Introduction to the spectral function approach

Artur M. Ankowski SLAC, Stanford University

Testing and Improving Models of Neutrino-Nucleus Interactions in Generators ECT*, Trento, June 3–7, 2019

Outline

- Impulse approximation
- Fermi gas model
- Shell model
- Spectral function approach

Assumption: the dominant process of lepton-nucleus interaction is **scattering off a single nucleon**, with the remaining nucleons acting as a spectator system.

Assumption: the dominant process of lepton-nucleus interaction is **scattering off a single nucleon**, with the remaining nucleons acting as a spectator system.

It is valid when the momentum transfer $|\mathbf{q}|$ is high enough, as the probe's spatial resolution is $\sim 1/|\mathbf{q}|$.

$$\frac{d\sigma_{\ell A}}{d\omega d\Omega} = \sum_{N} \int d\omega' \, d^3 p \, dE \, \underline{P_{\text{hole}}^N(\mathbf{p}, E)} \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\text{elem}}}{d\omega' d\Omega} \, P_{\text{part}}^N(\mathbf{p}', \mathcal{T}', \omega')$$

Describes the ground-state properties of the target nucleus

$$\frac{d\sigma_{\ell A}}{d\omega d\Omega} = \sum_{N} \int d\omega' \, d^3 p \, dE \, P_{\text{hole}}^N(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\text{elem}}}{d\omega' d\Omega} \, \underline{P_{\text{part}}^N(\mathbf{p}', \mathcal{T}', \omega')}$$

Ensures the energy conservation and Pauli blocking

Consider a nucleus stable against emission of nucleons.

As in its ground state, $E_A = M_A$, the energy cannot be decreased by emission of a nucleon

$$E_A = E_{A-1} + E_p < E_{A-1} + M$$

so the energy of a nucleon in the nucleus is lower than M.

V.R. Pandharipande, Nucl. Phys. B (Proc. Suppl.) 112, 51 (2002)

In a nuclear model, the initial nucleon's energy may

differ from the on-shell energy by a constant

$$E_p = \sqrt{M^2 + |\mathbf{p}|^2} - \epsilon$$

be a function of the momentum

$$E_p = \sqrt{M^2 + |\mathbf{p}|^2} - \varepsilon(|\mathbf{p}|)$$

lack 1:1 correspondence with momentum

sophistication

Icreasi

The elementary cross section,

$$\frac{d\sigma_{\ell N}^{\rm elem}}{dE_{\bf k'}d\Omega dE_{\bf p'}d\Omega_{\bf p'}} \propto L_{\mu\nu}H^{\mu\nu}$$

contains two tensors

$$L_{\mu\nu} \propto j_{\mu}^{\text{lept}} j_{\nu}^{\text{lept*}}$$
 and $H^{\mu\nu} \propto j_{\text{hadr}}^{\mu} j_{\text{hadr}}^{\nu*}$

with only the hadron one affected by off-shell effects.

The current appearing in the hadron tensor is known on the mass shell,

$$j_{\text{hadr}}^{\mu} = \overline{u}(\mathbf{p}', s') \left(\gamma^{\mu} F_1 + i \sigma^{\mu\kappa} \frac{q_{\kappa}}{2M} F_2 + \dots \right) u(\mathbf{p}, s)$$

or equivalently

$$j_{\text{hadr}}^{\mu} = \overline{u}(\mathbf{p}', s') \left(\gamma^{\mu}(F_1 + F_2) - \frac{(p+p')^{\mu}}{2M} F_2 + \dots \right) u(\mathbf{p}, s)$$

The prescription of de Forest [NPA 392, 232 (1983)]:

to approximate the off-shell hadron tensor, one can use the on-shell expression with the same momentum transfer and a modified energy transfer,

$$\begin{split} H^{\mu\nu}_{\text{off-shell}}(p,q) &\to H^{\mu\nu}_{\text{off-shell}}(\tilde{p},\tilde{q}) \\ \\ \tilde{p} = (\sqrt{M^2 + \mathbf{p}^2}, \mathbf{p}) \quad \text{and} \quad \tilde{q} = (\tilde{\omega}, \mathbf{q}) \end{split}$$

with

The prescription of de Forest [NPA 392, 232 (1983)]:

as the initial nucleon's energy is now $E_p = \sqrt{M^2 + p^2}$ in our calculations, and the final energy is an observable, the energy transfer has to be

$$\tilde{\omega} = \sqrt{M^2 + (\mathbf{p} + \mathbf{q})^2} - \sqrt{M^2 + \mathbf{p}^2}$$

the difference between the "lepton" ω and "hadron" $\widetilde{\omega}$ is transferred to the spectator system of (A-1) nucleons.

Examples of an oversimplified treatment:

Importance of relativistic kinematics

Sizable differences between the **relativistic** and **nonrelativistic** results at neutrino energies ~500 MeV.

Importance of relativistic kinematics

At |q|~540 MeV, semi-relativistic result is 5% lower than the exact cross section.

For scattering in a given angle, neutrinos and electrons differ only due to **the elementary cross section**.

In neutrino scattering, uncertainties come from (i) interaction dynamics and (ii) nuclear effects.

It is **highly improbable** that theoretical approaches unable to reproduce *(e,e')* data would describe nuclear effects in neutrino interactions at similar kinematics.

Much more than the vector part...

Imagine an infinite space filled uniformly with nucleons

Due to the translational invariance, the eigenstates can be labeled using momentum, $\psi(x) = C e^{-ipx}$.

Due to the boundary conditions, $p_i \frac{L}{2} = \frac{\pi}{2} + n\pi$ every state occupies $(2\pi/L)^3$ in the momentum space

Due to the boundary conditions, $p_i \frac{L}{2} = \frac{\pi}{2} + n\pi$ every state occupies $(2\pi/L)^3$ in the momentum space

Coordinate space

Electron scattering off carbon, 500 MeV, 60 deg

Electron scattering off carbon, 500 MeV, 60 deg

What happens at kinematics other than 500 MeV, 60 deg?

Charge-density in nuclei

Local Fermi gas model

A spherically symmetric nucleus can be approximated by concentric spheres of a constant density.

Local vs. global Fermi gas models

Shell model

Shell model

In a spherically symmetric potential, the eigenstates can be labeled using the total angular momentum.

Example: oxygen nucleus

Leuschner et al., PRC 49, 955 (1994)
Example: oxygen spectral function

 $P(\mathbf{p}, E) \ (10^{-8} \ \mathrm{MeV^{-4}})$

70

Depletion of the shell-model states

De Witt Huberts, JPG 16, 507 (1990)

Depletion of the shell-model states

The observed depletion is ~35% for the valence shells (LRC and SRC) and ~20% when higher missing energy is probed (SRC).

Spectral function approach

The main source of the depletion of the shell-model states at high *E* are **short-range nucleon-nucleon correlations**.

Yielding NN pairs (typically pn pairs) with high relative momentum, they move ~20% of nucleons to the states of high removal energies.

The hole spectral function can be expressed as

or finite-size effects, only on the density

Local-density approximation

The correlation component in nuclei can be obtained combining the results for infinite nuclear matter obtained at different densities:

$$P_{\text{corr}}^{N}(\mathbf{p}, E) = \int dR \rho(R) P_{\text{corr}}^{NM,N}(\rho, \mathbf{p}, E).$$

Benhar *et al.*, NPA 579 493, (1994), included Urbana v_{14} NN interactions and 3N interactions [Lagaris & Pandharipande]

FSI in the spectral function approach

Artur M. Ankowski SLAC, Stanford University

A.M.A, O. Benhar and M. Sakuda, Phys. Rev. D 91, 033005 (2015)

Testing and Improving Models of Neutrino-Nucleus Interactions in Generators ECT*, Trento, June 3–7, 2019

Comparison to C(e, e') data

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k}'} + E_{A-1} + E_{\mathbf{p}'}$$

 $E_{\mathbf{k}} + M_A = E_{\mathbf{k}'} + E_{A-1} + E_{\mathbf{p}'}$

Final-state interactions

Their effect on the cross section is easy to understand in terms of the complex optical potential:

- the real part modifies the struck nucleon's energy spectrum: it differs from $\sqrt{M^2 + p'^2}$
- the imaginary part reduces the single-nucleon final states and produces multinucleon final states

$$e^{i(E+U)t} = e^{i(E+U_V)t}e^{-U_Wt}$$

Horikawa *et al.*, PRC 22, 1680 (1980)

Final-state interactions

In the convolution approach,

$$\frac{d\sigma^{\rm FSI}}{d\omega d\Omega} = \int d\omega' f_{\bf q} (\omega - \omega') \frac{d\sigma^{\rm IA}}{d\omega' d\Omega},$$

with the folding function

$$f_{\mathbf{q}}(\omega) = \delta(\omega)\sqrt{T_A} + \left(1 - \sqrt{T_A}\right)F_{\mathbf{q}}(\omega),$$

Nucl. transparency

Nuclear transparency

Nuclear transparency

Real part of the optical potential

We account for the spectrum modification by

$$f_{\mathbf{q}}(\omega - \omega') \to f_{\mathbf{q}}(\omega - \omega' - U_V).$$

This procedure is similar to that from the Fermi gas model to introduce the binding energy in the argument of $\delta(...)$.

$$U_V = U_V(t_{\rm kin})$$

$$t_{\rm kin} = \frac{E_{\mathbf{k}}^2 (1 - \cos \theta)}{M + E_{\mathbf{k}} (1 - \cos \theta)}$$

Widely used in proton scattering, fit of the scattering solutions of the Dirac equation to the data for

- elastic cross section,
- analyzing power,
- spin rotation function,

available for protons of kinetic energy $29 \le t_{kin} \le 1040$ MeV.

Deb et al., PRC 72, 014608 (2005)

Dirac phenomenology

$$(\gamma^{\mu}p_{\mu} - \gamma^{0}V + M + S)\psi = 0$$

Optical potential as a modification of the on shell energy

$$E_p + U = \sqrt{(M+S)^2 + \mathbf{p}^2} + V$$

We are interested in the average quantity, $U = U(t_{kin})$

$$\int d^3 r \rho(r) E'_{\rm tot} = E_{\mathbf{p}'} + U$$

Simple comparison

Real part of the OP

- acts in the final state
- shifts the QE peak to low ω at low |q| (to high ω at high |q|)

Binding energy in RFG

- acts in the initial state
- shifts the QE peak to high ω

Comparison to C(e, e') data

Comparison to C(e, e') data

Importance of quasielastic scattering

Compared calculations

Compared calculations

Comparisons to C(e,e') data

Barreau *et al.*, NPA 402, 515 (1983)

Comparisons to C(e,e') data

Barreau *et al.*, NPA 402, 515 (1983)

Comparisons to C(e,e') data

Baran *et al.*, PRL 61, 400 (1988) Whitney *et al.*, PRC 9, 2230 (1974)
Comparisons to C(e,e') data

The supplemental material of PRD 91,033005 (2015) shows comparisons to the data sets collected

at 54 kinematical setups

- energies from ~160 MeV to ~4 GeV,
- angles from 12 to 145 degrees,
- at the QE peak, the values of momentum transfer from ~ 145 to ~ 1060 MeV/c and $0.02 \le Q^2 \le 0.86$ (GeV/c)².

Kin. Reconstruction of E_v = 600 MeV

74

Kinematic *E*_v**Reconstruction**

-					
$E_{ u}$	200	400	600	800	1000
FSI, ν_{μ} , $\epsilon = 19$ MeV	211	401	600	799	998
IA, ν_{μ} , $\epsilon = 19$ MeV	173	370	570	770	970
FSI, ν_{μ} , $\epsilon = 34$ MeV	229	419	617	816	1015
FSI, $\bar{\nu}_{\mu}$, $\epsilon = 6$ MeV	210	402	600	799	999
IA, $\bar{\nu}_{\mu}$, $\epsilon = 6 \text{ MeV}$	172	369	569	769	969
FSI, $\bar{\nu}_{\mu}$, $\epsilon = 30 \text{ MeV}$	239	429	627	826	1025
FSI, ν_e , $\epsilon = 19$ MeV	206	401	599	799	998
FSI, $\bar{\nu}_e$, $\epsilon = 6$ MeV	206	402	600	799	999

CCQE MINERvA data

CCQE MINERvA data

TABLE I. H	I. Fit results to the CC QE MINERvA data.							
	antineutrino	neutrino	combined fit					
	including	g theoretical unc	ertainties:					
M_A (GeV)	1.16 ± 0.06	1.17 ± 0.06	1.16 ± 0.06					
$\chi^2/d.o.f.$	0.38	1.33	0.93					
	neglectin	g theoretical unc	ertainties:					
M_A (GeV)	1.15 ± 0.10	1.15 ± 0.07	1.13 ± 0.06					
$\chi^2/d.o.f.$	0.44	1.38	1.00					
	neglectir	neglecting FSI ($M_A = 1.16$ GeV):						
$\chi^2/d.o.f.$	2.49	2.45	2.42					

Energy reconstruction

Kinematic reconstruction

In quasielastic scattering off free nucleons, $v + p \rightarrow l + n$ and $v + n \rightarrow l + p$, we can deduce the neutrino energy from the charged lepton's kinematics.

No need to reconstruct the nucleon kinematics.

Kinematic reconstruction

In **nuclei** the reconstruction becomes an approximation due to the binding energy, Fermi motion, final-state interactions, two-body interactions etc.

Unknown monochromatic beam

Consider the simplest (unrealistic) case:

the beam is **monochromatic** but its energy is **unknown** and has to be reconstructed

$$E' = 768 \text{ MeV}$$

 $\theta = 37.5 \text{ deg}$
 $\Delta E' = 5 \text{ MeV}$

$$E' = 768 \text{ MeV}$$

 $\theta = 37.5 \text{ deg}$
 $\Delta E' = 5 \text{ MeV}$

for
$$\epsilon = 25$$
 MeV
 $E = 960$ MeV
 $\Delta E = 7$ MeV

θ (deg)	37.5	37.5	37.1	36.0	36.0
E' (MeV)	976	768	615	487.5	287.5
$\Delta E'$ (MeV)	5	5	5	5	2.5

Assuming $\epsilon = 25 \text{ MeV}$

rec. <i>E</i>	1285 ± 8	960 ± 7	741 ± 7	571 ± 6	333 ± 3
true E	1299	961	730	560	320

θ (deg)	37.5	37.5	37.1	36.0	36.0
E' (MeV)	976	768	615	487.5	287.5
$\Delta E'$ (MeV)	5	5	5	5	2.5

Appropriate ϵ value?

true E	12	99	96	1	730		560	320
E	33	± 5	26 ±	= 5	16 ± 5	1	6 ± 3	13 ± 3
Sealock et al., PRL 62, 1350 (1989)			O'Connell <i>et al.</i> , PRC 35, 1063 (1987)		Barrea NPA 4 (19	u <i>et al.</i> , 02, 515 983)		

θ (deg)	37.5	37.5	37.1	36.0	36.0
E' (MeV)	976	768	615	487.5	287.5
$\Delta E'$ (MeV)	5	5	5	5	2.5

Appropriate ϵ value?

true E	1299	961	730	560	320			
E	33 ± 5	26 ± 5	16 ± 5	16 ± 3	13 ± 3			
different $E \equiv \text{different } Q^2 \equiv \text{different } \theta$								
	$\rightarrow \text{unclent} \epsilon$							

Summary

- An accurate description of nuclear effects, including finalstate interactions, is crucial for an accurate reconstruction of neutrino energy.
- The spectral function formalism can be used in Monte Carlo simulations to improve the accuracy of description of nuclear effects.
- Effect of final state interactions on lepton distributions is important at **low momentum transfers**.

Backup slides