Physics at future linear colliders

Philipp Roloff (CERN)

09/09/2018

LFC19: Strong dynamics for physics within and beyond the Standard Model at LHC and future colliders, Trento

Introduction: ILC and CLIC

International Linear Collider (ILC):

- Based on superconducting RF cavities
- Gradient: 32 MV/m
- Energy: 250 500 GeV
- (upgradable to 1 TeV)
- $P(e^{-}) = \pm 80\%$, $P(e^{+}) = \pm 30\%$
- Length: 20 km (250 GeV),
- 31 km (500 GeV)

Compact Linear Collider (CLIC):

- Based on 2-beam acceleration scheme
- Operated at room temperature
- Gradient: 100 MV/m
- Energy: 380 GeV 3 TeV
- P(e⁻) = ±80%
- Length: 11 km (380 GeV), 50 km (3 TeV)

Linear colliders have the potential to profit from novel accelerator techniques

ILC staged implementation

arXiv:1903.01629 arXiv:1908.11299

CLIC staged implementation

CLIC would be implemented in several energy stages

Current baseline scenario:

			$P(e^{-}) = -80\%$	$P(e^{-}) = +80\%$
Stage	\sqrt{s} [TeV]	$\mathscr{L}_{int} [ab^{-1}]$	$\mathscr{L}_{int} [ab^{-1}]$	$\mathscr{L}_{int} [ab^{-1}]$
1	0.38 (and 0.35)	1.0	0.5	0.5
2	1.5	2.5	2.0	0.5
3	3.0	5.0	4.0	1.0

• The strategy can be adapted to possible discoveries at the (HL-)LHC or the initial CLIC stage(s)

1 year = 1.2 x 10⁷ seconds (based on CERN experience)
BDS accelerator 100 MV/m
accelerator 72 MV/m

CERN-2018-005-M arXiv:1812.01644

09/09/2018

unused arcs

Philipp Roloff

ILC detector concepts

Designed for Particle Flow Calorimetry:

- High granularity calorimeters (ECAL and HCAL) inside solenoid
- Low mass trackers \rightarrow reduce interactions / conversions

ILD (International Large Detector):

- TPC+silicon envelope, radius: 1.8 m
- B-field: 3.5 T

(small option: 1.46 m / 4 T under study)

SiD (Silicon Detector):

- Silicon tracking, radius: 1.2 m
- B-field: 5 T

09/09/2018

Philipp Roloff

CLIC detector concept

09/09/2018

Philipp Roloff

Comparison to other e⁺e⁻ collider options

Linear colliders:

- Can reach the highest energies
- Luminosity rises with energy
- Beam polarisation at all energies

Circular colliders:

- Large luminosity at lower energies
- Luminosity decreases with energy

NB: Peak luminosity at LEP2 (209 GeV) was $\approx 10^{32}$ cm⁻²s⁻¹

NB: "CLIC-up" is a recent suggestion to double repetition frequency at 380 GeV

Daniel Schulte, Granada Symposium

09/09/2018

Philipp Roloff

Single Higgs production

Higgsstrahlung: $e^+e^- \rightarrow ZH$

• $\sigma \sim 1/s$, dominant up to $\approx 500 \text{ GeV}$

WW fusion: $e^+e^- \rightarrow Hv_v v_e$

- $\sigma \sim \log(s)$, dominant above 500 GeV
- Large statistics at high energy

tt H production: $e^+e^- \rightarrow t\bar{t}H$

- Accessible \geq 500 GeV, maximum \approx 800 GeV
- Direct extraction of the top-Yukawa coupling

09/09/2018

Philipp Roloff

A closer look at \sqrt{s} < 500 GeV

 \sqrt{s} = 250 GeV (ILC): Maximum of the Higgsstrahlung cross section

 $\sqrt{s} = 350/380 \text{ GeV} (ILC \& CLIC):$

Also allows to access the

WW fusion process

 \rightarrow Additional information for combined analysis

Recoil method: $Z \rightarrow e^+e^-$ and $\mu^+\mu^-$

Recoil method: $Z \rightarrow q\overline{q}$

Hadronic Z decays provide the best sensitivity at 350 GeV

Optimisation study for the first CLIC stage (together with top physics):

• At 250 GeV the background is more signal-like

• At 420 GeV the cross section is lower and the jet energy resolution is worse

09/09/2018

Philipp Roloff

CP state of tau lepton pairs from $H\to \tau^{*}\tau^{-}$

$$-ig_{\tau\tau H}(\cos\psi_{CP}+i\sin\psi_{CP}\gamma_{5})$$

ψ_{CP} = 0: Standard Model ψ_{CP} = π/2: Purely CP-odd coupling

Using
$$e^+e^- \rightarrow ZH$$
; $H \rightarrow \tau^+\tau^-$;
 $\tau^{\pm} \rightarrow \pi^{\pm}\nu$ and $\tau^{\pm} \rightarrow \pi^{\pm}\pi^0\nu$

ILC, $\sqrt{s} = 250$ GeV, L = 2 ab⁻¹ $\Delta \psi_{CP}$ / $\psi_{CP} = 75$ mrad (or 4.3°)

Phys. Rev. D98, 013007 (2018)

Philipp Roloff

Higgs coupling sensitivity

precision reach on effective couplings from full EFT global fit

- Many Higgs couplings can be measured significantly better at ILC and CLIC compared to HL-LHC
- $H \rightarrow c\bar{c}$ very challenging at hadron colliders
- Impact of EWPO on the Higgs coupling extraction small

arXiv:1907.04311

Double Higgs production

$e^+e^- \rightarrow ZHH$:

Cross section maximum ≈ 600 GeV

$e^+e^- \rightarrow HHv_ev_e$:

• Benefits from high-energy operation

 $HH \rightarrow b\overline{b}b\overline{b}$ is the "golden channel" at lepton colliders, combination with $HH \rightarrow b\overline{b}WW^*$ leads to marginal improvement

Model	$\Delta g_{hhh}/g_{hhh}^{SM}$
Mixed-in Singlet	-18%
Composite Higgs	tens of $\%$
Minimal Supersymmetry	$-2\%^{a}$ $-15\%^{b}$
NMSSM	-25~%

Phys. Rev. D 88, 055024 (2013)

09/09/2018

Philipp Roloff

Higgs self-coupling measurements

• **ILC**, \sqrt{s} = 500 GeV, L = 4 ab⁻¹:

 $\Delta\lambda/\lambda = 27\%$ from ZHH cross section

DESY-THESIS-2016-027

Complementarity of the two production processes:

- $\lambda > \lambda_{SM}$: $\sigma(ZHH)$ at 500 GeV enhanced
- $\lambda < \lambda_{SM}$: $\sigma(HHv_vv)$ at high energy enhanced

• HHv $v_e v_e$ at high energy provides the best sensitivity assuming the SM value of λ , second solution can be excluded using ZHH and/or differential distributions

Philipp Roloff

Higgs self-coupling at CLIC

Philipp Roloff

	1.4 TeV	3 TeV
σ(HHv _e ve)	$> 3\sigma$ EVIDENCE $\Delta\sigma/\sigma = 28\%$	> 5σ OBSERVATION $\Delta\sigma/\sigma = 7.3\%$
σ(ZHH)	> 5σ OBSERVATION	
g _{ннн} /g _{ннн} sм	<u>1.4 TeV:</u> -34% +36% rate only	<u>1.4 & 3 TeV:</u> - <mark>7% +11%</mark> differential analysis

NB: ZHH not full simulation yet

Template fit at 3 TeV

arXiv:1901.05897

Physics at future linear colliders

09/09/2018

Top-quark pair production

 $e^+e^- \rightarrow t\bar{t}$:

- Production threshold at $\sqrt{s} \approx 2m_{top}$
- 380 & 500 GeV is near the maximum
- \rightarrow large event samples (for rare decays etc.)

 $e^+e^- \rightarrow t\bar{t}H$: Maximum near 800 GeV

 $e^+e^- \rightarrow ttv_v v_e$ (Vector Boson Fusion):

Benefits from highest energies

09/09/2018

Philipp Roloff

Threshold scan

 Measurement at different centre-of-mass energies in the tt production threshold region —— (data also useful for Higgs physics)

Statistical uncertainty: ≈ 20 MeV at ILC and CLIC

 Expected precision on 1S mass: ≈ 50 MeV (currently dominated by theory NNNLO scale uncertainty)

Philipp Roloff

 Theoretical uncertainty in the order of 10 MeV when transforming the measured 1S mass to the MS mass scheme

Phys. Rev. Lett. 114, 142002 (2015)

Other methods (less precise):

- ISR photons at higher energies
- Direct reconstruction

arXiv:1807.02441 arXiv:1903.01629

Physics at future linear colliders

√s' [GeV]

09/09/2018

Top-quark EW couplings

High-energy operation dramatically improves the sensitivity for certain ("four-fermion") operators

arXiv:1807.02441 arXiv:1907.10619 arXiv:1908.11299

Philipp Roloff

Indirect sensitivity to new physics

Important indirect input at linear colliders:

- Precision electroweak measurements
- Higgs couplings
- SM scattering processes ($e^+e^- \rightarrow f\bar{f}$, W^+W^- , ZH, ...): benefit from high energy

Standard Model Effective Field Theory: very useful to compare potential of different collider parameters and options

Example: contact interactions

 Projected limits from di-fermion final states $(e^+e^- \rightarrow ff, Drell-Yan with neutral and$ charged currents)

• Sensitivity increases significantly with \sqrt{s} at II C and CI IC

95% CL scale limits on 2-fermion 2-boson contact interactions

- New physics effects in the interaction between gauge and Higgs sectors
- O_w dominated by $e^+e^- \rightarrow ZH$ at CLIC
- Largest sensitivity in e⁺e⁻ collisions at lower \sqrt{s} (and on O_{B} in general) from oblique parameter S

09/09/2018

Philipp Roloff

Y-Universal Z'

• New neutral gauge boson Z' with mass M and charges to SM particles equal to hypercharge

 $\frac{c_{2B}}{\Lambda^2} = \frac{g_{Z'}^2}{g'^4 M_{Z'}^2}$

• Direct reach inferior to the indirect one for high $g_{z'}$

• <u>NB:</u> $g_{Z'} > 1.5 \rightarrow$ width exceeds 0.3 M

Composite Higgs

ILC at 250 GeV and CLIC at 380 GeV already significantly better than HL-LHC

FCC-all and 3 TeV CLIC similar

Direct new physics searches

- Direct observation of new particles coupling to γ*/Z/W
 → precision measurement of new particle masses and couplings
- The sensitivity often extends up to the kinematic limit (e.g. $M \le \sqrt{s}$ / 2 for pair production)

 Very rare processes accessible due to low backgrounds (no QCD)
 → Linear colliders especially suitable for electroweak states

 Polarised electron beam and threshold scans might be useful to constrain the underlying theory

Example: Higgs plus heavy singlet

CERN-2018-009-M

Philipp Roloff

Dark Matter searches...

... using stub tracks:

 CLIC might discover the thermal Higgsino at 1.1 TeV

... in loops:

CERN-2018-009-M

 $e^+e^- \rightarrow \chi^+\chi^-(+\gamma)$

Philipp Roloff

Summary and conclusions

• Substantial improvement with respect to HL-LHC possible for all discussed physics topics

• The ILC at 250 GeV provides precise measurements of many Higgs couplings and the Higgs mass using the Higgsstrahlung process, CLIC at 380 GeV also gives access to the WW fusion process and top-quark pair production

• An energy of at least 500 GeV gives access to double Higgs production (profits from the highest possible energies)

• Large amount of complementarity between direct and indirect searches for new particles and interactions

Much more information can be found at:

https://clic.cern/european-strategy https://ilchome.web.cern.ch/content/ilc-european-strategy-document

Thank you!

Philipp Roloff

Collider parameters

Collider	Туре	\sqrt{s}	$\mathscr{P}\left[\% ight]$	N(Det.)	\mathscr{L}_{inst}	\mathscr{L}	Time	
			$[e^{-}/e^{+}]$		$[10^{54}] \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$[ab^{-1}]$	[years]	
HL-LHC	pp	14 TeV	-	2	5	6.0	12	
HE-LHC	pp	27 TeV	-	2	16	15.0	20	pp colliders
FCC-hh	pp	100 TeV	-	2	30	30.0	25	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
		1					(+1)	
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	oto- colliders
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	e e conders
							(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
							(+4)	
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	
HE-LHeC	ep	2.6 TeV	-	1	1.5	2.0	20	ep colliders
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25	•

	'30	'32			'35					'40					'45				' 50					'55	
CEPC		24	40 Ge'	V			Ζ		W																
ILC						25	0 G	ieV								5	00 0	GeV	& 35) Ge	V				
FCC-ee								Ζ			V	V	24	0 Ge	eV		350	-365	GeV						
CLIC							3	80 0	GeV							1	.5 Te	e۷					3 T	eV	
LHeC						1.	3 Te	eV																	
FCC-eh/hh																20)/ab	per	exp.	in 2!	5 yea	ars			
HE-LHC																10)/ab	per	exp.	in 20) ye	ars			
HL-LHC			3/a	ab																					

+ **LE-FCC:** pp, 15 ab⁻¹ at √s = 37.5 TeV

arXiv:1905.03764

09/09/2018

Philipp Roloff

Cost and power

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.8 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

Daniel Schulte, Granada Symposium

09/09/2018

CLIC timeline

- Technology-driven schedule from start of construction
- After go-ahead, at least 5 years are needed before construction can start
- \rightarrow first beams could be available by 2035

CERN-2018-005-M

CLIC cost and power

380 GeV: large improvement compared to CDR (2012)

1.5 and 3 TeV: power not yet optimised \rightarrow will be done next

Collision energy [GeV]	Running [MW]	Standby [MW]	Off [MW]
380	168	25	9
1500	364	38	13
3000	589	46	17

CERN-2018-005-M

Hadron and e⁺e⁻ colliders

Hadron colliders:

- Proton is compound object
- \rightarrow Initial state unknown
- \rightarrow Limits achievable precision
- High-energy circular colliders possible
- High rates of QCD backgrounds
- \rightarrow Complex triggers
- \rightarrow High levels of radiation

e⁺e⁻ colliders:

- e⁺e⁻ are pointlike
- \rightarrow Initial state well-defined (\sqrt{s} , polarisation)
- \rightarrow High-precision measurements
- High energies (\sqrt{s} > 350 GeV) require linear colliders
- Clean experimental environment
- \rightarrow Less / no need for triggers
- \rightarrow Lower radiation levels

Philipp Roloff

pp and e⁺e⁻ collisions

Higgs bosons in e⁺e⁻ collisions

Collider stage:	No. H produced:
ILC 250 GeV, 2 ab ⁻¹	500000
CLIC 380 GeV, 1 ab ⁻¹	160000
ILC 500 GeV, 4 ab ⁻¹	500000
CLIC 1.5 TeV, 2.5 ab ⁻¹	1000000
CLIC 3 TeV, 5 ab ⁻¹	3300000

• No triggers

- \rightarrow all Higgs events usable
- Typical overall selection efficiencies: 20 60%

The projections shown in the following are based on realistic full detector simulations and include the impact of beam-beam effects

09/09/2018

Philipp Roloff

Kinematics and polarisation

Higgs polar angle:

At a few hundred GeV: Higgs bosons produced mostly in the central detector

At high energy:

Good forward detector coverage required

Impact of polarisation:

Polarisation		Scaling factor	[
$P(e^-): P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^-\!\rightarrow H\nu_e\overline{\nu}_e$	$e^+e^- \rightarrow He^+e^-$
unpolarised	1.00	1.00	1.00
-80%:0%	1.12	1.80	1.12
-80%:+30%	1.40	2.34	1.17
-80%:-30%	0.83	1.26	1.07
+80%: 0%	0.88	0.20	0.88
+80%:+30%	0.69	0.26	0.92
+80%:-30%	1.08	0.14	0.84

Higgsstrahlung:

Polarisation dependence relatively small

WW fusion:

Large enhancement in the -80% and -80%/+30% configurations

Invisible Higgs decays

The recoil mass technique also allows to identify invisible Higgs decays in a model-independent manner

CLIC, $\sqrt{s} = 350$ GeV, L = 1 ab⁻¹ BR(H \rightarrow inv.) < 0.69% at 90% CL

ILC, \sqrt{s} = 250 GeV, L = 2 ab⁻¹ BR(H→inv.) < 0.32% at 95% CL

Example: Recoil mass from $Z \rightarrow q\bar{q}$ assuming all Higgs bosons decay invisibly (L = 0.5 ab⁻¹)

Eur. Phys. J. C 76, 72 (2016) arXiv:1710.07621

Philipp Roloff

$H \rightarrow b\overline{b}/c\overline{c}/gg$ at $\sqrt{s} = 350 \text{ GeV}$

Simultaneous extraction of:

- Three decay modes: bb/cc/gg
 → precise flavour tagging
- Two production modes:
- ZH and WW fusion
- \rightarrow Higgs p_{τ} spectrum

Uncertainties on $\sigma x BR$

Decey	Statistical uncertainty						
Decay	Higgsstrahlung	WW-fusion					
$H \to b \overline{b}$	0.61 %	1.3 %					
$H \to c \overline{c}$	10 %	18 %					
$H \to gg$	4.3 %	7.2 %					

CLIC, \sqrt{s} = 350 GeV, L = 1 ab⁻¹

Eur. Phys. J. C 77, 475 (2017)

09/09/2018

Philipp Roloff

Top Yukawa coupling

09/09/2018

Philipp Roloff

Exotic Higgs decays

95% C.L. upper limit on selected Higgs Exotic Decay BR

- An e⁺e⁻ Higgs factory would provide large improvements compared to the HL-LHC
- The ILC projections are for 2 ab⁻¹ at 250 GeV
- Potential of WW fusion at higher energies to be explored (more than 1 million Higgs decays at 3 TeV CLIC)

Experimental challenges

 $HH \rightarrow b\overline{b}b\overline{b}$ is the "golden channel" in e⁺e⁻ collisions, combination with $HH \rightarrow b\overline{b}WW^*$ leads to small improvement

Main experimental challenges:

- b-tagging
- Forward detector coverage in case of $e^+e^- \rightarrow HHv_e^-v_e^-$
- Jet reconstruction

Philipp Roloff

Simplified models: axial vector

• Mediator is spin-1 particle (Z') coupled to an axial-vector current

(reach of direct DM searches limited \rightarrow interesting for colliders)

- pp colliders assume couplings to quarks only, e⁺e⁻ colliders assume couplings to leptons only
- \rightarrow projections not directly comparable

Simplified models: scalar

Mediator is spin-0 particle (φ)

y_f: Yukawa couplings

(reach of direct DM searches limited \rightarrow interesting for colliders)

- pp colliders assume couplings to quarks only, e⁺e⁻ colliders assume couplings to leptons only
- \rightarrow projections not directly comparable