Fermilab (B) ENERGY Office of Science

GENIE SF implementation (in progress)

Steven Gardiner ECT Workshop on Testing and Improving Models of Neutrino Nucleus Interactions in Generators June 2019

GENIE v2 QE event generation

- Position of primary vertex sampled according to nuclear density
- Nucleon 3-momentum, removal energy sampled from nuclear model (default is a Bodek-Ritchie global Fermi gas)
- Lepton kinematics sampled independently using $d\sigma/dQ^2$
 - If the first attempt is rejected, Q² rethrown, but not initial nucleon
- Binding energy handled using an off-shell nucleon 4-momentum
- Pauli blocking handled in a separate step. If blocked, "rewind" to create a new quasielastic event
- CC, NC, and EM all handled similarly, but by separate pieces of code

CCQE event generation in GENIE v3

- New approach developed as part of effort to include Valencia CCQE in v2
 - Became default method for CCQE generation in v3 (old approach preserved for comparisons to historical default model)
 - Vertex position selected as in v2
 - Nucleon kinematics and lepton kinematics now thrown simultaneously using a 6D differential cross section

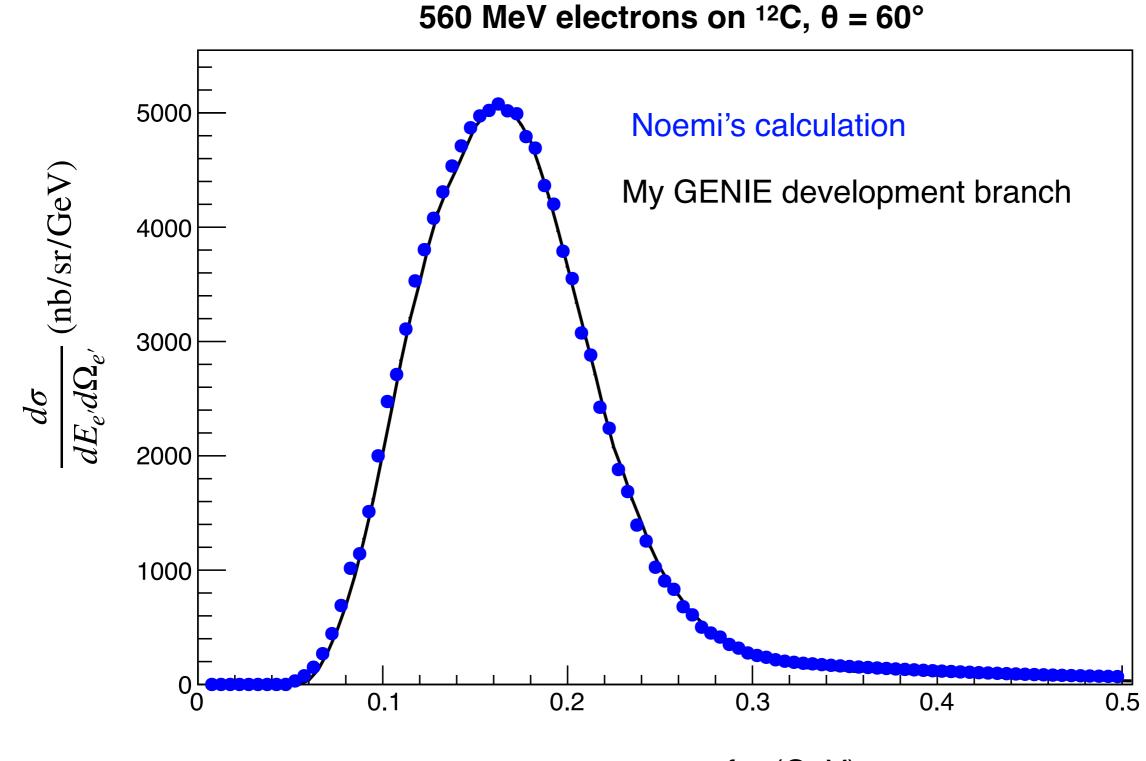
$$d\sigma = \mathcal{N} \frac{G_F^2 \cos^2 \theta_C}{8 \,\pi^2 \, E_{\mathbf{k}} \, E_{\mathbf{p}} \, E_{\mathbf{k}'} \, E_{\mathbf{p}'}} L_{\mu\nu} \, \tilde{A}^{\mu\nu} \, P(\mathbf{p}, E) \frac{\sqrt{1 + (1 - \cos^2 \theta_0)(\gamma^2 - 1)}}{\left| \mathbf{v}_{\mathbf{k}'} - \mathbf{v}_{\mathbf{p}'} \right|} \left| \mathbf{k}_0' \right|^2 \Theta(|\mathbf{p}'| - k_F) \, d\cos \theta_0 \, d\phi_0 \, dE \, d^3 \mathbf{p}$$

- Square root factor comes from solving energy-conserving delta function
- Pauli blocking explicitly handled at differential cross section level
- Binding energy now handled via de Forest prescription (use on-shell nucleon momentum with an effective energy transfer)

CCQE event generation in GENIE v3

- In the latest GENIE release (v3.0.4), new treatment is limited to CCQE
 - With some changes (couplings, form factors, etc.), the same code could be used for NC, EM
 - I've made a (preliminary) implementation of all 3 in a GENIE development branch
 - Some work needed to make it fully general (how does Valencia RPA change?)
- Note that this approach is compatible with the framework proposed by Luis for model inclusion in generators $d\sigma \propto \int d^4p \ H^{\mu\nu} A_{\rm fs}(p+q) A_{\rm h}(p)$
- In my notation below, $H^{\mu\nu} \leftrightarrow \tilde{A}^{\mu\nu}$, $A_h(p) \leftrightarrow P(\mathbf{p}, E)$, and $A_{fS}(p) \leftrightarrow \theta(|\mathbf{p}'| k_F)$
 - SF can be swapped in instead of FG, LFG nuclear models

$$d\sigma = \mathcal{N} \frac{G_F^2 \cos^2 \theta_C}{8 \,\pi^2 \, E_{\mathbf{k}} \, E_{\mathbf{p}} \, E_{\mathbf{k}'} \, E_{\mathbf{p}'}} \, L_{\mu\nu} \, \tilde{A}^{\mu\nu} \, P(\mathbf{p}, E) \frac{\sqrt{1 + (1 - \cos^2 \theta_0)(\gamma^2 - 1)}}{\left| \mathbf{v}_{\mathbf{k}'} - \mathbf{v}_{\mathbf{p}'} \right|} \, \left| \mathbf{k}_0' \right|^2 \Theta(|\mathbf{p}'| - k_F) \, d\cos \theta_0 \, d\phi_0 \, dE \, d^3 \mathbf{p}$$


Fermilab

Validation status

- Noemi has kindly provided her code for computing EMQE cross sections using the SF formalism
- Different phase space used (differential in outgoing electron energy, angle), so this change is applied in my testing code
 - Energy-conserving delta function solved differently
 - Jacobian
 - Otherwise identical to what is used in event generation
- With form factors, etc., chosen to match hers, I achieve good agreement (see next slide)
- Consistency checks between event generation and differential cross section coming soon
- For MEC contribution, providing an interface to her Fortran calculation could be a good "proof of principle" for a theory API

Validation status

energy transfer (GeV)

