Fermilab Dus. Department of Science

Summary of low vs. high momentum transfer model consistency discussions

Steven Gardiner ECT Workshop on Testing and Improving Models of Neutrino Nucleus Interactions in Generators June 2019

Parallel sessions

Two talks & some discussion of next steps

LOW/HIGH ENERGY TRANSFER REGIONS IN VALENCIA MODEL

Joanna Sobczyk 4 June 2019

HOW LOW CAN WE GET?

HOW HIGH CAN WE GET?

Consistency between low and high energy models

Alexis Nikolakopoulos Ghent University

Testing and improving models of neutrino nucleus interactions in generators, ECT*, Trento, Italy, 2-7 June, 2019

I. Description of the Ghent CRPA model

II. The influence of forbidden transitions in charged current scattering on Argon

III. Differences between electron and muon neutrino cross sections

EXISTING DESCRIPTIONS

- LDA + potential (GiBUU)
- SF + Optical potential (Rome)
- Hartree-Fock +CRPA (Ghent)
- LDA + SF (Valencia)
- SuSav2
- ab-initio (GFMC)

For inclusive QE data they seem to work decently well*

*check when 2p2h and pion production are included

How low/high can we get with these models?

GROUND STATE (I)

• Spectral functions:

$$S_{p,h}^{\text{LDA}}(\mathbf{p}, E) = \mp \frac{1}{\pi} \frac{\text{Im}\Sigma(\mathbf{p}, E)}{\left(E - \mathbf{p}^2/2m - \text{Re}\Sigma(\mathbf{p}, E)\right)^2 + \text{Im}\Sigma(\mathbf{p}, E)^2}$$

Local density approximation (LDA)

$$W_{LDA}^{\mu\nu}(q) = 2 \int d^3r \int \frac{d^3p}{(2\pi)^3} \int dE S_h^{LDA}(E, \mathbf{p}, \rho) \frac{M}{E_p} \frac{M_Y}{E_{p+q}} \delta(E+q^0 - E_{p+q}^Y(\rho)) A^{\mu\nu}(p, q)$$

 $A^{\mu\nu}(p,q) = \langle \mathbf{p} | (j_{cc}^{\mu})^{\dagger} | \mathbf{p} + \mathbf{q} \rangle \langle \mathbf{p} + \mathbf{q} | j_{cc}^{\nu} | \mathbf{p} \rangle$

matrix element for a single nucleon

LOW ENERGY PROCESSES

muons are 300 times heavier than electrons

muon capture

$$(A - \mu^{-})^{1s}_{\text{bound}} \to \bar{\nu} + X \qquad \mu^{-}$$

the wave function overlaps with nucleus

the system is unstable (interaction with nucleus)

governed by the same CC interaction

pion radiative capture

$$(A - \pi^{-})_{\text{bound}} \rightarrow \gamma + X \qquad \pi^{-}$$

Nucleus	Pauli (10 ⁴ s ⁻¹)	RPA (10^4 s^{-1})	SF (10^4 s^{-1})	SF+RPA (10^4 s^{-1})	Exp. (10^4 s^{-1})
¹² C	5.76	3.37 ± 0.16	3.22	3.19 ± 0.06	3.79 ± 0.03
¹⁶ 0	18.7	10.9 ± 0.4	10.6	10.3 ± 0.2	10.24 ± 0.06
¹⁸ 0	13.8	8.2 ± 0.4	7.0	8.7 ± 0.1	8.80 ± 0.15
²³ Na	64.5	37.0 ± 1.5	30.9	34.3 ± 0.4	37.73 ± 0.14
⁴⁰ Ca	498	272 ± 11	242	242 ± 6	252.5 ± 0.6

Table 5

Experimental and theoretical flux averaged ${}^{12}C(\nu_{\mu}, \mu^{-})X$ and ${}^{12}C(\nu_{e}, e^{-})X$ cross sections in 10^{-40} cm² units. Theoretical errors in the RPA predictions show MC 68% CL intervals derived from the uncertainties on the $ph(\Delta h)-ph(\Delta h)$ effective interaction. We also quote results from other calculations (see text for details).

	Pauli	RPA	SF	SF+RPA	SM	SM	CRPA		Experiment	
	24° 1.3*		No. 2		[133]	[44]	[45]	LSND [123]	LSND [124]	LSND [125]
$\bar{\sigma}(\nu_{\mu},\mu^{-})$	23.1	13.2 ± 0.7	12.2	9.7 ± 0.3	13.2	15.2	19.2	$8.3\pm0.7\pm1.6$	$11.2 \pm 0.3 \pm 1.8$	$10.6 {\pm} 0.3 {\pm} 1.8$
	all see						E FRICK	KARMEN [128]	LSND[126]	LAMPF [127]
$\bar{\sigma}(v_e, e^-)$	0.200	0.143±0.006	0.086	0.138±0.004	0.12	0.16	0.15	$0.15 \pm 0.01 \pm 0.01$	0.15 ± 0.01	0.141 ± 0.023

What are the CRPA Ghent results?

POSITIVE SIDES OF THIS APPROACH

- It is based on the LDA: direct possibility to generate the primary vertex
- Possibility to use of various targets
- Simplicity
- Contains both RPA and SF
- works decently well for electrons
- for low energy transfers description of the hole and particle states within the same formalism

DEFICIENCIES OF THIS APPROACH

- For low energies describes the total strength of RPA but not the spectrum
- Simplicity: no insight into details of the nuclear structure
- For high momentum transfer we can use only plane wave (now we do not use any model for FSI)

The mean field approach (briefly)

The mean field potential and bound states are obtained in a selfconsistent Hartree-Fock calculation with a realistic nucleon-nucleon force All bound and scattering states are obtained by solving the Schrödinger (or Dirac) equation in a central mean field potential.

This means all states are consistent and orthogonal within this approach.

Naturally includes:

Binding Fermi motion Elastic Final state interactions Pauli blocking orthogonality

This approach captures the main nuclear effects in a consistent quantum mechanical way

4 June 2019, ECT*

A. Nikolakopoulos

ALEXIS NIKOLAKOPOULOS

Final state interactions

-Calculations of the wave function of the outgoing nucleon in the same (real) nuclear potential used for the initial state -influence of the spreading width of the particle states is implemented through a folding procedure

ALEXIS NIKOLAKOPOULOS UNIVERSITY

GHEN

CRPA : Comparison with electron ¹²C(*e*, scattering data *e'*) q ~ 207 [MeV/c], Q² ~ 0.042 [(GeV/c)²] $q \sim 95 [MeV/c], Q^2 \sim 0.009 [(GeV/c)^2]$ q ~ 160 [MeV/c], Q² ~ 0.026 [(GeV/c)²]

Hartree-Fock

CRPA

GHENT

UNIVERSITY

100

50

ALEXIS NIKOLAKOPOULOS

GHENT UNIVERSITY

ALEXIS NIKOLAKOPOULOS

Low energy excitations at higher E_{v}

4 June 2019, ECT*

A. Nikolakopoulos

Multipole contributions to total CS

CC scattering of electron neutrinos neutrinos scattering on Argon. Different multipoles shown cumulatively.

Forbidden transitions carry significant strength for continuum excitations!

4 June 2019, ECT*

A. Nikolakopoulos

4 June 2019, ECT*

A. Nikolakopoulos

0.8

The higher order multipoles give significant strength for low outgoing lepton energies

4 June 2019, ECT*

A. Nikolakopoulos

- Mean field models give larger v_{μ} than v_{e} cross sections for low ω and q
- Collective excitations add significant strength

14

Difference between v_{μ} and v_{e}

Non-trivial ratio of electron versus muon neutrino cross sections have a significant overlap with the T2K oscillated flux weighted cross section

MARLEY + Ghent CRPA

- Comparing generator predictions based on low & high energy pictures of the nucleus useful, but we need to get MARLEY up beyond few 10s of MeV
- Forbidden transitions have important impact on observables of interest for DUNE supernova program, potentially for other experiments looking at ve
 - Currently neglected in MARLEY (0+ and 1+ multipoles only)
 - Clearly necessary before we can have a fair comparison to high-E generators in the low 100s of MeV
- Plan to replace existing MARLEY treatment of continuum contribution with Ghent CRPA
 - Could provide matrix elements, but tables of $d\sigma(E_{\nu}\,,\omega\,,J^{\pi})\,/\,d\cos\theta$ likely good enough for now
 - Comparisons to data for cross sections & muon capture (rates, isotopic yields)
 - Still needs discrete level contribution
 - Data-driven for 40Ar
 - Would need another approach (e.g, shell model) for other targets

MARLEY comparisons

- In my opening talk, I mentioned that I was working on some MARLEY / GENIE comparisons
 - Started down that path this week, but I found that doing a "fair" comparison is subtle
 - At very low energies, GENIE makes CC QE & MEC events
 - MARLEY, on the other hand, makes plenty of events with e- + gammas only, nucleon emission isn't QE-like at all
 - Predictions are quite different as a result
- I'll continue to pursue this, but it shouldn't be rushed

Connection to high-energy generator FSI models

- Adding a MARLEY-like de-excitation model post-cascade provides a way to realistically simulate neutrino-induced low-energy activity
 - FLUKA's PEANUT model already does this, but it's not open source

De-excitation models well-validated against non-neutrino nuclear data

Connection to high-energy generator FSI models

- Adding a MARLEY-like de-excitation model post-cascade provides a way to realistically simulate neutrino-induced low-energy activity
 - FLUKA's PEANUT model already does this, but it's not open source
- GENIE actively pursuing INCL++ & Geant4 interfaces, both have a similar treatment
 - Unlike PEANUT, both INCL++ and Geant4 use strength function models for gamma emission (no discrete lines)
 - INCL++ calls an external code (ABLA07) for evaporation step, could likely replace with MARLEY, which does include discrete gammas
- Competition between direct reaction picture (scatter on a nucleon or pair) and a compound reaction picture (collective excitations) of the cross section
 - Low-energy nucleon scattering calculations may serve as a useful guide

Do we really care about the low-energy de-excitations?

- We've been able to safely ignore them for a long time, but experiments are pushing toward evergreater sensitivity
 - De-excitation gammas in Super-K, ArgoNeuT
 - Neutron yields in Super-K, MINERvA, ANNIE
- Neutron tagging in water-based detectors relies on capture gamma cascade
 - Low-energy "boil-off" neutrons and higherenergy "knock-out" neutrons look the same
 - To interpret such measurements, having a model that accounts for both will be valuable

TAUP2011, 5th ~9th Sept.'11, Munich

