
8	Feebly	y interacting particles
	8.1	Hidden valley searches in Higgs boson decays
	8.2	Long-lived particles from heavy Higgs decays
	8.3	Axion-like particles

1	0	3
1	0	3
1	0	6
1	1	9
1	3	2
1	5	2
1	5	3
1	5	4
1	5	7
1	6	3
1	7	1
1	7	6
1 1	7 7	6 6
1 1 1	7 7 8	6 6 7
1 1 1	7 7 8 9	6 6 7 3
1 1 1 1	7 7 8 9 9	6 6 7 3 3
1 1 1 1 1	7 7 8 9 9	6 6 7 3 5
1 1 1 1 1 2	7 7 8 9 9 0	6 6 7 3 5 0
1 1 1 1 2 2	7 7 8 9 9 0 0	6 7 3 5 0 6
1 1 1 1 2 2 2	7 7 8 9 9 0 0 0	6 7 3 5 0 6 9
1 1 1 1 2 2 2 2	7 7 8 9 9 9 0 0 0 0	6673350699
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	77899900001	66733506990

$\ell^+\ell^- \rightarrow new physics$ LEPTONS VALENCE

Can produce heavy new physics (colored or not)

in principle can probe directly new states at O(10) TeV scale!

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

Compares pretty well with a *pp* collider

14 TeV µµ roughly equivalent to 100 TeV pp

Reach on specific models

1810.10993 - Di Luzio, Grober, Panico

"Accidental" Dark Matter

PRECISION

ANGULAR DISTRIBUTION

 χ is heavy/light new physics

$\chi / m_{\chi} [\text{TeV}]$	DM	HL-LHC	HE-LHC	FCC-100	CLIC-3	Muon-14
$(1,2,1/2)_{\rm DF}$	1.1	_	_	_	0.4	0.6
$(1,3,\epsilon)_{\rm CS}$	1.6	—	—	_	0.2	0.2
$(1,3,\epsilon)_{\mathrm{DF}}$	2.0	—	0.6	1.5	0.8 & [1.0, 2.0]	2.2 & [6.3, 7.1]
$(1,3,0)_{\rm MF}$	2.8	—	—	0.4	0.6 & [1.2, 1.6]	1.0
$(1,5,\epsilon)_{\rm CS}$	6.6	0.2	0.4	1.0	0.5 & [0.7, 1.6]	1.6
$(1,5,\epsilon)_{\mathrm{DF}}$	6.6	1.5	2.8	7.1	3.9	11
$(1, 5, 0)_{\rm MF}$	14	0.9	1.8	4.4	2.9	3.5 & [5.1, 8.7]
$(1,7,\epsilon)_{\rm CS}$	16	0.6	1.3	3.2	2.4	2.5 & [3.5, 7.4]
$(1,7,\epsilon)_{ m DF}$	16	2.1	4.0	11	6.4	18

Degenerate EW multiplets

STUB-TRACKS

12

- EXTRAPOLATION FROM CLIC
- Heavy n-plet of SU(2)
- Mass splitting ~ $\alpha_w m_W \sim 0.1 \text{ GeV} \text{GeV}$

GE RATES. BUT NEEDS TO LIGHT UP TH DETECTOR IN A DISCERNIBLE WAY

1712.07621 - Baglio, Pascoli, Weiland

• Heavily subject to detector design issues

• Even in CLIC needs full detector simulation

Mediator of Neutrino mass mechanism

RIGHT-HANDED NEUTRINO

in total rate $e^+e^- \rightarrow W^+ W^- h$

$$\mathcal{L}_{inverse} = -Y_{\nu}\overline{L}\widetilde{\phi}\nu_{R} - M_{R}\overline{\nu_{R}^{c}}X - \frac{1}{2}\mu_{X}\overline{X^{c}}X + \text{h.c.}$$

$$H \bigvee_{V_{R}} \bigvee_{V_{R}} H \bigvee_{V_{R}} H \bigvee_{U_{R}} H \bigvee_{U_{$$

large deviations both at $\sqrt{s} \sim M_R$ and $\sqrt{s} > M_R$

Conclusions

About to flip page...

- The traditional paradigm where *pp* are discovery machines and l+l- are measurement machines may be close to break down.
- Leptons beam structure enables *qualitatively new investigations* of the electroweak/Higgs sector

- CLIC definitively shows that technology is mature to consider seriously a machine above TeV center-of-mass energy
- If muon beams or plasmas can deliver even larger *energy and* keep the *luminosity* on track with $\mathscr{L} \propto E_{com}^2$ we can start probing fundamental interactions in novel and deeper ways.

About to flip page...

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

Enrico Fermi (James W. Cronin (Editor)) - Fermi Remembered - Ch. 9 - What can we learn from high energy accelerators?

Circa1954: B~2T, R~8000Km E(Beam)~1000TeV, E(CoM)~3TeV

Figure 9.6 Approximate cost of actual accelerators versus time.

Figure 9.5 Energy versus time for actual accelerators.

Figure 9.6 Approximate cost of actual accelerators versus time.

Figure 9.5 Energy versus time for actual accelerators.

Enrico Fermi (James W. Cronin (Editor)) - Fermi Remembered - Ch. 9 - What can we learn from high energy accelerators?

Figure 9.6 Approximate cost of actual accelerators versus time.

Figure 9.5 Energy versus time for actual accelerators.

Enrico Fermi (James W. Cronin (Editor)) - Fermi Remembered - Ch. 9 - What can we learn from high energy accelerators?

Figure 9.6 Approximate cost of actual accelerators versus time.

Figure 9.5 Energy versus time for actual accelerators.

Unstable and weak: our future

- Pole Higgs physics statistics about 100 times a dedicated Higgs factory (10⁸ Higgs)
- Pole Top quark physics comparable to dedicated top factory (order 10⁶ Tops)
- Top, Higgs and NP collecting data during the *same "stage*"

- Probes at high momentum transfer hugely enhanced by large available energy: e.g. Higgs compositeness at hundreds of TeV (similar advantage for any EFT)
- Direct reach for "anything" with electroweak charge or coupled to the Higgs boson in the kinematic reach

Unstable and weakly charged: our future beams

- Pole Higgs physics statistics about 100 times a dedicated Higgs factory (10⁸ Higgs)
- Pole Top quark physics comparable to dedicated top factory (order 10⁶ Tops)
- Top, Higgs and NP collecting data during the *same "stage"*

- Probes at high momentum transfer hugely enhanced by large available energy: e.g. Higgs compositeness at hundreds of TeV (similar advantage for any EFT)
- Direct reach for "anything" with electroweak charge or coupled to the Higgs boson in the kinematic reach

Thank you!
How to make a muon collider

.

NUMBER AND SPREAD

$p\mathcal{N} \to \pi^{\pm} + X \to \mu^{\pm} + \dots$

- large cross-section
- large spread of muon velocity

$e^+e^- \rightarrow \mu^+\mu^-$

LEMMA

- small cross-section
- small spread of muon velocity

Muon sou

BALANCE

NUMBER AND SPREAD

MAP

 $p\mathcal{N} \to \pi^{\pm} + X \to \mu^{\pm} + \dots$

- large cross-section
- large spread of muon velocity

- $E_{CM} > 5 \text{ TeV}$
 - Key technical hurdles have been addressed:

ARIES MC Workshop 47

MAP Conclusion

 Multi-TeV MC ⇒ potentially only cost-effective route to lepton collider capabilities with

 Capability strongly overlaps with next generation neutrino source options, i.e., the neutrino factory

- High power target demo (MERIT) * Decays of an individual species (ie, μ^+ or μ^-)

Realizable cooling channel designs with acceptable performance

- Breakthroughs in cooling channel technology

- Significant progress in collider & detector design concepts

Muon collider capabilities offer unique potential for the future of high energy physics research

Accelerator		LICIS	y State	- renorma
Cooling Channel		~200	MeV	Emittance Re
	MICE	160-240	MeV	5%
Muon Storage Ring		3-4	GeV	Useable μ dec
	vSTORN	3.8	GeV	3x10 ¹⁷
Intensity Frontier ν F	actory	4-10	GeV	Useable μ dec
NuMAX	(Initial)	4-6	GeV	8x10 ¹⁹
N	uMAX+	4-6	GeV	5x10 ²⁰
IDS-NF	Design	10	GeV	5x10 ²⁰
Higgs Factory		~126	GeV CoM	Higgs/10
s-Channel μ	Collider	~126	GeV CoM	3,500-13,
Energy Frontier μ Co	llider	> 1	TeV CoM	Avg. Lumin
	Opt. 1	1.5	TeV CoM	1.2x10 ³⁴ cr
	Opt. 2	3	TeV CoM	4.4x10 ³⁴ cr
	Opt. 3	6	TeV CoM	12x10 ³⁴ cn

July 2-3, 2018

Muon sou

BALANCE

NUMBER AND SPREAD

MAP

 $p\mathcal{N} \to \pi^{\pm} + X \to \mu^{\pm} + \dots$

large cross-section

large spread of muon velocity

(500 m depth) _____

Dose equivalent due to neutrino radiation at

[J.D. Cossairt, N.L. Grossman and E.T. Marshall, Health Phys. 73 (1997), 894-898.]

Muon sources

BALANCE

NUMBER AND SPREAD

•small cross-section

• small spread of muon velocity

$$n_{\mu\mu} \simeq 10^{-5} n_{e^+}$$

 $n_{e^+} \simeq 25 \cdot n_{e^+,ILC}$

Muon sources

BALANCE

NUMBER AND SPREAD

- small cross-section
- small spread of muon velocity

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

$$\begin{split} n_{\mu\mu} &\simeq 10^{-5} n_{e^+} \\ n_{e^+} &\simeq 25 \cdot n_{e^+,ILC} \end{split}$$

EMBEDDED POSITRON SOURCE

A possible design MUON SOURCE WORK IN PROGRESS

Roberto Franceschini LFC19 https://indico.ectsta

Buttazzo, RF, Wulzer

Direct Measurement of Y_b

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

Gotchas

Not as usual • Muons radiate EW

• Most $c\tau_0 \sim \mu m$ live for • Tracker: $\delta p/p \sim c$ fractions of meter in the lab $(b, c, \tau \dots)$

40 cm 20 cm 74 cm

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

• Calo: $\delta E / E \sim 1 / \sqrt{E}$

DarkMater

Degenerate EW multiplets

STUB-TRACKS EXTRAPOLATION FROM CLIC

- Heavy n-plet of SU(2)
- Mass splitting ~ $\alpha_w m_W \sim 0.1 \text{ GeV} \text{GeV}$

LARGE RATES, BUT NEEDS TO LIGHT UP THE DETECTOR IN A DISCERNIBLE WAY

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

- Heavily subject to detector design issues
- Even in CLIC needs full detector simulation

PRECISION

"Accidental" Dark Matter

ANGULAR DISTRIBUTION

$\chi / m_{\chi} [\text{TeV}]$	DM	HL-LHC	HE-LHC	FCC-100	CLIC-3	Muon-14
$(1,2,1/2)_{\rm DF}$	1.1	_	_	_	0.4	0.6
$(1,3,\epsilon)_{\mathrm{CS}}$	1.6	_	—	_	0.2	0.2
$(1,3,\epsilon)_{ m DF}$	2.0	_	0.6	1.5	$0.8 \ \& \ [1.0, \ 2.0]$	2.2 & [6.3, 7.1]
$(1,3,0)_{\mathrm{MF}}$	2.8	—	—	0.4	$0.6 \ \& \ [1.2, \ 1.6]$	1.0
$(1,5,\epsilon)_{\mathrm{CS}}$	6.6	0.2	0.4	1.0	$0.5 \ \& \ [0.7, 1.6]$	1.6
$(1,5,\epsilon)_{ m DF}$	6.6	1.5	2.8	7.1	3.9	11
$(1, 5, 0)_{\rm MF}$	14	0.9	1.8	4.4	2.9	3.5 & [5.1, 8.7]
$(1,7,\epsilon)_{\mathrm{CS}}$	16	0.6	1.3	3.2	2.4	2.5 & [3.5, 7.4]
$(1,7,\epsilon)_{ m DF}$	16	2.1	4.0	11	6.4	18

 χ is heavy/light new physics

New Higgs bosons

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/53

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55

Mediator of Neutrino mass mechanism

RIGHT-HANDED NEUTRINO

in total rate $e^+e^- \rightarrow W^+ W^- h$

$$\mathcal{L}_{inverse} = -Y_{\nu}\overline{L}\widetilde{\phi}\nu_{R} - M_{R}\overline{\nu_{R}^{c}}X - \frac{1}{2}\mu_{X}\overline{X^{c}}X + \text{h.c.}$$

$$\overset{H}{\swarrow} \underbrace{\nu_{R}} \underbrace{\nu_{R}} \underbrace{\nu_{R}} \underbrace{\mu_{X}} \underbrace{\mu_{X}} \underbrace{\mu_{R}} \underbrace{\mu_{R}} \underbrace{\mu_{R}} \underbrace{\mu_{R}} \underbrace{M^{\nu} = \begin{pmatrix} 0 & m_{D} & 0 \\ m_{D}^{T} & 0 & M_{R} \\ 0 & M_{R}^{T} & \mu_{X} \end{pmatrix}}_{I}$$

$$\overset{M^{\nu}}{=} \underbrace{m_{\nu}} \approx \frac{m_{D}^{2}}{M_{R}^{2}}\mu_{X}$$

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

large deviations both at $\sqrt{s} \sim M_R$ and $\sqrt{s} > M_R$

Roberto Franceschini LFC19 https://indico.ectstar.eu/event/55/

of "largely" improved H couplings (EFT)

		Factor ≥2	Factor ≥5	Factor ≥10	Years from T_0
Initial run	CLIC380	9	6	4	7
	FCC-ee240	10	8	3	9
	CEPC	10	8	3	10
	ILC250	10	7	3	11
2 nd /3rd Run ee	FCC-ee365	10	8	6	15
	CLIC1500	10	7	7	17
	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
e,eh & hh	FCC-ee/eh/hh	12	11	10	>50

13 quantities in total NB: number of seconds/year differs: ILC 1.6x10⁷, FCC-ee & CLIC: 1.2x10⁷, CEPC: 1.3x10⁷

Beate Heinemann @ Granada

