Measurement of four-alpha decays near the four-alpha threshold energy in ¹⁶0

ITOH Masatoshi, KARASUDANI Kohei

Cyclotron and Radioisotope Center (CYRIC), Tohoku University

CONTENTS

- I. Introduction
 - α gas-like structure in ¹⁶O
- II. The ¹⁶O(α , α ') experiment at E_{α} = 386 MeV
 - Isoscalar E0 strength
- III. Measurement of 4α decays near the 4α threshold energy in ¹⁶O
 - Previous experiments
 - Measurement of 4α decays in ^{16}O
- IV. Summary

Introduction: Alpha gas-like structure

Hoyle state: 0₂⁺ state at 7.65 MeV in ¹²C

- Discovered in the β-decay of ¹²B
 C.W.Cook, W.A.Fowler, C.C.Lauritsen, and T.Lauritsen, Phys.Rev. 107 (1957) 508
- Difficult to be explained in the shell model
- Linear 3α chain (Morinaga, Phys.Rev. 101 (1956) 254)
- Loosely coupled 3α gas-like structure 3α -OCM: H.Horiuchi, PTP51(1975)1266, 3α -GCM:Uegaki et al, PTP57(1977)1262, 3α -RGM: Kamimura, NPA351(1981)456.

Large Radius with a dilute density

Alpha Cluster Condensation in ¹²C and ¹⁶O

A.Tohsaki, H.Horiuchi, P.Schuck, and G.Ropke, Phys.Rev.Lett.87(2001)192501

- α gas-like structure
 - \rightarrow similar to Bose-Einstein condensation of bosonic atoms
- All α clusters enter into the same lowest S-wave orbit

S -orbit

4α gas-like structures in 16 O

The¹⁶O(α, α') experiment at $\mathbf{E}_{\alpha} = 386$ MeV

- The (α,α') experiment at E_α = 386 MeV in RCNP
- SiO₂ 2.0mg/cm²
- Si 2.2mg/cm²
- Thickness of Si in SiO₂ is normalized by 7.42 MeV 2⁺ and 7.93 MeV 2⁺ states in ²⁸Si.

Result of the MDA in ${}^{16}O(\alpha, \alpha')$

The Multipole Decomposition Analysis (MDA)

Isoscalar E0 Strength in ¹⁶O obtained from the (α, α') experiment

 E_α=240MeV@TexasA&M
 Y.-W.Lui, H.L.Clark, and D.H.Youngblood, Phys.Rev.C 64 (20019)064308

- E_{α} =386MeV@RCNP
 - Roughly same as TexasA&M
 - Two 0⁺ resonances appear at 16.7 and 18.8 MeV

MI et al, J.Phys.Conf.Seri.569(2014)012009

Isoscalar monopole excitaion to lpha-cluster states in 16 O

- Isoscalar monopole excitations
 Y.Yamada et al, Phys.Rev.C85,034315(2012)
 - Monopole excitations to α -cluster states Ex \leq 16 MeV, EWSR fraction \sim 20%
 - ISGMR (Ex > 16 MeV)

- Eα=386MeV@RCNP
 - E0 EWSR: 13% (8~16MeV)
 - 16 ≦ Ex ≦ 21 MeV Two 0⁺ states: 16.7MeV, 18.8 MeV
 - $\rightarrow \alpha$ -cluster states?

γ absorption cross section and Neutron threshold energy

Analogy with the Ex \sim 10 MeV region in 12 C

Comparison with the resonance scattering experiment

N.Curtis *et al*, PRC88,064309(2013)

Motivation

- In order to investigate the properties of these two 0⁺ states further, we measure decay-α particles from these two 0⁺ states using the ¹²C(¹⁶O,4α) reaction.
- We assume
 - the decay of the cluster state has a relatively high ratio of the decay into its cluster components.
 - $^{16}\text{O}^*$ (Hoyle + α cluster) \rightarrow Hoyle + $\alpha \rightarrow 4\alpha$
 - ${}^{16}\text{O}^*({}^{8}\text{Be} + {}^{8}\text{Be cluster}) \rightarrow {}^{8}\text{Be} + {}^{8}\text{Be} \rightarrow 4\alpha$
- Using the kinematical condition, we identify decay channels, Hoyle + α and ⁸Be + ⁸Be decay channels.

Previous experiments

²⁰Ne + α reaction experiment @TexasA&M

 Thick target inverse kinematics (TTIK) method M.Barbui et al, PRC98,044601(2018)
 Measured multiple

⁴He gas 4950 mbar

²⁰Ne beam 12MeV/nucleon

Measured multiple α decay events

Energy	Г(Be)/ Г(Hoyle This work	e) Γ(Be)/ Γ(Hoyle) Our previous work [2	Γ(Be)/ Γ(Hoyle) 3] Freer <i>et al.</i> [14]
$15.2 \pm 0.$	$2 1 \pm 0.7$	0.96 ± 0.3	
17.1	0.6 ± 0.3	0.7 ± 0.3	0.65 ± 0.16
17.5		0.6 ± 0.3	0.72 ± 0.18
19.7	0.43 ± 0.2	0.6 ± 0.5	0.47 ± 0.15
21.4	5.3 ± 2.8	3 ± 1	$>3 \pm 1.1$

Neutron-transfer reactions @ MSU

The ⁹Be(¹⁵O,¹⁶O*)⁸Be reaction at E/A = 48.1 MeV/nucleon R.J.Charity et al, PRC99,044304(2019)

EXPERIMENT @ CYRIC

- Facility: CYclotron and RadioIsotope Center (CYRIC) in Tohoku University
- ${}^{12}C({}^{16}O, {}^{16}O*[4\alpha]){}^{12}C$ reaction at $E({}^{16}O) = 160 \text{ MeV}$
- DSSD: Double-sided Silicon Strip Detector($50\times50~mm^2,\,1500\mu m,\,3~mm$ strip) $\,\times\,3$
- CsI: CsI detectors (25×25×25mm³) × 12

AVF Cyclotron @ CYRIC

DETECTOR SET-UP

- DSSD:
 - Distance: 185mm from target
- Covered angles: 2.2°~17.7°
 - Scattering angles of ¹⁶O^{*}: 1°~13°

50

Excitation energy in ¹⁶0

• Excitation energy was calculated from the sum of the kinetic energies of 4α particles in their c.m. frame.

Reconstructed Beam energy

• Energy conservation law: $T_{beam} = \sum T_{\alpha_i} + T_{C'} + 4m_{\alpha} - m_O$

Excitation energy spectrum in ¹⁶**0**

• The excitation energy spectrum in ¹⁶O can be reconstructed from 4α decay channels.

$$E_{x} = T_{\alpha_{1}cm} + T_{\alpha_{2}cm} + T_{\alpha_{3}cm} + T_{\alpha_{4}cm} + 4m_{\alpha} - m_{O}$$

Relative energy spectra for break-up 2α and 3α particles

• Relative energy of 2α particles

- Relative energy of 3α paritcles
- The ground state of ⁸Be decay channel and the 0₂⁺ (Hoyle) state of ¹²C decay channel were ¹² able to be measured, clearly. ¹⁰
- Statistics are very low...
- We plan to do the same experiment to collect larger statistics data.

SUMMARY

- α gas-like states near the four α threshold energy in ¹⁶O have been studied by inelastic α scattering of ¹⁶O and the measurement of 4α decays in the ¹⁶O + ¹²C reaction.
- Two candidates for α gas-like states have been found at Ex = 16.7 MeV and Ex = 18.8 MeV by the MDA of inelastic α scattering.
- The measurement of 4α decays in the ${}^{16}O + {}^{12}C$ reaction has been launched. In order to collect high statistics, we plan to do experiment, again.

COLLABORATORS

- Cyclotron and Radioisotope Center, Tohoku University
 - MATSUDA Yohei
 - ISHIBASHI Yoko
 - ISHIDA Shunya
 - NAKAGAWA Anna
 - MAEDA Ryu
 - NOZAWA Katsuaki

Thank you for your attention.

