

Status and Prospects for Standard Model Fits

LFC19: Strong dynamics for physics within and beyond the Standard Model at LHC and Future Colliders ECT* Trento, September 9–13, 2019

Jens Erler JGU & Helmholtz Institute Mainz (on leave from IF-UNAM)

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

- * News on $sin^2\theta_W$ and related experiments:
 - * first measurements
 - * updated extractions
- * Electroweak fits:
 - ***** Results
 - * Theoretical uncertainties and correlations
 - ***** FCC–ee
- ***** Conclusions and outlook

Outline

News on $sin^2\theta_W$ and related experiments

Running weak mixing angle

4

- * tuning in on the Z resonance
 - * leptonic and heavy quark FB asymmetries in e^+e^- annihilation near $s = M_Z^2$
 - * leptonic FB asymmetries in pp (pp) Drell-Yan in a window around $m_{\parallel} = M_Z$
 - * LR asymmetry (SLC) and final state T polarization (LEP) and their FB asymmetries

	V scattering	parity violating e ⁻ scattering (PVES	
leptonic	$v_{\mu} - e^{-}$	e ⁻ – e ⁻	
DIS	heavy nuclei (NuTeV)	deuteron (E–122, PVDIS, SoLID)	
elastic	CEvNS (COHERENT)	proton, ¹² C (Qweak, P2)	
APV	heavy alkali atoms and ions	isotope ratios (Mainz)	

- * tuning in on the Z resonance
 - * leptonic and heavy quark FB asymmetries in e^+e^- annihilation near $s = M_Z^2$
 - * leptonic FB asymmetries in pp (pp) Drell-Yan in a window around $m_{\parallel} = M_Z$
 - * LR asymmetry (SLC) and final state T polarization (LEP) and their FB asymmetries

	v scattering recent first measurements ter		tering (PVES)	
leptonic	v _µ – e⁻		e- – e-	
DIS	heavy nuclei (TeV)	deuteron (E–122, P	S, SoLID)
elastic	CEvNS (COHERENT)		proton, ¹² C (Qw	eak, P2)
APV	heavy alkali atoms and ions		isotope ratios (Mainz)

Coherent Elastic v Nucleus Scattering (CEvNS)

6

<u>COHERENT @ SNS</u> Csl $E_{\nu} \approx 16 - 53 \text{ MeV}$ Α $\sigma \sim Q_W^2$ 134 ± 22 events constraints on NSI neutron skin? arXiv:1708.01294

 $Q_w(N,Z) = Z(I - 4 \sin^2\theta_w) - N$

Atomic parity violation in an isotope chain

AG Budker @ JGU Mainz

- Ytterbium
- 170Yb 176Yb
- ± 0.5% per isotope
- $\pm 100\%$ error in sin² θ_W
- constraints on Z' with M < 100 keV
- $\Delta \sin^2 \theta_W = \pm 0.2$
- neutron skin?

arXiv:1804.05747

Longitudinally polarized

Parity Violating e⁻ Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

- hydrogen (completed)
- $E_e = 1165 \text{ MeV}$
- |Q| = 158 MeV
- $A_{PV} = 2.3 \times 10^{-7}$
- $\Delta A_{\rm PV} = \pm 4.1\%$
- $\Delta Q_{W}(p) = \pm 6.25\%$
- $\Delta \sin^2 \theta_W = \pm 0.0011$
- FFs from fit to ep asymmetries

Theory issues in PVES

- * need full I-loop QED under
- ***** box diagrams (γZ-box)
- * enhanced 2-loop electroweak (YWW-double box)
- * running weak mixing angle
- * unknown neutron distribution (neutron skin for heavier nuclei)

Parity Violating e⁻ Scattering (PVES) — Elastic

P2 @ MESA (JGU Mainz)

- hydrogen (CDR)
- $E_e = 155 \text{ MeV}$
- |Q| = 67 MeV
- $A_{PV} = 4 \times 10^{-8}$
- $\Delta A_{\rm PV} = \pm 1.4\%$
- $\Delta Q_{\rm W}(p) = \pm 1.83\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00033$
- FFs from backward angle data

arXiv:1802.04759

Effective couplings (Wilson coefficients)

12

Parity Violating e⁻ Scattering (PVES) — Elastic

P2 @
H (CD
$E_e = 15$
Q = 6
$A_{PV} = 2$
$\Delta A_{PV} =$
ΔQw(p
$\Delta sin^2 \theta$
FFs fro
arXiv

MESA

- PR)
- 55 MeV
- 67 MeV
- 4 × 10⁻⁸
- = ± 1.4%
- $p) = \pm 1.83\%$
- $v_{\rm VV} = \pm 0.00033$
- om backward angles

v:1802.04759

P2 @ **MESA** ¹²C (CDR) $E_e = 150 \text{ MeV}$ $A_{PV} = 6 \times 10^{-7}$ $\Delta A_{\rm PV} = \pm 0.3\%$ $\Delta Q_{W}(^{12}C) = \pm 0.3\%$ $\Delta \sin^2 \theta_{\rm W} = \pm 0.0007$ neutron skin? only one FF arXiv:1802.04759

Scale exclusions post Qweak

[2 g^{eu} - g^{ed}]_{AV}

Parity Violating e⁻ Scattering (PVES) — Møller

EI58 @ SLC (SLAC)

- hydrogen (completed)
- E_e = 45 & 48 GeV
- |Q| = 161 MeV
- $A_{PV} = 1.31 \times 10^{-7}$
- $\Delta A_{PV} = \pm 13\%$
- $\Delta Q_W(e) = \pm 13\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.0013$

hep-ex/0504049

MOLLER @ CEBAF (JLab)

- hydrogen (proposal)
- $E_e = 11.0 \text{ GeV}$
- |Q| = 76 MeV
- $A_{PV} = 3.3 \times 10^{-8}$
- $\Delta A_{PV} = \pm 2.4\%$
- $\Delta Q_{\rm W}(e) = \pm 2.4\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00027$

arXiv:1411.4088

Parity Violating e⁻ Scattering (PVES) — Møller

EI58 @ SLC (SLAC)

- hydrogen (completed)
- E_e = 45 & 48 GeV
- |Q| = 161 MeV
- $A_{PV} = 1.31 \times 10^{-7}$
- $\Delta A_{PV} = \pm 13\%$
- $\Delta Q_W(e) = \pm 13\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.0013$

hep-ex/0504049

MOLLER @ CEBAF (JLab)

- hydrogen (proposal)
- $E_e = 11.0 \text{ GeV}$
- |Q| = 76 MeV
- $A_{PV} = 3.3 \times 10^{-8}$
- $\Delta A_{PV} = \pm 2.4\%$
- $\Delta Q_W(e) = \pm 2.4\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00027$

Weak mixing angle measurements

Weak mixing angle measurements

2-loop QCD correction with $m_b \neq 0$ Bernreuther et al. arXiv:1611.07942

new measured transition vector polarizability

> Tho et al. arXiv:1905.02768

- * Various groups, programs, approaches, renormalization schemes:
 - * GAPP (MS scheme, FORTRAN, options for BSM fits, used for <u>PDG</u>) JE, hep-ph/0005084
 - * Gfitter (on-shell scheme, C++) Flächer et al., arXiv:0811.0009
 - * HEPfit (on-shell scheme, allows fit to Wilson coefficients) de Blas et al., arXiv:1608.01509
 - * ZFITTER (on-shell scheme, FORTRAN, used for <u>LEPEWWG</u>) Bardin et al., hep-ph/9412201

Weak mixing angle measurements

 $A_{FB}(e)$ $A_{FB}(\mu)$ $A_{FB}(\tau)$ $A_{FB}(b)$ $A_{FB}(c)$ $A_{FB}(s)$ $A_{FB}(q)$ $P(\tau)$ $P_{FB}(\tau)$ $A_{LR}(had)$ $A_{LR}(lep)$ $A_{LR,FB}(\mu)$ $A_{LR,FB}(\tau)$ CDF (e) CDF (µ) D0 (e) **D0 (**μ) ATLAS (e) ATLAS (µ) CMS (e) CMS (µ) LHCb (µ) Q_W(e) Q_W(p) Q_W(Cs) 0.235

LEP & SLC: 0.23153 ± 0.00016 Tevatron: 0.23148 ± 0.00033 LHC: $0.23|3| \pm 0.00033$ <u>average direct</u> $0.23|49 \pm 0.000|3$ <u>global fit</u> 0.23153 ± 0.00004

W boson mass measurements

20

JGL

Theoretical uncertainties and correlations

- * loop factors including enhancement factors $N_C = N_F = 3$ or $sin^{-2}\theta_W \approx m_t^2 / M_W^2 \approx 4$: $8 \alpha (M_W) / \pi = 0.020 (QED)$ * $3 \alpha_s(M_W) / \pi = 0.116 (QCD)$ * $3 \alpha(M_W) / \pi \sin^2 \theta_W(M_W) = 0.032$ (CC) * * $(3 - 6 s^2_W + 8 s^4_W)/\pi s^2_W c^2_W = 0.029$ (NC)

- - * $\Delta S_Z = \pm 0.0034$ (may be combined with $\Delta \alpha_{had}$),
 - * $\Delta T = \pm 0.0073$ (t-b doublet)
 - * $\Delta U = S_W S_7 = \pm 0.0051$
- * assuming ΔS_Z , ΔT and ΔU to be sufficiently different (uncorrelated) induces theory Schott & JE, arXiv:1902.05142 correlations between different observables

- * Dispersive approach: integral over $\sigma(e^+e^- \rightarrow hadrons)$ and τ -decay data * $\alpha^{-1}(M_Z) = 128.958 \pm 0.016$ Jegerlehner, arXiv:1711.06089 * $\alpha^{-1}(M_Z) = 128.946 \pm 0.015$ Keshavarzi et al., arXiv:1802.02995 * $\alpha^{-1}(M_Z) = 128.946 \pm 0.013$ Davier et al., arXiv:1908.00921 * $\alpha^{-1}(M_z) = 128.949 \pm 0.010$ Ferro-Hernández & JE, arXiv:1712.09146 * converted from the \overline{MS} scheme and uses e⁺e⁻ annihilation and T spectral functions * PQCD for $\sqrt{s} > 2$ GeV (using $\overline{m}_c \& \overline{m}_b$)
 - * (anti)correlation with $g_{\mu} 2$ at two (three) loop order and with $\sin^2\theta_W(0)$

$M_H - m_t$

indirect m_t 176.4 ± 1.8 GeV (2.0 σ high) indirect M_H 90^{+17}_{-15} GeV (1.9 σ low) including theory error $9|^{+18}_{-16}$ GeV (1.8 σ low) using $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV}$ from CMS arXiv:1905.08283 instead (see **Davide Melini** on Wednesday morning)

74⁺¹⁶–14 GeV (2.7 σ low)

M_H at the FCC–ee

S and T

S	0.02 ± 0.07
Т	0.06 ± 0.06
$\Delta \chi^2$	- 4.2

- * $M_{KK} \gtrsim 3.2 \text{ TeV}$ in warped extra dimension models
- * $M_V \gtrsim 4 \text{ TeV}$ in minimal composite Higgs models

Freitas & JE **PDG (2018)**

S and T at the FCC-ee (and preliminary update)

S	0.01 ± 0.06	1.00	0.82
T	0.06 ± 0.04	0.82	I.00

S	± 0.0035	1.00	0.54
T	± 0.0016	0.54	1.00

FCC projections from **Franco Bedeschi** on Monday afternoon except $\Delta\Gamma_Z = 100 \text{ MeV} \rightarrow 25 \text{ MeV}$

(theory uncertainties ignored)

- * new developments:
 - * coherent V-scattering
 - * high precision PVES
 - * APV isotope ratios
 - * change in A_{FB}(b) from LEP
 - * change Q_W(Cs) from APV
- * future developments:
 - ultra-high precision PVES (MOLLER and P2)
 - * a leap in precision can be expected from future lepton colliders

