Theoretical Investigation of α-like Quasimolecules in Heavy Nuclei

Doru S. Delion ${ }^{1,3,4}$, A. Dumitrescu ${ }^{1,3}$ and Virgil V. Baran ${ }^{1,2,3}$

${ }^{1}$ Department of Theoretical Physics, IFIN-HH, Măgurele, Romania
${ }^{2}$ Department of Physics, University of Bucharest
${ }^{3}$ Academy of Romanian Scientists
${ }^{4}$ Bioterra University
alexandru.dumitrescu@theory.nipne.ro

September 5th, 2019

Summary of our study

- an α-nucleus quasimolecular potential can be constructed from experimental decay widths and a realistic α-daughter interaction given by independent scattering data.
- the parameters of this potential allow one to predict the position of excited resonant states, which can in principle be detected in excitation response functions and prove the existence of α-molecules in heavy nuclei.

α-decay phenomenology I

α-decay phenomenology ${ }^{1}$ II

g.s. \rightarrow g.s.	transitions
even-even	149
even-odd	72
odd-even	67
odd-odd	50
total	338
g.s. \rightarrow ex.s.	transitions
even-even	238
odd-mass favored	130
odd-mass unfavored	333
total	701

${ }^{1}$ Data from www.nndc.bnl.gov/ensdf/. For analysis, see D.S. Delion and A. Dumitrescu, Phys. Rev. C 92 (2), 021303(2015).

α-decay phenomenology ${ }^{2}$ III

${ }^{2}$ D.S. Delion, Zhongzhou Ren, A.D., Dongdong Ni, J. Phys. G 45, 5 (2018).

α-decay phenomenology IV

- The α-decay process

$$
P\left(I_{P}\right) \rightarrow D(I)+\alpha(\ell)
$$

can be described by a separable wave function depending on the degrees of the freedom of the daughter nucleus ξ_{D} and the relative distance \mathbf{R} between the fragments

$$
\Psi_{I_{P}, M_{P}}\left(\xi_{D}, \mathbf{R}\right)=\sum_{c=1}^{N} \frac{\psi_{c}(R)}{R} \mathcal{Y}_{c}\left(\xi_{D}, \hat{R}\right)
$$

- The core-angular harmonic describes the angular relative motion of the fragments

$$
\mathcal{Y}_{c}\left(\xi_{D}, \hat{R}\right)=\left[\Phi_{I}\left(\xi_{D}\right) \otimes Y_{\ell}(\hat{R})\right]_{I_{P}, M_{P}}
$$

α-decay phenomenology V

- The α-daughter dynamics is governed by a stationary Schrödinger equation ${ }^{3}$

$$
H \Psi_{I_{P}, M_{P}}\left(\xi_{D}, \mathbf{R}\right)=Q_{\alpha} \Psi_{I_{P}, M_{P}}\left(\xi_{D}, \mathbf{R}\right)
$$

with a Hamiltonian containing three components: the kinetic energy, the structure term of the daughter nucleus and the α-daughter interaction

$$
H=-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{R}}^{2}+H_{D}\left(\xi_{D}\right)+V\left(\xi_{D}, \mathbf{R}\right)
$$

- The interaction consists of a spherically-symmetric term and a deformed component

$$
V\left(\xi_{D}, \mathbf{R}\right)=V_{0}(R)+V_{d}\left(\xi_{D}, \mathbf{R}\right)
$$

α-decay phenomenology VI

The coupled-channels equation

$$
\frac{d^{2} \psi_{c}(R)}{d \rho_{c}^{2}}=\sum_{c^{\prime}=1}^{N} A_{c c^{\prime}}(R) \psi_{c^{\prime}}(R), c=1, \ldots, N
$$

is given in terms of the coupling matrix

$$
\begin{aligned}
A_{c c^{\prime}}(R) & =\left[\frac{L_{c}\left(L_{c}+1\right)}{\rho_{c}^{2}}+\frac{V_{0}(R)}{Q_{\alpha}-E_{c}}-1\right] \delta_{c c^{\prime}} \\
& +\frac{\left\langle\mathcal{Y}_{c}\right| V_{d}\left(\xi_{D}, \mathbf{R}\right)\left|\mathcal{Y}_{c^{\prime}}\right\rangle}{Q_{\alpha}-E_{c}}
\end{aligned}
$$

and radial parameters

$$
\rho_{c}=\kappa_{c} R, \quad \kappa_{c}=\sqrt{\frac{2 \mu\left(Q_{\alpha}-E_{c}\right)}{\hbar^{2}}} .
$$

The Double Folding Method ${ }^{4}$

- The interaction is estimated by integrating a nucleon-nucleon force ν over the densities of the two fragments $\rho_{D, \alpha}$:

$$
V\left(\xi_{D}, \mathbf{R}\right)=\int d \mathbf{r}_{D} \int d \mathbf{r}_{\alpha} \rho_{D}\left(\mathbf{r}_{D}\right) \rho_{\alpha}\left(\mathbf{r}_{\alpha}\right) \nu\left(\mathbf{R}+\mathbf{r}_{D}-\mathbf{r}_{\alpha}\right)
$$

- The deformed component follows from a multipole-multipole expansion of the nuclear densities:

$$
V_{d}\left(\xi_{D}, \mathbf{R}\right)=\sum_{\lambda>0} V_{\lambda}(R) \mathcal{Y}_{\lambda}\left(\xi_{D}, \xi_{\alpha}\right)
$$

[^0]
The M3Y Double Folding Potential for ${ }_{94}^{242} \mathrm{Pu} \rightarrow{ }_{92}^{238} \mathrm{U}+{ }_{2}^{4} \alpha$

The Monopole Component

$$
\begin{aligned}
V_{0}(R) & =\bar{V}_{0}(R), R>R_{m} \\
& =v_{0}+\frac{1}{2} \hbar \omega_{0} \beta_{0}\left(R-R_{\min }\right)^{2}, R<R_{m}
\end{aligned}
$$

- \bar{V}_{0} is obtained through the double folding integration of the nucleon-nucleon M3Y plus Coulomb force.
- β_{0} is the harmonic oscillator parameter for the monopole component.
- v_{0} is the minimum of the oscillator potential; it is determined from the matching condition.
- ω_{0} is the oscillator frequency, satisfying $Q_{\alpha}-v_{0} \sim \frac{1}{2} \hbar \omega_{0}$.

The Wave Functions

$$
\begin{aligned}
\psi_{c}^{(e x t)}(R) & =\sum_{a=1}^{N} \mathcal{H}_{c a}^{+}(R) \sqrt{\frac{\Gamma_{a}}{\hbar v_{a}}}, R>R_{m} \\
\psi_{c}^{(i n t)}(X) & =A_{c} \sqrt{\frac{1}{N} \sqrt{\frac{\beta_{c}}{\pi}}} e^{-\beta_{c} \frac{x^{2}}{2}}, X=R-R_{m i n}, R<R_{m}
\end{aligned}
$$

- $\mathcal{H}_{c a}^{+}(R)$ are outgoing Coulomb-Hankel asymptotics.
- $\Gamma_{a} \& v_{a}$ are the decay width and particle velocity of channel a.
- β_{c} and A_{c} are the channel harmonic oscillator parameter and amplitude.
- for the monopole channel:

$$
\begin{aligned}
\beta_{0} & =\frac{1}{b_{0}^{2}}=\frac{m_{\alpha} \omega_{0}}{\hbar}=f \hbar \omega_{0} \\
f & =\frac{m_{\alpha} c^{2}}{\left(\hbar c^{2}\right)}=0.096 \mathrm{MeV}^{-1} \mathrm{fm}^{-2}
\end{aligned}
$$

Spectroscopic Factors

- Due to the external components being much smaller than the internal ones in the internal region $R \in\left[0, R_{m}\right]$, one has

$$
S_{\alpha}=\int|\Psi(\mathbf{R})|^{2} d \mathbf{R} \approx \sum_{c} A_{c}^{2}=\sum_{c} S_{c}
$$

Matching Conditions

- The coefficients v_{0}, β_{0} and $R_{\text {min }}$ are obtained from the matching relations:

$$
\begin{aligned}
v_{0}+\frac{1}{2 f} \beta_{0}^{2} X_{m}^{2} & =\bar{V}_{0}\left(R_{m}\right), \quad X_{m}=R_{m}-R_{\min } \\
\frac{1}{f} \beta_{0}^{2} X_{m} & =\bar{V}_{0}^{\prime}\left(R_{m}\right) \\
\ln ^{\prime} \psi_{0}^{(i n t)}\left(X_{m}\right) & =-\beta_{0} X_{m}=\ln ^{\prime} \psi_{0}^{(e x t)}\left(R_{m}\right) .
\end{aligned}
$$

- With Q_{α} fixed from the experiment and $R_{m}=R_{i n t}$, one ensures the existence of a narrow resonance corresponding to the first eigenvalue of the harmonic oscillator pocket.

The $\alpha-C e^{140}$ molecular potential

Systematics of the monopole length parameter

Systematics of the spectroscopic factor S_{α} versus neutron number

α photoabsorbtion ${ }^{5}$

- Energy-integrated cross section for the dipole excitation of a harmonic oscillator:

$$
\begin{aligned}
\sigma & =\sigma_{0}\left(1+\frac{b^{2}}{R_{\min }^{2}}\right) \\
\sigma_{0} & =\frac{8 \pi^{3}}{3} \frac{\hbar c}{m_{\alpha} c^{2}} e_{\alpha}^{2}=252.123 \mathrm{MeV} \mathrm{mb}
\end{aligned}
$$

[^1]Absorption energy-integrated cross section versus the monopole length parameter for $R_{\text {min }}=7 \mathrm{fm}$

Conclusions ${ }^{6}$

- The shape of the α-clusters on the nuclear surface can be determined in a stable way by using decay widths as input data. A molecular potential was set up, with the equilibrium radius slightly larger than the Mott transition point from nucleonic to the α-cluster phase in finite nuclei.
- The first excited vibrational resonant state is close to the Coulomb barrier for nuclei with $b_{0}>0.75 \mathrm{fm}$ and its rotational band can in principle be evidenced as a structure of maxima in the α-particle scattering cross section. The associated ALAS phenomenon diminishes due to the hindrance of the α-exchange effects.
- The dipole excitation of this resonance by γ-rays in odd-mass emitters would provide additional proof for the existence of α molecules in heavy nuclei.

[^2]
Thank you!

[^0]: ${ }^{4}$ G. Bertsch et al., Nucl. Phys. A 284, 399 (1977).
 F. Cârstoiu, R. J. Lombard, Ann. Phys. 217, 279 (1992)

[^1]: ${ }^{5}$ V.V. Baran and D.S. Delion, J. Phys. G 45, 035106 (2018).

[^2]: ${ }^{6}$ D.S. Delion, A.D., V.V. Baran, Phys. Rev. C 97, 6, 064303 (2018)

