

SuSAv2-MEC model: main features, implementation in generators and further works

Guillermo D. Megias
Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet DPhP, CEA-Irfu, University of Paris-Saclay

Testing and Improving Models of Neutrino Nucleus Interactions in Generators, Plenary sessions, ECT*, 3 June 2019

Model implementation with hadron tensors and tests of "factorisable interfaces"

Stephen Dolan
Stephen.Dolan@llr.in2p3.fr

Mean field models

Alexis Nikolakopoulos

Ghent University

What do MC neutrino event generators need?

Inclusive cross section?

SuSAv2-MEC model: main features, implementation in generators and further works

Guillermo D. Megias
Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet DPhP, CEA-Irfu, University of Paris-Saclay

Testing and Improving Models of Neutrino Nucleus Interactions in Generators, Plenary sessions, ECT*, 3 June 2019

Model implementation with hadron tensors and tests of "factorisable interfaces"

Inclusive ${ }^{12} \mathrm{C}\left(e, e^{\prime}\right)$ cross sections
 PRD 94, 013012 (2016)

Comparison with $\mathrm{CCO} \pi$ data

$\mathrm{T} 2 \mathrm{~K} \mathrm{CCO} \pi \nu_{\mu}-\mathrm{C}_{8} \mathrm{H}_{8}$

- Recently implemented the SuSAv2 1p1h and 2p2h models in GENIE using hadron tensors.
- Based on implementations of the Valencia 2p2h (NEUT/GENIE)
- Exactly reproduces the inclusive predictions of the models

SuSAv2-MEC implementation in GENIE: Validation plots (T2K CCO π)

T2K CC0 $\pi \nu_{\mu}-{ }^{12} \mathrm{C}$ data vs. SuSAv2-MEC GENIE

Introduction to the spectral function approach

Artur M. Ankowski
SLAC, Stanford University

Testing and Improving Models of Neutrino-Nucleus Interactions in Generators

ECT*, Trento, June 3-7, 2019

Comparisons to C(e,e') data

Contribution from 2p2h to the inclusive cross section Meson-Exchanged Currents (MEC)

Contribution from 2p2h to the inclusive cross section Meson-Exchanged Currents (MEC)

Comparison of SuSAv2-MEC ${ }^{\text {Genie }}$ with Nieves ${ }^{\text {Genie }} 2 \mathrm{p} 2 \mathrm{~h}$ arXiv:1905.085

Differences in np/pp separation are mostly related to the treatment of 2 p 2 h direct/exchange interference terms (absent in Nieves model) \rightarrow strongly affects $\mathrm{np} / \mathrm{pp}$ ratio by a factor \sim 2 (PRC94:054610,2016) \Rightarrow Implications in nucleon multiplicity and hadron $E_{\text {reco }}$

Real part or full propagator of the delta?

Real part or full propagator of the delta?

Real part or full propagator of the delta?

Real part or full propagator of the delta?

What do MC neutrino event generators need?

Information about the hadrons?

Elastic scattering (difficult)

Quasielastic scattering
(difficult)

2 N knockout
(very difficult)

Single pion production
(very difficult)

Two pion production
(impossible?)

Impossible

How do generators predict hadron kinematics? (Much more detail tomorrow)

- Start with the inclusive prediction
- Pick random initial-state nucleon momentum and binding energy based on some spectral function
- Conserve energy / momentum at the vertex to predict hadron kinematics (under impulse approximation)
- Add an FSI cascade to deal with all the stuff that we missed out

This is not the same as this

$$
\int \frac{d \sigma_{C C Q E}}{d p_{\mu} d \theta_{\mu} d p_{p} d \theta_{p} d \theta_{\mu p}}
$$

(They do it differently in NuWro, at least for the Spectral Function approach)
Factorization of the cross section in the absence of FSI:
Algorithm $\quad \frac{\mathrm{d}^{6} \sigma^{\text {PWIA }}}{\mathrm{d} \omega \mathrm{d}|\mathbf{q}| \mathrm{d} E_{m} \mathrm{~d} \mathbf{p}_{m}}=\frac{G_{F}^{2} \cos ^{2} \theta_{C}|\mathbf{q}|}{4 \pi E_{\mathbf{k}}^{2} E_{\mathbf{p}} E_{\mathbf{p}^{\prime}}} P_{(n)}\left(E_{m}, \mathbf{p}_{m}\right) L_{\mu \nu} \widetilde{H}^{\mu \nu} \delta\left(\omega+M-E_{m}-E_{\mathbf{p}^{\prime}}\right)$
Spectral function formalism yields:

$$
\sigma^{\text {PWIA }}=\int_{V} \frac{\mathrm{~d}^{6} \sigma^{\text {PWIA }}}{\mathrm{d} \omega \mathrm{~d}|\mathbf{q}| \mathrm{d} E_{m} \mathrm{~d} \mathbf{p}_{m}}\left[\mathrm{~d} \omega \mathrm{~d}|\mathbf{q}| \mathrm{d} E_{m} \mathrm{~d} \mathbf{p}_{m}\right]
$$

In NuWro, the invariant variables are: $\Omega_{\mu}^{*}, E_{m}, \mathbf{p}_{m}$.
Additionally, E_{m}, p_{m} are sampled from the spectral function.
Therefore, NuWro calculates

$$
\sigma^{\text {PWIA }}=\int_{V} \frac{\mathrm{~d}^{6} \sigma^{\text {PWIA }}}{\mathrm{d} \omega \mathrm{~d}|\mathbf{q}| \mathrm{d} E_{m} \mathrm{~d} \mathbf{p}_{m}} \frac{1}{S\left(E_{m},\left|\mathbf{p}_{m}\right|\right)}\left[\mathrm{d} \Omega_{\mu}^{*} S\left(E_{m},\left|\mathbf{p}_{m}\right|\right) \mathrm{d} E_{m} \mathrm{~d} \mathbf{p}_{m}\right]
$$

What is the best seed for a Cascade?

Condition:
Good inclusive cross section.

What is the best seed for a Cascade?

Condition:
Good inclusive cross section.

Problem:
We are not able to model with accuracy any of the non-inclusive reaction channels.

What is the best seed for a Cascade?

Condition:
Good inclusive cross section.

Problem:
We are not able to model with accuracy any of the non-inclusive reaction channels.

One exception: Exclusive A(e,e'p)A-1

(e, $e^{\prime} p$) and Final-State Interactions

($e, e^{\prime} p$) and Final-State Interactions

Observation/Assumption:

The effect of the optical potential accounts almost only for 'hard' rescattering events.

So the MC can take care of this but the model should take into account the real part of the potential to give A good inclusive cross section

$$
\omega(\mathrm{MeV})
$$

Figure and results by K. Niewczas and JM. Udias

Intermediate momenta and distortion

A. Nikolakopoulos

Intermediate momenta and distortion

Quantum mechanical elastic distortion

1. Shifts the peak to the correct position
2. Distributes peak strength to the tails

This is not a 'hard' scattering
(this is important for later)
The dispersion relation of the outgoing nucleon is determined in the potential this leads to a 'broadening' of the energymomentum relation.

MF: The energy is the quantum number and k_{N} is only asymptotically defined. PW: The outgoing nucleon has fixed k_{N}
$\omega(\mathrm{GeV})$

What is the best seed for a Cascade?

