/\.% .S. DEPARTMENT OF Office of

#Fermilab 5*(%>ENERGY Science

Summary of Theory API discussion

Steven Gardiner
ECT Workshop on Testing and Improving Models of Neutrino Nucleus Interactions in Generators

June 2019

Why make a theory API for neutrino generators?

* One way of addressing the organizational “pain points” mentioned in
Laura’s plenary talk on Monday

- Lag between theory development & generator inclusion

- Road for theorists to contribute to generators may seem unclear to
them and be poorly incentivized (citations!)

- Limited number of generator authors — limited bandwidth for model
Inclusion

* Another thought (pointed out by P. Machado)

- Growing theory interest in looking at BSM physics in neutrino
experiments

- Many models, unlikely to be a priority for generator developers

- Some tinkering has already been done, but a real APl would greatly
facilitate this work

06/05/2019

2% Fermilab

Factorizable hadron tensor interface

* One strategy for speeding up inclusion of theory models in generators

- Relies on precomputed a nuclear tensor, with elements do L W” v
interpolated on a (g0, g3) grid

« SuSAV2 calculation (QE + MEC) adapted for GENIE

- Existing Valencia MEC implementation also restructured to use general interface
- Demonstration that theory groups are able and willing to provide needed inputs

- Explored in-depth at this workshop (WG 3.3, see S. Dolan’s talk later today)

- Some (current) limitations:
» lepton kinematics only
» no ability to tune / reweight parameters used to make tables

* Need to “invent” hadron kinematics could be mitigated by including more tabulated
responses (15 instead of 5), at least for single nucleon knockout

» Theory API group explored what other approaches might be possible
- Not mutually exclusive

2= Fermilab
06/05/2019

One option: interface for N-fold differential cross sections

Primarily discussed via email in advance of the workshop d"c

n
Object of interest is a differential cross section in an arbitrary phase space dX

Code specifies the variables to be thrown, allowed ranges

Function takes those values as input (with other needed information,
e.g., neutrino 4-momentum), returns cross section

Kinematics sampled, used to construct outgoing 4-momenta
» Some cross section calculations are already generators themselves

» In principle, could handle everything pre-FSI in contributed code and
pass result into event record

FSI model then takes over

2= Fermilab
06/05/2019

One option: interface for N-fold differential cross sections

 Very general, but this comes at the price of complexity

d"o
dxn

- If we ask theorists for too much, we may not get anything!

- GENIE already has this in some sense

- To get results from an external cross section function, the existing
interface would just need to be exposed

- However, each cross section requires a custom generator module
(samples kinematics, finds maximum for rejection sampling, etc.)

- We don’t mind having large tables / high-dimensional phase spaces.
Physics payoff is worth it!

2= Fermilab
06/05/2019

A middle way?

* Luis proposed a third option in our parallel session
- Extensive discussion about what models / effects can be represented

« Rather than providing integrated nuclear responses
(as in the factorizable hadron tensor interface), express do o< L UW'“”
the cross section in terms of three objects: #

- A hadronic (as opposed to nuclear) tensor

- A particle spectral function do Jd4p HW Afs(p + q) Ah(]?)

- A hole spectral function

- Still quite general (N, NN, N, etc.)

- All pieces not necessarily provided by all calculations, e.g., A¢ (p+q)
. . fs
typically handled by intranuclear cascade

- Complexity grows rapidly with number of particles produced
* Phase space determined by the channel represented by HH*

- Throw kinematics, pass 4-momenta needed to calculate these objects
to external code

- Use results to evaluate differential cross section
2= Fermilab
06/05/2019

Takeaways from the parallel session discussion

- Some clear consensus in the room on some issues, but less on two important
questions

1. Is a theory interface of this kind something that we want to prioritize as a community, or is
the model incorporation “pain point” status quo acceptable?

2. What common language (differential cross section, hadron tensor, etc.) is needed to
describe and implement our models of interest most easily?

Some aspects of the more technical discussion have relevance to these questions. | will revisit
them in my closing slides

While some details still need to be worked out, the technical implementation of such an
interface appears feasible.

The challenge lies more in defining our requirements clearly than in executing them
- This requires theory / experiment collaboration

| will share a few highlights from the discussion on topics that appeared to converge

2= Fermilab
06/05/2019

Form of the “theory API”

« Goal is a method for facilitating inclusion of models in generators, but despite the label “theory
API,” this could take at least two different forms:

- Specification that each participating generator implements separately

» “Here are the functions we need theorists to write, with their inputs and outputs. Our
code will then talk to yours.”

» Uniform interface makes new models easy to include

- Standalone tool (NUISANCE-like) that serves as an intermediary between models and
multiple generators

» Team behind this tool maintains the communication at both ends
- Something else?
- Clear preference for the “specification” option

- Generator talks directly to theory code, each group maintains its piece
- “Opt-in” participation: generators can decide if it’s worth the effort to add the interface

2% Fermilab
06/05/2019

The programming language divide

* C++ is the “lingua franca” among HEP experimentalists

* Fortran is often used by theorists, and at least two modern neutrino generators
(NEUT & GiBUU) use it as well

* Interoperability between these two languages (at least) seems like a necessary
requirement for a truly “universal” theory API

- There may be other languages (Python? C?) of interest
- Modern compilers make language interoperability straightforward

- Hayato-san: “As for NEUT, we don't care whether the code is written in Fortran
or C or C++ as far as they are not using the ‘latest’ features only in the latest
standards like c++14 or Fortran2018 etc.”

* No need to translate code as long as interfaces are well-defined

2% Fermilab
06/05/2019

Code distribution & citations

- How should the contributed theory code be shared with interested users?
- Packaged together with official releases of the generators?
- Download links on theorists’ websites?
* Proposed method:
- Fermilab prepares a website to serve as a central hosting location for theory contributions
- Model “plugins” downloaded with installation instructions for compatible generators

- Each model labeled with a version number and a paper that should be cited

» Changes can be made while giving experimentalists an unambiguous way of knowing
what was used in their simulations

- The website would need a permanent name (preferably catchy!)

2= Fermilab
06/05/2019

Validation

* One of the rate-limiting steps in the current approach to adding models is validation
- Easy to make mistakes when adapting theory code

- For GENIE, obtaining access to theorists’ original code has served us well
- Run the theorists’ implementation and GENIE’s
- The two should be very close if we’ve done our job right
- Ensures an accurate implementation, but time-consuming

- Table-based strategies (e.g., hadronic tensor interface) still need to be compared to full
calculation, ideally the original code used to produce them

 API to directly interface with theory code helps to address this problem

 Testing functions could be included as part of the interface
- Sanity checks to perform as part of installation (is everything built and configured

properly?)
- Breaking changes to dependencies (e.g., ROOT) could cause problems. This is one way to
catch them

2= Fermilab

06/05/2019

Model configuration & uncertainties

- Important part of the recipe for generators

- Experiments need to assess their systematic uncertainties associated with the cross
section models in their simulations

- Typically done via reweighting
- Theory guidance on uncertainties valuable! We could use a lot more of it.

- Table-based approaches can deal with this in principle

- Vary the model, provide a different table each time

- Metadata needed to describe what table goes with which variation

- Number of tables can become unwieldy

- With a direct code interface, configuration of parameters can be done directly
- Model specifies a vector of input parameters with associated uncertainties
- APl allows generator to initialize those parameters appropriately (pass a vector of values)

« Some subtleties to consider (e.g., parameter consistency between channels)

2= Fermilab

12 06/05/2019

Some final thoughts

- Solidifying our understanding of what theorists are able & willing to provide is key

- Some helpful input in the parallel session, but we need more potential model contributors
to make their preferences known

- Is one of the options described in this talk appropriate for your model? Can we reasonably
expect you to provide that representation for us?

- Answer may be shaped by which theory groups engage
- “Generator implements a spec” development model
- Lowers barrier for new theory API attempts
- Different generators can decide how much of a priority this is

- If one devotes some cycles to trying this for a group of models, open-source APl and
lessons learned can be shared with others

2% Fermilab

06/05/2019

Some final thoughts

* Proof of concept a useful next step
- Already exists for table-based nuclear tensors (Valencia MEC, SuSAv2 QE + MEC)
- Candidates for the H* approach might include 2-body SF treatment (N. Rocco)
» CCQE in GENIE v3 handled in a similar way, but all internally to the generator

- With one or more concrete examples, path to a written specification becomes more
clear

2= Fermilab
06/05/2019

