From nuclear clusters to composite hadrons

A unified equation of state from the cluster virial expansion within the generalized Beth-Uhlenbeck approach

Niels-Uwe Friedrich <u>Bastian</u> University of Wroclaw, Institute of Theoretical Physics

Trento, 5th of September 2019

Unified equation of state

Possibility of 1st order PT at high densities

Outline

Relativistic density functionals

Starting with free fermion Lagrangian plus an interaction term, which depends on quark currents

$$\mathcal{L}_{\text{eff}} = \underbrace{\bar{q} \left(\imath \gamma^{\mu} \partial_{\mu} - m \right) q}_{\mathcal{L}_{\text{free}}} - U(\bar{q}q, \bar{q}\gamma^{\mu}q)$$

Mean field \rightarrow linear dependence of U on densities is important! \rightarrow expansion around expectation values

$$U(\bar{q}q, \bar{q}\gamma^{\mu}q) = U(n_{\rm S}, n_{\rm V}) + \sum_{\rm S}(\bar{q}q - n_{\rm S}) + \sum_{\rm V}(\bar{q}\gamma^{\mu}q - n_{\rm V}) + \dots$$

$$derivatives$$

$$\mathcal{L}_{\rm eff} \approx \underbrace{\bar{q}\left(\gamma^{\mu}(i\partial_{\mu} - \sum_{\rm V}) - (m + \sum_{\rm S})\right)q}_{\mathcal{L}_{\rm quasi}} - \Theta(n_{\rm S}, n_{\rm V})$$

$$P = g \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \left[\ln(1 + e^{-\beta(\sqrt{p^{2} - M^{2}} - \tilde{\mu})}) + \mathrm{a.p.}\right] - \Theta$$
with $m = \sqrt{\pi} \sqrt{\pi} \sqrt{2\pi} \sqrt{2\pi} \sqrt{2\pi} = M$

wit

$$n_s = \langle \bar{q}q \rangle \ , \ n_v = \langle \bar{q}\gamma^0 q \rangle \qquad M = m + \Sigma_{\rm S} \ , \ \tilde{\mu} = \mu - \Sigma_{\rm V}$$

M. Kaltenborn, NUFB, D. Blaschke. Phys. Rev. D 2017, 96, 056024

Density functional approach: Stringflip model

Low density

- Color field lines compressed by dual Meissner effect
- String-potential

G. Ropke, et. al., Phys.Rev. D34 (1986) 3499-3513 M. Kaltenborn, **NUFB**, D. Blaschke, PRD 96, 056024 (2017)

High density

- Dual superconducting vacuum occupied by hadrons
- Pressure on field lines reduced
- Effective string-tension reduced

$$\sigma = \Phi \sigma_0$$

$$U^{\rm SF}(n_{\rm S}, n_{\rm V}) = D(n_{\rm V}) n_{\rm S}^{2/3}$$

Stringflip model – effective mass

Mean-field model

M. Kaltenborn, NUFB, D. Blaschke, PRD 96, 056024 (2017)

• Two independent models for hadrons and quarks

old

• Match while fulfilling Gibbs condition for thermal, mechanical and chemical phase equilibrium $T^{H} = T^{Q}$ $p^{H} = p^{Q}$ $\mu^{H} = \mu^{Q}$

Two-phase approach vs van der Waals wiggle

Cluster expansion

Generating functional formalism by Baym and Kadanoff^{1,2}

$$\Omega = -\text{Tr } \ln(-G_1^{-1}) - \text{Tr}\Sigma_1 G_1 + \Phi \quad \text{With} \quad \Sigma_1(1, 1') = \frac{\delta\Phi}{\delta G_1(1, 1')}$$

Can be generalized for a consistent cluster expansion³

$$\Omega = \sum_{l=1}^{A} \Omega_l = \sum_{l=1}^{A} \left\{ c_l \left[\operatorname{Tr} \ln \left(-G_l^{-1} \right) + \operatorname{Tr} \left(\Sigma_l \ G_l \right) \right] + \sum_{\substack{i,j \\ i+j=l}} \Phi[G_i, G_j, G_{i+j}] \right\}$$
with
$$\Sigma_A(1 \dots A, 1' \dots A', z_A) = \frac{\delta \Phi}{\delta G_A(1 \dots A, 1' \dots A', z_A)}$$

Always sustains full Dyson equation and thermodynamic stability

$$G_A^{-1} = G_A^{0}{}^{-1} - \Sigma_A^{-1} \qquad \frac{\partial \Omega}{\partial G_A} = 0$$

Reduction on generalized sunset diagrams is recommended

$$\Phi[G_i, G_j, G_{i+j}] =$$

¹Baym, G.; Kadanoff, L.P. Phys. Rev. 1961, 124, 287–299. ²Baym, G. Phys. Rev. 1962, 127, 1391–1401. ³**NUFB**, and others, Universe 2018, 4(6), 67

Self energy

Analogy to density functional approach

Phi-derivable approach

$$\Omega = -\mathrm{Tr} \, \ln(-G_1) - \mathrm{Tr}\Sigma_1 G_1 + \Phi[G_1]$$

Density functional approach

$$\Omega = \Omega^{\text{quasi}} - n_{\text{s}}\Sigma_{\text{s}} - n_{\text{v}}\Sigma_{\text{v}} + U(n_{\text{s}}, n_{\text{v}})$$

The Quark-Diquark-Meson-Baryon Model

Generalized Beth-Uhlenbeck

Cluster expansion

$$n_{\rm u} = n_{\rm u}^{\rm free} + 2n_{\rm p}^{\rm free} + 1n_{\rm n}^{\rm free}$$
$$n_{\rm d} = n_{\rm d}^{\rm free} + 1n_{\rm p}^{\rm free} + 2n_{\rm n}^{\rm free}$$

Chemical equilibrium

$$\mu_i = B_i \mu_{\rm B} + C_i \mu_{\rm C}$$

Generalized Beth-Uhlenbeck formula

$$n_{i}^{\text{free}} = g_{i} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \int \frac{\mathrm{d}E}{2\pi} f_{i}(E_{i}) 2\sin^{2}\delta_{i}(E) \frac{\mathrm{d}\delta_{i}(E)}{\mathrm{d}E}$$
Substitution:
$$E_{i} = \sqrt{p^{2} + (m_{i} + S_{i})^{2}} + V_{i}$$

$$n_i^{\text{free}} = g_i \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int \frac{\mathrm{d}M}{2\pi} f_i \left(\sqrt{p^2 + M^2} + V_i\right) 2\sin^2 \delta_i(M) \frac{\mathrm{d}\delta_i(M)}{\mathrm{d}M}$$

Analogy to density functional approach

$$\begin{split} n_{i}^{\text{free}} &= g_{i} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \int \frac{\mathrm{d}M}{2\pi} f_{i} \left(\sqrt{p^{2} + M^{2}} + V_{i}\right) 2\sin^{2}\delta_{i}(M) \frac{\mathrm{d}\delta_{i}(M)}{\mathrm{d}M} \\ \delta_{i=\mathrm{u},\mathrm{d}}(M) &= \pi \Theta(M - M_{i}) \\ \delta_{i=\mathrm{p},\mathrm{n}}(M) &= \pi \Theta(M - M_{i}) \Theta(M_{i}^{\text{th}} - M) \\ n_{i=\mathrm{p},\mathrm{n}} &= g_{i} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \left[f_{i}(\sqrt{p^{2} + M_{i}^{2}} + V_{i}) \right] \\ \end{split}$$

$$M_{\rm p}^{\rm thr} = 2M_{\rm u} + 1M_{\rm d}$$
$$M_{\rm n}^{\rm thr} = 1M_{\rm u} + 2M_{\rm d}$$

Cluster-expansion of Quarks

NUFB, D. Blaschke, arXiv:1812.11766

Cluster-expansion of Quarks

NUFB, D. Blaschke, arXiv:1812.11766

Cluster-expansion

Cluster-expansion

Outline Summary

Last Slide

Conclusions

- Possible scenarios are explored in which a 1st order phase transition is detectable in
 - neutron star configurations
 - neutrino signals of supernova explosions
 - Gravitational wave signal of binary neutron star mergers
 - Flow data of heavy-ion collision experiments
- Astrophysical objects and HIC collisions are based on the same physics of strongly interacting manyparticle systems
- Hadrons are bound states of quarks and should be treated as such
- A cluster virial expansion within the Beth-Uhlenbeck formalism can be derived from the PHIderivable approach
- Initial reduction to mean field already results in a consistent description of Quark-Hadron phase transition

Outlook

- Density functional with chiral physics
- Reproduction of Lattice results
- Continuum contributions and substructure effects
- Cluster mean field

Collaboration

• Tobias Fischer, David Blaschke, Andreas Bauswein, Stefan Typel, Gerd Röpke, Yuri Ivanov, Diana Alvear Terrero

Thank you!