Theoretical Investigation of α -like Quasimolecules in Heavy Nuclei Doru S. Delion^{1,3,4}, A. Dumitrescu^{1,3} and Virgil V. Baran^{1,2,3} ¹Department of Theoretical Physics, IFIN-HH, Măgurele, Romania ²Department of Physics, University of Bucharest ³Academy of Romanian Scientists ⁴Bioterra University alexandru.dumitrescu@theory.nipne.ro September 5th, 2019 ## Summary of our study - ▶ an α -nucleus quasimolecular potential can be constructed from experimental decay widths and a realistic α -daughter interaction given by independent scattering data. - the parameters of this potential allow one to predict the position of excited resonant states, which can in principle be detected in excitation response functions and prove the existence of α -molecules in heavy nuclei. ## α -decay phenomenology I ## α -decay phenomenology¹II | g.s. o g.s. | transitions | |-------------------------|-------------| | even-even | 149 | | even-odd | 72 | | odd-even | 67 | | odd-odd | 50 | | total | 338 | | g.s. $ ightarrow$ ex.s. | transitions | | even-even | 238 | | odd-mass favored | 130 | | odd-mass unfavored | 333 | | total | 701 | $^{^{1}\}mathsf{Data}$ from www.nndc.bnl.gov/ensdf/. For analysis, see D.S. Delion and A. Dumitrescu, Phys. Rev. C 92 (2), 021303 (2015). ## α -decay phenomenology² III ²D.S. Delion, Zhongzhou Ren, A.D., Dongdong Ni, J. Phys. G 45, 5 (2018). #### α -decay phenomenology IV ▶ The α -decay process $$P(I_P) \rightarrow D(I) + \alpha(\ell)$$ can be described by a separable wave function depending on the degrees of the freedom of the daughter nucleus ξ_D and the relative distance ${\bf R}$ between the fragments $$\Psi_{I_P,M_P}(\xi_D,\mathbf{R}) = \sum_{c=1}^N \frac{\psi_c(R)}{R} \mathcal{Y}_c(\xi_D,\hat{R})$$ ► The core-angular harmonic describes the angular relative motion of the fragments $$\mathcal{Y}_c(\xi_D, \hat{R}) = \left[\Phi_I(\xi_D) \otimes Y_\ell(\hat{R})\right]_{I_P, M_P}$$ ## α -decay phenomenology V ► The α -daughter dynamics is governed by a stationary Schrödinger equation³ $$H\Psi_{I_P,M_P}(\xi_D,\mathbf{R})=Q_{\alpha}\Psi_{I_P,M_P}(\xi_D,\mathbf{R})$$ with a Hamiltonian containing three components: the kinetic energy, the structure term of the daughter nucleus and the $\alpha{\rm -daughter}$ interaction $$H = - rac{\hbar^2}{2\mu} abla_{\mathbf{R}}^2 + H_D(\xi_D) + V(\xi_D, \mathbf{R})$$ ► The interaction consists of a spherically-symmetric term and a deformed component $$V(\xi_D, \mathbf{R}) = V_0(R) + V_d(\xi_D, \mathbf{R})$$ ³due to the fact that $T_{\alpha} \in [1\mu s, 10^9 y]$. #### α -decay phenomenology VI The coupled-channels equation $$\frac{d^2\psi_c(R)}{d\rho_c^2} = \sum_{c'=1}^N A_{cc'}(R)\psi_{c'}(R), \ c = 1, ..., N ,$$ is given in terms of the coupling matrix $$A_{cc'}(R) = \left[\frac{L_c(L_c+1)}{\rho_c^2} + \frac{V_0(R)}{Q_\alpha - E_c} - 1\right] \delta_{cc'} + \frac{\langle \mathcal{Y}_c | V_d(\xi_D, \mathbf{R}) | \mathcal{Y}_{c'} \rangle}{Q_\alpha - E_c},$$ and radial parameters $$\rho_c = \kappa_c R, \quad \kappa_c = \sqrt{\frac{2\mu(Q_\alpha - E_c)}{\hbar^2}}.$$ ## The Double Folding Method⁴ ▶ The interaction is estimated by integrating a nucleon-nucleon force ν over the densities of the two fragments $\rho_{D,\alpha}$: $$V\left(\xi_{D},\mathbf{R}\right) = \int d\mathbf{r}_{D} \int d\mathbf{r}_{\alpha} \rho_{D}\left(\mathbf{r}_{D}\right) \rho_{\alpha}\left(\mathbf{r}_{\alpha}\right) \nu\left(\mathbf{R} + \mathbf{r}_{D} - \mathbf{r}_{\alpha}\right)$$ ▶ The deformed component follows from a multipole-multipole expansion of the nuclear densities: $$V_d(\xi_D, \mathbf{R}) = \sum_{\lambda > 0} V_{\lambda}(R) \mathcal{Y}_{\lambda}(\xi_D, \xi_{\alpha})$$ F. Cârstoiu, R. J. Lombard, Ann. Phys. 217, 279 (1992) (19 ⁴G. Bertsch et al., Nucl. Phys. A 284, 399 (1977). ## The M3Y Double Folding Potential for $^{242}_{94}\mathrm{Pu} \to ^{238}_{92}\mathrm{U} + ^{4}_{2}\alpha$ ### The Monopole Component $$\begin{array}{lcl} V_{0}(R) & = & \overline{V}_{0}(R), \ R > R_{m} \\ & = & v_{0} + \frac{1}{2}\hbar\omega_{0}\beta_{0}\left(R - R_{min}\right)^{2}, \ R < R_{m} \end{array}$$ - \overline{V}_0 is obtained through the double folding integration of the nucleon-nucleon M3Y plus Coulomb force. - \triangleright β_0 is the harmonic oscillator parameter for the monopole component. - v₀ is the minimum of the oscillator potential; it is determined from the matching condition. - ω_0 is the oscillator frequency, satisfying $Q_{\alpha} v_0 \sim \frac{1}{2}\hbar\omega_0$. #### The Wave Functions $$\psi_{c}^{(ext)}(R) = \sum_{a=1}^{N} \mathcal{H}_{ca}^{+}(R) \sqrt{\frac{\Gamma_{a}}{\hbar v_{a}}}, R > R_{m}$$ $$\psi_{c}^{(int)}(X) = A_{c} \sqrt{\frac{1}{N} \sqrt{\frac{\beta_{c}}{\pi}}} e^{-\beta_{c} \frac{X^{2}}{2}}, X = R - R_{min}, R < R_{m}$$ - $\rightarrow \mathcal{H}_{ca}^{+}(R)$ are outgoing Coulomb-Hankel asymptotics. - $ightharpoonup \Gamma_a \& v_a$ are the decay width and particle velocity of channel a. - \triangleright β_c and A_c are the channel harmonic oscillator parameter and amplitude. - for the monopole channel: $$\beta_0 = \frac{1}{b_0^2} = \frac{m_\alpha \omega_0}{\hbar} = f\hbar\omega_0$$ $$f = \frac{m_\alpha c^2}{(\hbar c^2)} = 0.096 \text{MeV}^{-1} \text{fm}^{-2}$$ ## Spectroscopic Factors ▶ Due to the external components being much smaller than the internal ones in the internal region $R \in [0, R_m]$, one has $$S_{\alpha} = \int |\Psi(\mathbf{R})|^2 d\mathbf{R} \approx \sum_{c} A_c^2 = \sum_{c} S_c$$ ## **Matching Conditions** ▶ The coefficients v_0 , β_0 and R_{min} are obtained from the matching relations: $$v_0 + \frac{1}{2f}\beta_0^2 X_m^2 = \bar{V}_0(R_m), \quad X_m = R_m - R_{min}$$ $$\frac{1}{f}\beta_0^2 X_m = \bar{V}_0'(R_m)$$ $\ln' \psi_0^{(int)}(X_m) = -\beta_0 X_m = \ln' \psi_0^{(ext)}(R_m).$ • With Q_{α} fixed from the experiment and $R_m = R_{int}$, one ensures the existence of a narrow resonance corresponding to the first eigenvalue of the harmonic oscillator pocket. ## The α – Ce^{140} molecular potential ## Systematics of the monopole length parameter ## Systematics of the spectroscopic factor S_{α} versus neutron number ## α photoabsorbtion⁵ Energy-integrated cross section for the dipole excitation of a harmonic oscillator: $$\sigma = \sigma_0 \left(1 + \frac{b^2}{R_{min}^2} \right)$$ $$\sigma_0 = \frac{8\pi^3}{3} \frac{\hbar c}{m_0 c^2} e_\alpha^2 = 252.123 \text{ MeV mb}$$ ⁵V.V. Baran and D.S. Delion, J. Phys. G **45**, 035106 (20<u>1</u>8). → ★ ★ ★ ★ ★ ★ ◆ ◆ ◆ ◆ ◆ ◆ # Absorption energy-integrated cross section versus the monopole length parameter for $R_{min}=7~\mathrm{fm}$ #### Conclusions⁶ - The shape of the α -clusters on the nuclear surface can be determined in a stable way by using decay widths as input data. A molecular potential was set up, with the equilibrium radius slightly larger than the Mott transition point from nucleonic to the α -cluster phase in finite nuclei. - ► The first excited vibrational resonant state is close to the Coulomb barrier for nuclei with $b_0 > 0.75~\mathrm{fm}$ and its rotational band can in principle be evidenced as a structure of maxima in the α -particle scattering cross section. The associated ALAS phenomenon diminishes due to the hindrance of the α -exchange effects. - ▶ The dipole excitation of this resonance by γ -rays in odd-mass emitters would provide additional proof for the existence of α molecules in heavy nuclei. ⁶D.S. Delion, A.D., V.V. Baran, Phys. Rev. C **97**, 6, 064303 (2018) ≥ → ## Thank you!