LOW/HIGH ENERGY TRANSFER REGIONS IN VALENCIA MODEL

Joanna Sobczyk 5 June 2019

What kind of physics is needed in each case?

SUPERNOVAE/SOLAR NEUTRINOS

- S. Gardiner talk
- Available models:
 - CRPA
 - ab-initio calculations

ACCELERATOR NEUTRINOS

$$\frac{d\sigma}{dqd\omega}_{\text{T2K}}^{\text{osc}} = \frac{1}{\mathcal{W}} \int dE \frac{d\sigma}{dqd\omega}^{\text{CCQE}} \mathcal{F}(E) \mathcal{P}_{\nu_{\mu} \to \nu_{e}}(E)$$

J.E.S; PRC 96, 045501 (2017)

EXISTING DESCRIPTIONS

- LDA + potential (GiBUU)
- SF + Optical potential (Rome)
- Hartree-Fock +CRPA (Ghent)
- LDA + SF (Valencia)
- SuSAv2
- ab-initio (GFMC)

For inclusive QE data they seem to work decently well*

*check when 2p2h and pion production are included

How low/high can we get with these models?

VALENCIA MODEL: QE MECHANISM

- LDA (Local Density Approximation)
- 2 "ingredients" to describe the initial nucleus:
 - RPA (~M. Martini et al. model)
 - Spectral function
- The outgoing nucleon (and its possible interaction with the residual system):
 - Particle spectral function
 - Plane wave

GROUND STATE

spectral function model:

P. Fernandez de Cordoba, E. Oset Phys. Rev. C46 (1992) 1697-1709

$$\frac{d\sigma}{dE_{k'}d\Omega(\hat{k}')} = \frac{G_F^2 \sin^2 \theta_C}{4\pi^2} \frac{|\vec{k}'|}{|\vec{k}|} L^{(\bar{\nu})}_{\mu\sigma}(k,k') W^{\mu\sigma}(q)$$

$$L^{(\bar{\nu})}_{\mu\sigma}(k,k') = k_{\mu}k'_{\sigma} + k'_{\mu}k_{\sigma} - g_{\mu\sigma}k \cdot k' - i\epsilon_{\mu\sigma\alpha\beta}k'^{\alpha}k^{\beta}$$

GROUND STATE (I)

• Semi-phenomenological model for nucleon self-energy $\Sigma(p, E)$ in nuclear medium, satisfying low density theorem.

NN interaction taken from scattering data

polarisation effects using empirical spin-isospin interaction

$$\operatorname{Re}\Sigma(p,E) = -\frac{1}{\pi}\mathscr{P}\int_{E_F}^{\infty} dE' \frac{\operatorname{Im}\Sigma(p,E')}{E-E'} + \frac{1}{\pi}\mathscr{P}\int_{-\infty}^{E_F} dE' \frac{\operatorname{Im}\Sigma(p,E')}{E-E'}$$

P. Fernandez de Cordoba, E. Oset Phys. Rev. C46 (1992) 1697-1709

GROUND STATE (I)

• Spectral functions:

$$S_{p,h}^{\text{LDA}}(\mathbf{p}, E) = \mp \frac{1}{\pi} \frac{\text{Im}\Sigma(\mathbf{p}, E)}{\left(E - \mathbf{p}^2/2m - \text{Re}\Sigma(\mathbf{p}, E)\right)^2 + \text{Im}\Sigma(\mathbf{p}, E)^2}$$

Local density approximation (LDA)

$$W_{LDA}^{\mu\nu}(q) = 2 \int d^3r \int \frac{d^3p}{(2\pi)^3} \int dE S_h^{LDA}(E, \mathbf{p}, \rho) \frac{M}{E_p} \frac{M_Y}{E_{p+q}} \delta(E+q^0 - E_{p+q}^Y(\rho)) A^{\mu\nu}(p, q)$$

 $A^{\mu\nu}(p,q) = \langle \mathbf{p} | (j_{cc}^{\mu})^{\dagger} | \mathbf{p} + \mathbf{q} \rangle \langle \mathbf{p} + \mathbf{q} | j_{cc}^{\nu} | \mathbf{p} \rangle$

matrix element for a single nucleon

RPA EFFECTS

Landau-Migdal potential

 $V = c_0 \left\{ f_0(\rho) + f'_0(\rho)\vec{\tau}_1 \cdot \vec{\tau}_2 + g_0(\rho)\vec{\sigma}_1 \cdot \vec{\sigma}_2 + g'_0(\rho)(\vec{\sigma}_1 \cdot \vec{\sigma}_2)(\vec{\tau}_1 \cdot \vec{\tau}_2) \right\}$

$$V_{l}(q) = \frac{f^{2}}{m_{\pi}^{2}} \left\{ \left(\frac{\Lambda_{\pi}^{2} - m_{\pi}^{2}}{\Lambda_{\pi}^{2} - q^{2}} \right)^{2} \frac{\vec{q}^{2}}{q^{2} - m_{\pi}^{2}} + g' \right\}, \qquad f^{2}/4\pi = 0.08, \quad \Lambda_{\pi} = 1200 \text{ MeV}$$
$$V_{t}(q) = \frac{f^{2}}{m_{\pi}^{2}} \left\{ C_{\rho} \left(\frac{\Lambda_{\rho}^{2} - m_{\rho}^{2}}{\Lambda_{\rho}^{2} - q^{2}} \right)^{2} \frac{\vec{q}^{2}}{q^{2} - m_{\rho}^{2}} + g' \right\}, \qquad C_{\rho} = 2, \quad \Lambda_{\rho} = 2500 \text{ MeV}$$

What is the relation between CRPA and RPA?

HOW LOW CAN WE GET?

using spectral function for both particle and hole

LOW ENERGY PROCESSES

LOW ENERGY PROCESSES

muon capture

$$(A - \mu^{-})^{1s}_{\text{bound}} \to \bar{\nu} + X \qquad \mu^{-}$$

LOW ENERGY PROCESSES

muons are 300 times heavier than electrons

muon capture

$$(A - \mu^{-})^{1s}_{\text{bound}} \to \bar{\nu} + X \qquad \mu^{-}$$

the wave function overlaps with nucleus

the system is unstable (interaction with nucleus)

governed by the same CC interaction

pion radiative capture

$$(A - \pi^{-})_{\text{bound}} \rightarrow \gamma + X \qquad \pi^{-}$$

KINEMATICS

bound muon/pion are at rest

$$(q_0, \overrightarrow{q}) = (m_{\mu/\pi} - |\overrightarrow{k}|, \overrightarrow{k})$$

2

maximal energy transferred

$$m_{\mu} = 105 \text{ MeV}$$

 $m_{\pi} = 135 \text{ MeV}$

the position of the quasi-elastic peak

$$E_{QE} \approx \frac{m_{\mu/\pi}^2}{2M}$$

 $\approx 10 \text{ MeV}$

Nucleus	Pauli (10 ⁴ s ⁻¹)	RPA (10^4 s^{-1})	SF (10^4 s^{-1})	SF+RPA (10^4 s^{-1})	Exp. (10^4 s^{-1})
¹² C	5.76	3.37 ± 0.16	3.22	3.19 ± 0.06	3.79 ± 0.03
¹⁶ 0	18.7	10.9 ± 0.4	10.6	10.3 ± 0.2	10.24 ± 0.06
¹⁸ 0	13.8	8.2 ± 0.4	7.0	8.7 ± 0.1	8.80 ± 0.15
²³ Na	64.5	37.0 ± 1.5	30.9	34.3 ± 0.4	37.73 ± 0.14
⁴⁰ Ca	498	272 ± 11	242	242 ± 6	252.5 ± 0.6

PION RADIATIVE CAPTURE

discrete transitions are more important

$$\frac{dR^{(\gamma)}}{d|\vec{k}|} = \sum_{nl} \frac{w_{nl}}{\Gamma_{nl}^{abs}} \frac{d\Gamma_{nl}^{(\gamma)}}{d|\vec{k}|}$$
pionic levels

Table 5

Experimental and theoretical flux averaged ${}^{12}C(\nu_{\mu}, \mu^{-})X$ and ${}^{12}C(\nu_{e}, e^{-})X$ cross sections in 10^{-40} cm² units. Theoretical errors in the RPA predictions show MC 68% CL intervals derived from the uncertainties on the $ph(\Delta h)-ph(\Delta h)$ effective interaction. We also quote results from other calculations (see text for details).

	Pauli	RPA	SF	SF+RPA	SM	SM	CRPA		Experiment	
	24° 1.3*		No. 2		[133]	[44]	[45]	LSND [123]	LSND [124]	LSND [125]
$\bar{\sigma}(\nu_{\mu},\mu^{-})$	23.1	13.2 ± 0.7	12.2	9.7 ± 0.3	13.2	15.2	19.2	$8.3\pm0.7\pm1.6$	$11.2 \pm 0.3 \pm 1.8$	$10.6 {\pm} 0.3 {\pm} 1.8$
	all see						E FRICK	KARMEN [128]	LSND[126]	LAMPF [127]
$\bar{\sigma}(v_e, e^-)$	0.200	0.143±0.006	0.086	0.138±0.004	0.12	0.16	0.15	$0.15 \pm 0.01 \pm 0.01$	0.15 ± 0.01	0.141 ± 0.023

What are the CRPA Ghent results?

HOW HIGH CAN WE GET?

using spectral function only for the hole

using spectral function for both particle and hole

ONLY HOLE SF

FSI: quenches the response and enhances the high-energy tail

HIGHER ENERGIES: COMPARISON

FSI: do they change the total cross section or just redistribute strength?

POSITIVE SIDES OF THIS APPROACH

- It is based on the LDA: direct possibility to generate the primary vertex
- Possibility to use of various targets
- Simplicity
- Contains both RPA and SF
- works decently well for electrons
- for low energy transfers description of the hole and particle states within the same formalism

DEFICIENCIES OF THIS APPROACH

- For low energies describes the total strength of RPA but not the spectrum
- Simplicity: no insight into details of the nuclear structure
- For high momentum transfer we can use only plane wave (now we do not use any model for FSI)