
Steven Gardiner
ECT Workshop on Testing and Improving Models of Neutrino Nucleus Interactions in Generators
June 2019

Summary of Theory API discussion

06/05/2019�2

Why make a theory API for neutrino generators?
• One way of addressing the organizational “pain points” mentioned in

Laura’s plenary talk on Monday

- Lag between theory development & generator inclusion

- Road for theorists to contribute to generators may seem unclear to
them and be poorly incentivized (citations!)

- Limited number of generator authors ⟶ limited bandwidth for model
inclusion

• Another thought (pointed out by P. Machado)

- Growing theory interest in looking at BSM physics in neutrino
experiments

- Many models, unlikely to be a priority for generator developers

- Some tinkering has already been done, but a real API would greatly
facilitate this work

06/05/2019�3

• One strategy for speeding up inclusion of theory models in generators

• Relies on precomputed a nuclear tensor, with elements 
interpolated on a (q0, q3) grid

• SuSAv2 calculation (QE + MEC) adapted for GENIE

- Existing Valencia MEC implementation also restructured to use general interface
- Demonstration that theory groups are able and willing to provide needed inputs

• Explored in-depth at this workshop (WG 3.3, see S. Dolan’s talk later today) 

- Some (current) limitations:
‣ lepton kinematics only
‣ no ability to tune / reweight parameters used to make tables

• Need to “invent” hadron kinematics could be mitigated by including more tabulated
responses (15 instead of 5), at least for single nucleon knockout

• Theory API group explored what other approaches might be possible
- Not mutually exclusive

Factorizable hadron tensor interface

dσ ∝ LμνWμν

06/05/2019�4

One option: interface for N-fold differential cross sections

• Primarily discussed via email in advance of the workshop

• Object of interest is a differential cross section in an arbitrary phase space

- Code specifies the variables to be thrown, allowed ranges

- Function takes those values as input (with other needed information,
e.g., neutrino 4-momentum), returns cross section

- Kinematics sampled, used to construct outgoing 4-momenta

‣ Some cross section calculations are already generators themselves

‣ In principle, could handle everything pre-FSI in contributed code and
pass result into event record

- FSI model then takes over

dnσ
dXn

06/05/2019�5

• Very general, but this comes at the price of complexity

- If we ask theorists for too much, we may not get anything! 

• GENIE already has this in some sense

- To get results from an external cross section function, the existing
interface would just need to be exposed

- However, each cross section requires a custom generator module
(samples kinematics, finds maximum for rejection sampling, etc.)

- We don’t mind having large tables / high-dimensional phase spaces.
Physics payoff is worth it!

dnσ
dXn

One option: interface for N-fold differential cross sections

06/05/2019�6

A middle way?
• Luis proposed a third option in our parallel session

- Extensive discussion about what models / effects can be represented

• Rather than providing integrated nuclear responses 
(as in the factorizable hadron tensor interface), express 
the cross section in terms of three objects:

- A hadronic (as opposed to nuclear) tensor
- A particle spectral function
- A hole spectral function

• Still quite general (N, NN, Nπ, etc.)
- All pieces not necessarily provided by all calculations, e.g., 

typically handled by intranuclear cascade
- Complexity grows rapidly with number of particles produced

• Phase space determined by the channel represented by

- Throw kinematics, pass 4-momenta needed to calculate these objects
to external code

- Use results to evaluate differential cross section

dσ ∝ LμνWμν

dσ ∝ ∫ d4p Hμν Afs(p + q) Ah(p)

Hμν

Afs(p + q)

06/05/2019�7

• Some clear consensus in the room on some issues, but less on two important
questions  

1. Is a theory interface of this kind something that we want to prioritize as a community, or is
the model incorporation “pain point” status quo acceptable?  

2. What common language (differential cross section, hadron tensor, etc.) is needed to
describe and implement our models of interest most easily?

• Some aspects of the more technical discussion have relevance to these questions. I will revisit
them in my closing slides

• While some details still need to be worked out, the technical implementation of such an
interface appears feasible.

• The challenge lies more in defining our requirements clearly than in executing them
- This requires theory / experiment collaboration

• I will share a few highlights from the discussion on topics that appeared to converge

Takeaways from the parallel session discussion

06/05/2019�8

• Goal is a method for facilitating inclusion of models in generators, but despite the label “theory
API,” this could take at least two different forms:

- Specification that each participating generator implements separately 

‣ “Here are the functions we need theorists to write, with their inputs and outputs. Our
code will then talk to yours.”

‣ Uniform interface makes new models easy to include

- Standalone tool (NUISANCE-like) that serves as an intermediary between models and
multiple generators
‣ Team behind this tool maintains the communication at both ends

- Something else?

• Clear preference for the “specification” option
- Generator talks directly to theory code, each group maintains its piece
- “Opt-in” participation: generators can decide if it’s worth the effort to add the interface

Form of the “theory API”

06/05/2019�9

• C++ is the “lingua franca” among HEP experimentalists

• Fortran is often used by theorists, and at least two modern neutrino generators
(NEUT & GiBUU) use it as well

• Interoperability between these two languages (at least) seems like a necessary
requirement for a truly “universal” theory API

- There may be other languages (Python? C?) of interest

• Modern compilers make language interoperability straightforward

- Hayato-san: “As for NEUT, we don't care whether the code is written in Fortran
or C or C++ as far as they are not using the ‘latest’ features only in the latest
standards like c++14 or Fortran2018 etc.”

• No need to translate code as long as interfaces are well-defined

The programming language divide

06/05/2019�10

• How should the contributed theory code be shared with interested users?

- Packaged together with official releases of the generators?

- Download links on theorists’ websites?

• Proposed method:

- Fermilab prepares a website to serve as a central hosting location for theory contributions

- Model “plugins” downloaded with installation instructions for compatible generators

- Each model labeled with a version number and a paper that should be cited
‣ Changes can be made while giving experimentalists an unambiguous way of knowing

what was used in their simulations

• The website would need a permanent name (preferably catchy!)

Code distribution & citations

06/05/2019�11

• One of the rate-limiting steps in the current approach to adding models is validation
- Easy to make mistakes when adapting theory code

• For GENIE, obtaining access to theorists’ original code has served us well

- Run the theorists’ implementation and GENIE’s

- The two should be very close if we’ve done our job right

- Ensures an accurate implementation, but time-consuming

• Table-based strategies (e.g., hadronic tensor interface) still need to be compared to full
calculation, ideally the original code used to produce them

• API to directly interface with theory code helps to address this problem

• Testing functions could be included as part of the interface
- Sanity checks to perform as part of installation (is everything built and configured

properly?)
- Breaking changes to dependencies (e.g., ROOT) could cause problems. This is one way to

catch them

Validation

06/05/2019�12

• Important part of the recipe for generators

- Experiments need to assess their systematic uncertainties associated with the cross
section models in their simulations

- Typically done via reweighting
- Theory guidance on uncertainties valuable! We could use a lot more of it.

• Table-based approaches can deal with this in principle  

- Vary the model, provide a different table each time

- Metadata needed to describe what table goes with which variation

- Number of tables can become unwieldy

• With a direct code interface, configuration of parameters can be done directly
- Model specifies a vector of input parameters with associated uncertainties
- API allows generator to initialize those parameters appropriately (pass a vector of values) 

• Some subtleties to consider (e.g., parameter consistency between channels)

Model configuration & uncertainties

06/05/2019�13

• Solidifying our understanding of what theorists are able & willing to provide is key

- Some helpful input in the parallel session, but we need more potential model contributors
to make their preferences known

- Is one of the options described in this talk appropriate for your model? Can we reasonably
expect you to provide that representation for us?

- Answer may be shaped by which theory groups engage

• “Generator implements a spec” development model

- Lowers barrier for new theory API attempts

- Different generators can decide how much of a priority this is

- If one devotes some cycles to trying this for a group of models, open-source API and
lessons learned can be shared with others

Some final thoughts

06/05/2019�14

• Proof of concept a useful next step

- Already exists for table-based nuclear tensors (Valencia MEC, SuSAv2 QE + MEC)

- Candidates for the approach might include 2-body SF treatment (N. Rocco)

‣ CCQE in GENIE v3 handled in a similar way, but all internally to the generator

• With one or more concrete examples, path to a written specification becomes more
clear

Some final thoughts

Hμν

