Physics at the High-Luminosity LHC

Andreas B. Meyer

LFC19 9 September 2019

The Past, the Present and the Future

The High-Luminosity LHC

	2019 2020	2021 2022 2023	2024 2025 20	026 2027 2028 2029	2030 2031 2	2032 2033 2034			
		LHC	High-Luminosity LHC						
	LS2	LS2 Run 3		Run 4	LS4	Run 5			
ATLAS and CMS		2 x 10 ³⁴ 300 fb ⁻¹	Detector Upgrade	5-7 x 10 ³⁴ ∼1000 fb ⁻¹		5-7 x 10 ³⁴ 3000 fb ⁻¹			
LHCb	Detector Upgrade	2 x 10 ³³ 20 fb ⁻¹		2 x 10 ³³ 50 fb ⁻¹	Detector Upgrade II	2 x 10 ³⁴ 300 fb ⁻¹			

- 20 times more integrated luminosity than Run-2
- Better detectors, larger acceptance, better triggers
- Improved theory and analysis methods

Detector Upgrades

Detector Performance

 $p_T \ge \sigma(q/p_T)$

5

TDR-17-006

Detector Acceptance

Example

Acceptance: $|\eta| < 2.5$

Detector Acceptance

Example

CMS HL-LHC

Acceptance: $|\eta| < 4.0$

... and less detector material and better resolution

Physics at the High-Luminosity LHC

HL-LHC Projected Uncertainties

- Systematic uncertainties will be limiting factor for more and more measurements
- <u>HL/E-LHC working group:</u> Aim to make realistic projections based on Run-2 analyses
 → CERN Yellow Report (backup)
- Convention "YR18":
 - Statistics scale as $1/\sqrt{L}$
 - No uncertainty due to MC statistics
 - Theory reduced by factor 2
 - Exp. systematics scale as $1/\sqrt{L} \rightarrow$ until "floor"
 - "Floor" values for all physics objects estimated and agreed
 - Keeping "Run-2" and "stat-only" for comparison

Realistic estimate of uncertainties

8

Standard Model

Precision Measurements

arXiv:1810.03639

Ultimate Precision PDF

- Parton density distributions based on differential cross sections at ultimate precision
- Projection using pseudo-data Z(pt), high-mass DY, top quark pair, W+charm, direct photon and inclusive jets

PDFs at the HL-LHC (Q = 10 GeV)

-0.6

Physics at the High-Luminosity LHC

Ultimate Precision Cross Sections

- Run-1 example: $\sigma_{fid}(Z/\gamma^* \rightarrow \ell \ell) = 502.2 \pm 0.3 \text{ (stat)} \pm 1.7 \text{ (syst)} \pm 9.0 \text{ (lumi) pb}$
- arXiv:1612.03016 Systematic uncertainties Run 1 data Events / GeV Lepton ID: 0.3% ATLAS Data 10⁶ total (stat) $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ Lepton isolation: 0.15% Z/γ^̃→μμ Z → u+u Ζ/ν^{*}→ττ Signal modelling: 0.2% 10⁵ + single top Dibosons Integrated luminosity: ~2% Multiiet 10⁴ Luminosity is single 10^{3} largest uncertainty HL-LHC 10^{2} Improved luminosity detectors (being designed) 10 Further refined Van-der-Meer analysis Additional low-PU runs for cross section measurements 60 80 100 120 140

(no uncertainty due to low-to-high PU extrapolation)

 $m_{\mu\mu}$ [GeV]

 Once measured at (sub-)percent level, Z-boson rate measurement can help luminosity measurement → planning for proof of concept in Run-3
 arXiv:1806.02184

Target luminosity uncertainty YR2018: 1%

Andreas B. Meyer

Physics at the High-Luminosity LHC

- Current dominant uncertainty: PDF
- Extended η-range: measurements in central and forward regions are anticorrelated.
- Low PU: high-resolution missing energy
- Low-PU run (μ~2) at HL-LHC:
 - 200 pb⁻¹, |η|<2.4: 2x10⁶ evts. 16 MeV
 - 200 pb⁻¹, |η|<4:</p>
 - 1 fb⁻¹, |η|<4: 9 MeV

+ ultimate PDF: 5 MeV

200

300

600

700

800

1000

12

900

DESY.

Jet Cross Sections

CMS-PAS-FTR-18-032

- Differential jet cross sections expect O(10) inclusive di-jet events above 4 TeV
- Angular correlations of jets in different regimes (pt vs mass and color)

DESY.

Higgs

Precise Properties and Couplings for H(125) Searches in the Higgs Sector

Signal strength uncertainties: most channels ~3%, bb ~5%, $\mu\mu$ ~10%

Higgs Combination

CMS FTR-18-011 ATL-PHYS-PUB-2018-054

Uncertainties dominated by theory uncertainty estimates (!)

Experimental uncertainties: ~1% (µ ~4%)

Physics at the High-Luminosity LHC

Differential Higgs Measurements

between quark loops $\rightarrow \kappa_b$ and κ_c

With 3000 fb⁻¹ constrain κ_c and κ_λ to a few times SM

Higgs and Charm

- Limits on **k**_{c,s,d,u} for 2 x 3000 fb⁻¹
 - global fit to production cross section (κ-fit)
 - direct search for a cc final state (VH \rightarrow cc)
 - differential cross-sections (e.g. previous page)
 - total width (off/on-sh & interf. in pp \rightarrow 4 ℓ and $\gamma\gamma$)
 - exclusive decays (e.g. $H \rightarrow J/\psi\gamma$)

DESY.

Physics at the High-Luminosity LHC

LFC19, ITENIO, 9 September 4

Higgs Self-Coupling: HL-LHC and HE-LHC

arXiv:1902.00134

Vector Boson Scattering

BSM Higgs

- From kappa fit (for $\kappa_V < 1$): B_{BSM} < 2.5%
- Direct n→invisible: Binv < 2.5% <u>ATL-PHYS-PUB-2013-014</u> CMS-FTR-18-016
- MSSM Higgs: H/A $\rightarrow \tau\tau$: M_A limit increased to ~2 TeV

95% CL

- CP-odd ouplings from ττ spin correlations (limits s_{168% CL} only for HVV)
 - $H \rightarrow \tau \tau$ with $\tau^{\pm} \rightarrow \varrho^{\pm} \nu_{\tau} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$
 - ϕ^*_{CP} = angle between the two τ decay planes
 - Sensitivity strongly depends on π^0 resolution and τ -ID

 $H/A \rightarrow \tau^+ \tau^-$ expected exclusion (95% C.L.)

ATL-PHYS-PUB-2019-008

Frame: Σ p(vis. dec. products) = 0

Possible exclusion of CP-odd H- τ coupling with this analysis alone: ~2 σ

Andreas B. Meyer

DESY

24

CMS-FTR-18-017

Direct Searches

Heavy Resonances, Supersymmetry, Long-Lived Particles, Dark Matter

Supersymmetry

- Strong SUSY ($\sigma \ge 1$ pb at m = 500 GeV): many scenarios already excluded up to 1 TeV
- Electroweak SUSY ($\sigma < 0.1$ pb at m = 500 GeV): could still be light

DESY.

DESY

Andreas B. Meyer

Physics at the High-Luminosity LHC

J0

Dark Sector

DESY.

Dark Matter ...

- ... is known to exist:
 → uncover its elementary nature at the LHC (?)
- Simplified models for comparison with direct detection experiments

Physics at the High-Luminosity LHC

Flavour

Low p_T / High p_T Complementarity

Flavour Anomalies: Low p_T

- Tension in current measurements
 - R(K*), b \rightarrow sµµ: 2-3 σ below expectation
 - R(D^{*}), b \rightarrow c $\tau\nu$: 3-4 σ above expectation
 - P_5 ' from $B \rightarrow K^* \mu \mu$: LHCb also in tension
- LHCb will measure several more channels, also with $B_{S_{c}} \Lambda_{b}$ and B_{c}

Imperial College London

B factory data

 $R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)}e^+e^-)}$

LHCb

5

≈[≈] ^{2.0}.

1.5

1.0

0.5

tension

arXiv:1903.09252

BaBar

▲ Belle LHCb Run 1

10

• LHCb Run 1 + 2015 + 2016

20

15

- $R(K^*) b \rightarrow s\ell\ell$
 - Theoretically very clean
 - Could be explained by LQ or flavour violating Z'
 - However, $Z' \rightarrow \mu\mu$ already excluded (EFT)

LQ \rightarrow tr channel

CMS

Summary

HL-LHC: superior detectors, refined analyses, advanced theory

- Recent detailed update and extension of HL-LHC projections
- Yellow Report imminent (links to pre-prints in backup)

3000 fb⁻¹ of extremely rich and exciting physics

- Standard model: ultimate precision and rare processes
- Higgs: precise determination of the H(125) properties and searches
- Direct searches: discover new physics or close a few chapters
- Flavour: high/low p_T complementarity
- Heavy Ion (not shown): precise differential measurements

Expecting to exceed expectations

Physics at the High-Luminosity LHC

LFC19, Tr

Workshop on Physics at HL-LHC and Perspectives for HE-LHC

>1000 authors

http://lpcc.web.cem.ch/hlhe-lhc-physics-workshop

- Review, extend and refine our understanding of the HL-LHC physics potential
- <u>Begin</u> a study of physics at the HE-LHC, a possible pp collider with energy of ~27 TeV
- Working Group Report, "YR2018"
 - WG1: Standard Model arXiv:1902.04070 220 pages, ~200 authors
 WG2: Higgs arXiv:1902.00134 364 pages, ~400 authors
 WG3: BSM arXiv:1812.07831 281 pages, ~300 authors
 WG4: Flavour arXiv:1812.07638 298 pages, ~300 authors
 WG5: High-density QCD arXiv:1812.06772 209 pages, ~200 authors
 - Addendum (ATLAS&CMS notes) <u>arXiv:1902.10229</u> 1377 pages, >5000 authors
- Two 10-page executive summaries >1000 authors each submitted to the European Strategy Update Group
 - HL-LHC <u>https://indico.cern.ch/event/765096/contributions/3295995/</u>
 - HE-LHC <u>https://indico.cern.ch/event/765096/contributions/3296016/</u>

October 2017 Kick-off meeting

June 2018 <u>Plenary meeting</u>

December 2018 Reports submitted to EPPSU

1 March 2019 Jamboree

13-16 May 2019 Open EPPSU Meeting Granada

Andreas B. Meyer

Combined signal strength significance: 4σ (stat. + syst.)

Effective Field Theory (EFT)

arXiv:1902.00134

constrain several Wilson coefficients to the percent level (exclusive bound)

Physics at the High-Luminosity LHC

Effective Field Theory (EFT)

Fit of dim-6 operators to Higgs, VBS and DY data (HE-LHC) **HEP** fit LHC+LEP/SLD ■ HE-LHC Exclusive bound 4×10⁻⁴ 50 95% prob. bounds 10 0.01 N√ C, [TeV] 0.04 C_i/N²[TeV⁻². 5 1 0.5 0.1 *O*_{3 *W*} **O**GG O_{WW} **O**BB **O**WB **O**_{2 W} **O**_{HW} **O_{HB}** O_{HD} O_H O_v O_{2B} **0**₆

constrain several Wilson coefficients to the sub-percent level (exclusive bound)

arXiv:1902.00134

arXiv:1812.07831

ŀ	IL/HE-LHC	SUSY	Search		$dt = 3ab^{-1}$: 5 σ discovery (95% CL exclusion)	Si	mulation Preliminary
	Model	e, μ, τ, γ	Jets	Mass limit	$dt = 15ab^{-1} \cdot 5\sigma$ discovery (95% CL exclusion)		$\sqrt{s} = 14, 27$ lev Section
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0	4 jets	Ĩ	2.9 (3.2) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.1
Gluino	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0	4 jets	Ĩ	5.2 (5.7) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.1
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0	Multiple	Ĩ	2.3 (2.5) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.3
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{c} \tilde{\chi}_1^0$	0	Multiple	Ĩ	2.4 (2.6) TeV	$m(\tilde{\chi}_1^0)$ =500 GeV	2.1.3
	NUHM2, $\tilde{g} \rightarrow t\tilde{t}$	0	Multiple/2b	ĝ	5.5 (5.9) TeV		2.4.2
Stop	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	0	Multiple/2b	Ĩ ₁	1.4 (1.7) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.2, 2.1.3
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0	Multiple/2b	\tilde{t}_1	0.6 (0.85) TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$	2.1.2
	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}b\tilde{\chi}^{\pm}/t\tilde{\chi}^0_1,\tilde{\chi}^0_2$	0	Multiple/2b	ĩ	3.16 (3.65) TeV		2.4.2
Chargino, neutralino	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^\pm \rightarrow W^\pm \tilde{\chi}_1^0$	2 <i>e</i> , <i>µ</i>	0-1 jets	$\tilde{\chi}_1^{\pm}$	0.66 (0.84) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.1
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	3 e, µ	0-1 jets	$ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0$	0.92 (1.15) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.2
	${\tilde \chi}_1^{\pm} {\tilde \chi}_2^0$ via <i>Wh</i> , <i>Wh</i> $ ightarrow \ell \nu b {\bar b}$	1 e, µ	2-3 jets/2b	$ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0$	1.08 (1.28) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.3
	$\tilde{\chi}_2^{\pm} \tilde{\chi}_4^0 {\rightarrow} W^{\pm} \tilde{\chi}_1^0 W^{\pm} \tilde{\chi}_1^{\pm}$	2 <i>e</i> , <i>µ</i>	-	$ ilde{\chi}^{\pm}_{2}/ ilde{\chi}^{0}_{4}$	0.9 TeV	m($\tilde{\chi}_1^0$)=150, 250 GeV	2.2.4
gsino	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$	2 <i>e</i> , <i>µ</i>	1 jet	$ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0$	0.25 (0.36) TeV	$m(\tilde{\chi}_1^0)=15 GeV$	2.2.5.1
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$	2 <i>e</i> , <i>µ</i>	1 jet	$ ilde{\chi}_1^{\star}/ ilde{\chi}_2^0$	0.42 (0.55) TeV	$m(\tilde{\chi}_1^0)=15 GeV$	2.2.5.1
Hig	$\tilde{\chi}^0_2 \tilde{\chi}^\pm_1, \tilde{\chi}^\pm_1 \tilde{\chi}^\mp_1, \tilde{\chi}^\pm_1 \tilde{\chi}^0_1$	2 μ	1 jet	$ ilde{\chi}^0_2$	0.21 (0.35) TeV	$\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 5 \text{GeV}$	2.2.5.2
Wino	${ ilde \chi}_2^{\star} { ilde \chi}_4^0$ via same-sign WW	2 e, µ	0	Wino	0.86 (1.08) TeV		2.4.2
	$\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ	-	τ	0.53 (0.73) TeV	$m(\tilde{\chi}_1^0)=0$	2.3.1
stau	$\tilde{\tau}\tilde{\tau}$	$2\tau,\tau(e,\mu)$	-	$ ilde{ au}$	0.47 (0.65) TeV	$m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.2
0)	ττ	$2\tau,\tau(e,\mu)$	-	τ	0.81 (1.15) TeV	$m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.4
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}, ilde{\chi}_1^{\pm} ilde{\chi}_1^0$, long-lived $ ilde{\chi}_1^{\pm}$	Disapp. trk.	1 jet	$\tilde{\chi}_1^{\pm} [\tau(\tilde{\chi}_1^{\pm})=1$ ns]	0.8 (1.1) TeV	Wino-like $\tilde{\chi}_1^{\pm}$	4.1.1
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \text{long-lived} \tilde{\chi}_1^{\pm}$	Disapp. trk.	1 jet	$\tilde{\chi}_1^{\pm} = [\tau(\tilde{\chi}_1^{\pm}) = 1 \text{ns}]$	0.6 (0.75) TeV	Higgsino-like $\tilde{\chi}_1^{\pm}$	4.1.1
	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.88 (0.9) TeV	Wino-like DM	4.1.3
pe s	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	2.0 (2.1) TeV	Wino-like DM	4.1.3
g-live ticle.	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.28 (0.3) TeV	Higgsino-like DM	4.1.3
Long	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.55 (0.6) TeV	Higgsino-like DM	4.1.3
	\tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	0	Multiple	$\tilde{g} = [\tau(\tilde{g}) = 0.1 - 3 \text{ ns}]$	3.4 TeV	$m(\tilde{\chi}_1^0)$ =100 GeV	4.2.1
	\tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	0	Multiple	$\tilde{g} = [\tau(\tilde{g}) = 0.1 - 10 \text{ ns}]$	2.8 TeV		4.2.1
	GMSB $\tilde{\mu} \rightarrow \mu \tilde{G}$	displ. μ	-	μ̃	0.2 TeV	<i>cτ</i> =1000 mm	4.2.2
							arXiv:1812.07831
				10-1	Mass scale [TeV]		

Fig. 7.1: A summary of the expected mass reach for 5σ discovery and 95% C.L. exclusion at the HL/HE-LHC, as presented in Section 2.

arXiv:1812.07831

_

Model	spin	9 5%	% CL L	imit (s	olid), 5	σ Dis	scover	(dash) See	ction HE-LHC
$KK \rightarrow 4b$	2								6.1.	1
$HVT \rightarrow VV$	1		Ē						6.4.	4 6.4.4
$G_{RS} \rightarrow W^+ W^-$	1									6.4.6
$G_{RS} \rightarrow t\bar{t}$	1								6.2.	2 6.2.2
$Z_{TC2}^{'} \rightarrow t\bar{t}$	1								6.2.	3 6.4.6
$Z_{SSM} \rightarrow t\bar{t}$	1									6.4.6
$Z^{'}_{\psi} ightarrow \ell^+ \ell^-$	1	******							6.2.	5 6.2.5
$Z_{SSM}^{'} \rightarrow \ell^{+}\ell^{-}$	1	*******							6.2.	5 6.2.4
$Z_{SSM}^{'} ightarrow au^{+} au^{-}$	1									6.2.4
$W_{SSM}^{\prime} \rightarrow \tau v$	1	 		 	000 <u>8</u> 0005				6.2.	7
$W_{SSM} \rightarrow \ell v$	1				Ē				6.2.	6
$W_R \to tb \to bb\ell v$	1	 		nc ur					6.2.	6
$Q^* ightarrow jj$	$\frac{1}{2}$,								6.4.6
$v^{Majorana} \rightarrow \ell q q'$	$\frac{1}{2}$	******		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					5.1.	3 5.1.3
v^{Heavy} $(m_N = m_E)$	$\frac{1}{2}$	0101010							5.1.	1 5.1.1
$\ell^* \to \ell \gamma$	1 2								6.3.	1
$LQ(pair prod.) \rightarrow b\tau$	0	nnne neneré				Η	E-LHC		5.2.	3 5.2.4
$LQ \rightarrow t\mu$	0	0000 <u>2</u> 00005				√ 5	s = 27 TeV	∕, <i>L = 15 a</i>	b ⁻¹ 5.2.	1
$LQ \rightarrow t\tau$	0	<u>.</u> 				н			5.2.	1
$H^{++}H^{} \to \tau_h \ell^{\pm} \ell^{\mp} \ell^{\mp} (N)$	H) 0					 Ve	= 14 TeV	′. <i>L = 3 ab</i>	-1 5.1.	1 5.1.1
$H^{++}H^{} \to \tau_h \ell^{\pm} \ell^{\mp} \ell^{\mp} (IH)$	/) 0			Ļ			Ļ	Ĺ	5.1.	1 5.1.1
$(\ell = e, \mu)$	0	2	2 4	4	6 8	3 1	0 1	2 14	arXiv:181	2.07831
Mass scale [TeV]										

