Consistency between low and high energy models

Alexis Nikolakopoulos Ghent University

Testing and improving models of neutrino nucleus interactions in generators, ECT*, Trento, Italy, 2-7 June, 2019

- I. Description of the Ghent CRPA model
- II. The influence of forbidden transitions in charged current scattering on Argon
- III. Differences between electron and muon neutrino cross sections

The mean field approach (briefly)

The mean field potential and bound states are obtained in a selfconsistent Hartree-Fock calculation with a realistic nucleon-nucleon force All bound and scattering states are obtained by solving the Schrödinger (or Dirac) equation in a central mean field potential.

This means all states are consistent and orthogonal within this approach.

Naturally includes:

Binding Fermi motion Elastic Final state interactions Pauli blocking orthogonality

This approach captures the main nuclear effects in a consistent quantum mechanical way

4 June 2019, ECT*

ALEXIS NIKOLAKOPOULOS

ALEXIS NIKOLAKOPOULOS

UNIVERSITY

Final state interactions

-Calculations of the wave function of the outgoing nucleon in the same (real) nuclear potential used for the initial state
-influence of the spreading width of the particle states is implemented through a folding procedure

Coulomb corrections

GHENT

- ✓ Low energies : Fermi function (s-wave correction factor) $F(Z', E) = \frac{2\pi\eta}{1 e^{-2\pi\eta}}$ $\eta \sim \mp Z' \alpha$
- High energies : modified effective momentum approximation (J. Engel, PRC57,2004 (1998))

CRPA : Comparison with electron scattering data q ~ 160 [MeV/c], Q² ~ 0.026 [(GeV/c)²] q ~ 207 [MeV/c], Q² ~ 0.042 [(GeV/c)²] q ~ 95 [MeV/c], Q² ~ 0.009 [(GeV/c)²] q ~ 15

Hartree-Fock

CRPA

GHENT

UNIVERSITY

ALEXIS NIKOLAKOPOULOS

GHENT UNIVERSITY

ALEXIS NIKOLAKOPOULOS

Low energy excitations at higher E_{v}

4 June 2019, ECT*

Multipole contributions to total CS

CC scattering of electron neutrinos neutrinos scattering on Argon. Different multipoles shown cumulatively.

Forbidden transitions carry significant strength for continuum excitations!

4 June 2019, ECT*

4 June 2019, ECT*

A. Nikolakopoulos

12

0.8

The higher order multipoles give significant strength for low outgoing lepton energies

4 June 2019, ECT*

- Mean field models give larger v_{μ} than v_{e} cross sections for low ω and q
- Collective excitations add significant strength

14

Leptonic prefactors

Longitudinal

Transverse

From the leptonic vertex one expects the electron neutrino to dominate

4 June 2019, ECT*

Leptonic prefactors

Caveat: close to threshold the muon gets transverse contributions.

 $\omega_{TT'}W_{TT'} = -\frac{1}{|\vec{k}|} \left(\frac{\epsilon_i \epsilon_f}{k_f} + k_f - (\epsilon_i + \epsilon_f) \cos\theta\right) Im \left(J_{||}J_{\perp}^*\right)$

4 June 2019, ECT*

4 June 2019, ECT*

Longitudinal Transverse $\cos \theta_l = 0.998$ $\cos \theta_l = 0.838$ $\cos \theta_l = 0.777$ 0.61.41.4muon 1.21.20.5electron $R_t \left[\text{GeV}^{-1} \right]$ $R_{cc} \left[{\rm GeV}^{-1} \right]$ 0.40.8 0.80.30.60.60.20.40.40.10.20.2Ω ω (MeV) $\omega \,({\rm MeV})$ $\omega \,({\rm MeV})$ $\omega \,({\rm MeV})$ ω (MeV) ω (MeV) The muon mass in the final state 0. R_{cl} [GeV⁻¹] 0. leads to a larger momentum 0. 0. 0. transfer which shifts the response to larger values ω (MeV) $\omega \,({\rm MeV})$ $\omega \,({\rm MeV})$ 3.5 $\mathbf{5}$ $R_{ll} \left[\text{GeV}^{-1} \right]$ 2.5 $q \,\,\mathrm{MeV}$ $\mathbf{2}$ 1.5 $\mathbf{2}$ $\mathbf{2}$ 0.5 $\omega \,({\rm MeV})$ ω (MeV) $\omega \,({\rm MeV})$ $\omega \,({\rm MeV})$ ω (MeV) ω (MeV)

4 June 2019, ECT*

Leptonic x Responses

CRPA

Leptonic x Responses

CRPA

Comparison to PWIA

Large reduction at low ω and q with distorted waves

21

Orthogonality and Pauli-blocking

Pauli blocked RPWIA (PB-RPWIA) (arXiv:1904.10696, R. Gonzalez-Jimenez)

$$\Psi^{s_N}(\mathbf{p}_N)\rangle = |\psi^{s_N}_{pw}(\mathbf{p}_N)\rangle - \sum_{\kappa,m_j} [C^{m_j,s_N}_{\kappa}(\mathbf{p}_N)]^{\dagger} |\psi^{m_j}_{\kappa}\rangle$$

$$C_{\kappa}^{m_j,s_N}(\mathbf{p}_N) = (2\pi)^{3/2} \sqrt{\frac{M}{VE_N}}$$
$$\times u(\mathbf{p}_N,s_N)^{\dagger} \psi_{\kappa}^{m_j}(\mathbf{p}_N).$$

Orthogonalize the relativistic plane wave with respect to the bound states of the nucleus.

In a consistent model all nucleon states are orthogonal to eachother. This implies Pauli-blocking as the nucleon wave function does not overlap with a bound state

Difference between v_{μ} and v_{e}

Non-trivial ratio of electron versus muon neutrino cross sections have a significant overlap with the T2K oscillated flux weighted cross section

Conclusions

I. The CRPA model is able to provide a consistent description of the CC scattering of neutrinos with nuclei from low to intermediate excitation energies

II. Forbidden transitions contribute considerably strength for scattering of low energy neutrinos on Argon

II. We find larger Responses for muon than for electron neutrinos for forward scattering angles if the initial and final state wave functions are treated consistently

III. By orthogonalization of the final state PW to the bound states of the nucleus we remove spurious non-orthogonal contributions and obtain the same ratio as in the full calculation.