Highlights on the production of (Anti-)(Hyper-)Nuclei with STAR and ALICE

05.09.2019

ECT* Workshop: Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics

Benjamin Dönigus

Institut für Kernphysik Goethe Universität Frankfurt

Content

- Introduction
- ALICE
- (Anti-)nuclei
- (Anti-)hypernuclei
- Summary/Conclusion

Introduction

Time \rightarrow

Cartoon of a Ultra-relativistic heavy-ion collision

Left to right:

- the two Lorentz contracted nuclei approach,
- collide,
- form a Quark-Gluon Plasma (QGP),
- the QGP expands and hadronizes,
- finally hadrons rescatter and freeze

Plot by S. Bass, Duke University; http://www.phy.duke.edu/research/NPTheory/QGP/transport/evo.jpg

The fireball evolution:

- Starts with a "pre-equilibrium state"
- Forms a Quark-Gluon Plasma phase (if T is larger than T_c)
- At chemical freeze-out, T_{ch}, hadrons stop being produced
- At kinetic freeze-out, T_{fo}, hadrons stop scattering

Motivation

A. Andronic et al., PLB 697, 203 (2011) and references therein for the model, figure from A. Andronic, private communication

- Explore QCD and QCD inspired model predictions for (unusual) multi-baryon states
- Search for rarely produced anti- and hyper-matter
- Test model predictions, e.g. thermal and coalescence
- → Understand production mechanisms

Motivation

A. Andronic et al., PLB 697, 203 (2011) and references therein for the model, figure from A. Andronic, private communication

- Explore QCD and QCD inspired model predictions for (unusual) multi-baryon states
- Search for rarely produced anti- and hyper-matter
- Test model predictions, e.g. thermal and coalescence
- → Understand production mechanisms
- → Basis are light (anti-)nuclei

Motivation

Thermal model

- Key parameter at LHC energies:
 - chemical freeze-out temperature T_{ch}
- Strong sensitivity of abundance of nuclei to choice of T_{ch} due to:
 - 1. large mass *m*
 - 2. exponential dependence of the yield ~ $\exp(-m/T_{ch})$
- → Binding energies small compared to T_{ch}

Coalescence (I)

J. I. Kapusta, PRC 21, 1301 (1980)

- Nuclei are formed by protons and neutrons which are nearby in space and have similar velocities (after kinetic freeze-out)
- Produced nuclei
- → can break apart
- → created again by final-state coalescence

Coalescence (II)

T. Anticic et al. (NA49 Collaboration) PRC 94, 044906 (2016)

 Production probability of nuclei is usually quantified through a coalescence parameter B_A using

$$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

• B_A often connected to the coalescence volume (in momentum space p_0)

$$B_A = \left(\frac{4\pi}{3}p_0^3\right)^{A-1}\frac{M}{m^A}$$

Coalescence (III)

 Production probability of nuclei is usually quantified through a coalescence parameter B_A using

$$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

In particular in HICs B_A
described by replacing
coalescence volume by
HBT "volume"

$$B_A \propto \left(\frac{1}{V}\right)^{(A-1)}$$

Detectors

Experiments: ALICE

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

Experiments: STAR

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

ECT* Workshop, Trento - Benjamin Dönigus

STAR

Particle Identification

Low momenta:

Nuclei are identified using the d*E*/d*x* measurement in the Time Projection Chamber (TPC)

Higher momenta:

Velocity measurement with the Time-of-Flight (TOF) detector is used to calculate the m^2 distribution

Secondary contamination

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

> → Distance-of-Closest-Approach (DCA) distributions can be used to separate primary particles (produced in the collision) from secondary particles (from knock-out of the material, e.g. beam pipe)

→ Knock-out is a significant problem at low p_T , but only for nuclei not for anti-nuclei

→ Distance-of-Closest-Approach (DCA) distributions can be used to separate primary particles (produced in the collision) from secondary particles (from knock-out of the material, e.g. beam pipe)

→ Knock-out is a significant problem at low p_T , but only for nuclei not for anti-nuclei

→ Distance-of-Closest-Approach (DCA) distributions can be used to separate primary particles (produced in the collision) from secondary particles (from knock-out of the material, e.g. beam pipe)

 \rightarrow Knock-out is a significant problem at low p_{T} , but only for nuclei not for anti-nuclei

Pb

Pb

Interlude: Centrality

Central Pb-Pb collision: High multiplicity = large $\langle dN/d\eta \rangle$ High number of tracks (more than 2000 tracks in the detector)

Peripheral Pb-Pb collision: Low multiplicity = small $\langle dN/d\eta \rangle$ Low number of tracks (less than 100 tracks in the detector)

(Anti-)Nuclei

STAR Collaboration: PRC 99, 064905 (2019)

 STAR has measured the (anti-)deuteron production in several centralities in the Beam Energy Scan program at RHIC

STAR Collaboration: PRC 99, 064905 (2019)

$$\frac{n_{\overline{p}}}{n_p} = \exp(-2\mu_B/T)$$

 $\frac{n_{\overline{d}}}{n_d} = \exp(-4\mu_B/T)$

J. Cleymans et al.: PRC 84, 054916 (2011)

- STAR has measured the (anti-)deuteron production in several centralities in the Beam Energy Scan (BES) program at RHIC
- Trend as a function of centre-of-mass energy for anti-particle to particle ratios can be nicely described by the thermal model

(GeV/c)

10-

10-

ALICE

Pb-Pb

- ALICE Collaboration: PRC 93, 024917 (2016)
- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- pp spectrum shows no sign of radial flow

10⁻²

10⁻³

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- MB pp spectrum shows no sign of radial flow \rightarrow multiplicity bins show hardening

pp

ALICE Preliminary

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- MB pp spectrum shows no sign of radial flow → developing nicely

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- MB pp spectrum shows no sign of radial flow → developing nicely

³He

ALICE Collaboration: PRC 93, 024917 (2016)

- Dashed curves represent individual Blast-Wave fits
- Spectrum obtained in 2 centrality classes in Pb-Pb and for NSD collisions in p-Pb

- Dashed curves represent individual Blast-Wave fits
- Spectrum obtained in 3 centrality classes in Pb-Pb and for NSD collisions in p-Pb

³He and t

ALICE Collaboration, arXiv:1709.08522, PRC 97 (2018) 024615 p_T (GeV/c)

- First "spectrum" measured in pp collisions at 7 TeV for ³He and anti-³He
- t and anti-t measurement difficult, (anti-)t/(anti-)³He agrees with unity

LHC: factory for anti-matter and matter ALICE

 Anti-nuclei / nuclei ratios are consistent with unity (similar to other light particle species)

GOETHE

UNIVERSITÄT

FRANKFURT AM MAIN

- Ratios exhibit constant behavior as a function of $p_{\rm T}$ and centrality
- Ratios are in agreement with the coalescence and thermal model expectations

ALICE Collaboration: PRC 93, 024917 (2016) ECT* Workshop, Trento - Benjamin Dönigus

Also in pp multiplicity intervals, anti-deuterons and deuterons are produced equally ECT* Workshop, Trento - Benjamin Dönigus 32

LHC: factory for anti-matter and matter

GOETHE

FRS

FURT AM MAIN

ITÄT

Also in pp multiplicity intervals, anti-deuterons and deuterons are produced equally ECT* Workshop, Trento - Benjamin Dönigus 33

GOETHE COMBINED Blast-Wave fit

ALICE Collaboration: PRC 93, 024917 (2016)

Simultaneous Blast-Wave fit of π^+ , K⁺, p, d and ³He spectra for central Pb-Pb collisions leads to values for < β > and T_{kin} close to the ones obtained when only π ,K,p are used

All particles are described rather well with this simultaneous fit

Anti-Alpha

For the full statistics of 2011 ALICE identified 10 Anti-Alphas using TPC and TOF

STAR observed the Anti-Alpha in 2010: *Nature 473, 353 (2011)*

Mass dependence

GOETHF

VFRS

KFURT AM MAIN

Nuclei production yields follow an exponential decrease with mass as predicted by the thermal model

In Pb-Pb the penalty factor for adding one baryon is ~300 (for particles and antiparticles)

ALICE Collaboration, arXiv:1710.07531, NPA 971, 1 (2018)

Mass dependence

Nuclei production yields follow an exponential

decrease with mass as predicted by the thermal model

In Pb-Pb the penalty factor for adding one baryon is ~300 and in p-Pb is ~600

Thermal model fits

Collaboration, arXiv:1710.07531 1, 1 (2018) ALICE

T

- Different models describe particle yields including light (hyper-)nuclei well with $T_{\rm ch}$ of about 156 MeV
- Including nuclei in the fit causes no significant change in T_{ch}

d/p ratio described by applying afterburner on Hybrid UrQMD simulations – similar results for thermal approach

d/p ratio rather well described by using a coalescence approach, from an analytical coalsecence formula or a canonical treatment

ECT* Workshop, Trento - Benjamin Dönigus

ALICE

³He/p ratio rather well described by using a coalescence approach, from an analytical coalsecence formula or a canonical treatment in the thermal model ECT* Workshop, Trento - Benjamin Dönigus

 d/p vs. collision energy ratio rather well described by thermal model approach

20^{×10⁻³}

18

16

12E

10F

ALICE preliminary

0.5

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, deuterons

3₂ (GeV²/c³)

Coalescence parameter B₂

ALICE Collaboration: PRC 93, 024917 (2016)

- Coalescence parameter B_2 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- Simple coalescence expects B_2 to be constant

• 0-10% **●** 10-20%

20-40% 40-60%

← 60-100%

3.5

 p_{\perp} (GeV/c)

p-Pb

3

2.5

20×10⁻³

18E

16

14

12E

10F

ALICE preliminary

0.5

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, deuterons

15

3₂ (GeV²/c³)

Coalescence parameter B_2

ALICE Collaboration: PRC 93, 024917 (2016)

- Coalescence parameter B₂
 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B₂ scales like the HBT radii
 Decrease with centrality in Pb-Pb is understood as an increase in the source volume

 p_{T} (GeV/c) ECT* Workshop, Trento - Benjamin Dönigus

20^{×10⁻³}

18E

16

14

12E

10F

ALICE preliminary

1.5

0.5

3₂ (GeV²/*c*³)

Coalescence parameter B_2

- Coalescence parameter B_2 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B_2 scales like the HBT radii → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

Coalescence parameter B_2

- Coalescence parameter B_2 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B_2 scales like the HBT radii → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

50

Coalescence parameter B_2

 $B_2 \, ({\rm GeV}^2/c^3)$

0.03

0.02

V0M Multiplicity Classes

I+II

IV+V VI+VII

VIII+IX+X

ALICE Preliminary

 $d+\overline{d}$, pp $\sqrt{s} = 7$ TeV

1.2

pp

 $p_{\rm T}/A ~({\rm GeV}/c)$

4

- Coalescence parameter B_2 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B_2 scales like the HBT radii → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

Coalescence parameter B_2

Coalescence parameter B_2 $B_2 \, ({\rm GeV}^2/c^3)$ V0M Multiplicity Classes decreases with centrality in Pb-Pb **ALICE Preliminary** I (× 1) deuterons, pp, $\sqrt{s} = 13 \text{ TeV}$ 10 II (× 2) Similar effect seen in p-Pb: decrease III (× 4) $\langle dN_{ch} / d\eta_{ch} \rangle = 2.42$ IV + V (× 8) VI (× 16) with multiplicity, but less pronounced VII (× 32) ▝▋■▖▖▖▆▁▋▖▖ VIII (× 64) B_2 scales like the HBT radii IX (× 128) X (× 256) 10^{-1} → Decrease with centrality in Pb-Pb is understood as an increase in the source volume 10^{-2} B₂ (GeV²/c³) $\langle dN_{ch} / d\eta_{loh} \rangle = 26.22$ pp Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ • 0-5% 5-10% • 10-20% • 20-30% 10⁻³ 30-40% 40-50% • 50-60% • 60-70% 0.4 0.6 0.8 1.8 p_/A (GeV/c) • 70-80% \circ pp INEL $\sqrt{s} = 13$ TeV 80-90% pp INEL normalisation uncertainty: 2.55% 10^{-2} $3\pi^{3/2}\langle C_{\rm d}\rangle$ 10^{-3} B_2 $\overline{2m_{\rm T}R_{\perp}^2(m_{\rm T})R_{\parallel}(m_{\rm T})}$ **ALICE Preliminary** deuterons, |y| < 0.5Ph-Ph 10^{-4} 1.5 2.5 0.5 *p*_/A (GeV/*c*) ALICE-PUBLIC-2017-006 ECT* Workshop, Trento - Benjamin Dönigus

52

Coalescence parameter B₂

 B_2 and B_3

- B₂(anti-d) smaller than B₂(d) indicates different freeze-out volumes for baryons and anti-baryons
- B₂(d) and sqrt(B₃(d)) agree well except for 200 GeV ECT* Workshop, Trento - Benjamin Dönigus

Elliptic flow

$$\varepsilon = \frac{\left\langle y^2 \right\rangle - \left\langle x^2 \right\rangle}{\left\langle y^2 \right\rangle + \left\langle x^2 \right\rangle}$$

Initial coordinate-space anisotropy

$$v_{2} = \left\langle \frac{p_{x}^{2} - p_{y}^{2}}{p_{x}^{2} + p_{y}^{2}} \right\rangle$$

Final momentum-space anisotropy

 $\frac{dN}{d\phi} \propto 1 + 2v_2 \cos[2(\phi - \Psi_R)] + 2v_4 \cos[4(\phi - \Psi_R)] + \dots$ Anisotropy self-quenches, so $v_2 \text{ is sensitive to early times}$

Deuteron flow

- Deuterons show a significant v₂
- Also the v₂ of deuterons follows the mass ordering expected from hydrodynamics
- A naive coalescence prediction is not able to reproduce the deuteron v₂
- A Blast-Wave prediction is able to describe the v₂ reasonably well

³He flow

• ³He also shows a significant v_2

³He flow

- Also the v₂ of ³He follows the mass ordering expected from hydrodynamics
- A naive coalescence prediction is not able to reproduce the ³He v₂
- A Blast-Wave prediction has difficulties to describe the v₂ reasonably well

³He flow

- STAR Collaboration: PRC 94, 034908 (2016)

• Scaling the v_2 and p_T of particles works rather well for all nuclei at RHIC

Hypernuclei

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/ c^2 (B_{Λ} =130 keV)

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/c² (B_{Λ} =130 keV)

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/ c^2 (B_{Λ} =130 keV)

Hypertriton identification

GOETHE

UNIVERSITÄT

Bound state of Λ , p, n $m = 2.991 \text{ GeV}/c^2 (B_{\Lambda} = 130 \text{ keV})$ \rightarrow rms radius (<r²_d>): 10.6 fm Decay modes: $^{3}_{\Lambda}\mathrm{H} \rightarrow^{3}\mathrm{He} + \pi^{-}$ $^{3}_{\Lambda}\text{H} \rightarrow ^{3}\text{H} + \pi^{0}$ $^{3}_{\Lambda}\mathrm{H} \rightarrow \mathrm{d} + \mathrm{p} + \pi^{-}$ $^{3}_{\Lambda}\mathrm{H} \rightarrow \mathrm{d} + \mathrm{n} + \pi^{0}$

+ anti-particles

→ Anti-hypertriton was first observed by the STAR Collaboration: Science 328,58 (2010)

ALICE Collaboration: PLB 754, 360 (2016), arXiv:1506.08453

• Peaks are clearly visible for particle and anti-particle \rightarrow Extracted yields in 3 p_T bins and 2 centrality classes

• Peaks are also clearly visible for particle and anti-particle \rightarrow Extracted yields in 4 p_T bins and 3 centrality classes

Hypertriton spectra

• Anti-hypertriton/Hypertriton ratio consistent with unity vs. p_{T}

Thermal model fits

- Different models describe particle yields including light (hyper-)nuclei well with T_{ch} of about 156 MeV
- Including nuclei in the fit causes no significant change in $T_{\rm ch}$

ECT* Workshop, Trento - Benjamin Dönigus

T

Collaboration, arXiv:1710.07531 1, 1 (2018)

ALICE

Thermal model fits

- Different models describe particle yields including light (hyper-)nuclei slightly worse at higher collision energy with a T_{ch} of about 153 MeV
- Including nuclei in the fit causes no significant change in $T_{\rm ch}$

- Excellent agreement over
 9 orders of magnitude
- Fit of nuclei (d, ³He, ⁴He): *T_{ch}*=159 ± 5 MeV
- No feed-down for (anti-) (hyper-)nuclei
- charm quarks, out of chemical equilibrium, undergo statistical hadronization

 → only input: number of ccbar pairs

Hypertriton - J/ ψ comparison

P. Braun-Munzinger, bd, Invited review NPA, arXiv:1809.04681

Shape of the p_{T} spectra of J/ ψ and hypertriton agree very well, despite the binding energy of the hypertriton is 2.35 MeV and of the J/ ψ 600 MeV

Hypertriton "puzzle"

- Recently extracted lifetimes significantly below the free Λ lifetime
- Not expected from theory!
- Data before 2010 from visualization techniques
- Currently most precise data coming from heavy-ion collisions
- Better precision expected from larger data samples to be collected

P. Braun-Munzinger, bd, Invited review, NPA 987, 144 (2019), arXiv:1809.04681

 Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Most recent calculation agrees with the observed trend

accepted

arXiv:1907.06906

PLB

Hypertriton "puzzle"

Solution might be connected to the data from emulsions

 \rightarrow re-measuring the Λ separation energy

Hypertriton "puzzle"

- Solution might be connected to the data from emulsions
- \rightarrow re-measuring the Λ separation energy

Summary

Conclusion

- ALICE@LHC and STAR@RHIC are well suited to study light (anti-)(hyper-)nuclei and perform searches for exotic bound states (A<5)
- Copious production of loosely bound objects measured by ALICE as predicted by the thermal model
- Models describe the (anti-)(hyper-)nuclei data rather well
- Ratios vs. multiplicity trend described by both models
- New and more precise data can be expected in the next years

P. Braun-Munzinger, bd, Invited review, NPA 987, 144 (2019), arXiv:1809.04681

Conclusion

- ALICE@LHC and STAR@RHIC are well suited to study light (anti-)(hyper-)nuclei and perform searches for exotic bound states (A<5)
- Copious production of loosely bound objects measured by ALICE as predicted by the thermal model
- Models describe the (anti-)(hyper-)nuclei data rather well
- Ratios vs. multiplicity trend described by both models
- New and more precise data can be expected in the next years

Backup

Pb

Pb

Interlude: Centrality

Central Pb-Pb collision: High multiplicity = large $\langle dN/d\eta \rangle$ High number of tracks (more than 2000 tracks in the detector)

Peripheral Pb-Pb collision: Low multiplicity = small $\langle dN/d\eta \rangle$ Low number of tracks (less than 100 tracks in the detector)

TPC PID in Pb-Pb

As shown by Silvia Masciocchi in the second heavy-ion lecture

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

GOETHE TPC PID in Pb-Pb

TPC PID in Pb-Pb

As shown by Silvia Masciocchi in the second heavy-ion lecture

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

Pure production visible on the anti-matter side

Large background on the matter side due to spallation effects (knockout)

Input for Cosmic Ray Dark Matter Searches

Coalescence@work

- AMS measures anti-nuclei in space, since it was proposed as a possible sign of dark matter (annihilation)
- ALICE anti-nuclei measurments can be used to predict the anti-nuclei production in the universe by usual production mechanism
- Simple assumption lead currently to the conclusion that matter matches expectations using a coalescence approach to describe the production sees in the AMS data

- AMS measures anti-nuclei in space, since it was proposed as a possible sign of dark matter (annihilation)
- ALICE anti-nuclei measurments can be used to predict the anti-nuclei production in the universe by usual production mechanism
- Simple assumption lead currently to the conclusion that matter matches expectations using a coalescence approach to describe the production sees in the AMS data

FIG. 5: Poisson probability for detecting $N \ge 1, 2, 3, 4$ ³He events in a 5-yr analysis of AMS02, assuming the same exposure as in the \bar{p} analysis [28]. Eq. (14) shown as green band.

K. Blum et al. PRD 96, 103021 (2017)

Coalescence@work

Expectations

- Run 3 & Run 4 (2021 2029) of the LHC will deliver much more statistics (50 kHz Pb-Pb collision rate)
- Upgraded ALICE detector will be able to cope with the high luminosity
- TPC Upgrade: GEMs for continous readout
- ITS Upgrade: less material budget and more precise tracking for the identification of hyper-nuclei
- Physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4

ITS Upgrade TDR: J. Phys. G 41, 087002 (2014)

State	$\mathrm{d}N/\mathrm{d}y$	B.R.	$\langle Acc \times \epsilon \rangle$	Yield
$^{3}_{\Lambda}H$	1×10^{-4}	25%	$11 \ \%$	44000
$\overline{\frac{4}{\Lambda}}H$	2×10^{-7}	50%	7~%	110
${\overline 4\over\Lambda} He$	2×10^{-7}	32%	8 %	130

Expectations

Expected significance >5 σ for the full data set to be collected in Run 3 & 4

Conclusion

- ALICE@LHC is well suited to study light (anti-)(hyper-)nuclei, resonances and perform searches for exotic bound states (A<5)
- Copious production of loosely bound objects measured by ALICE as predicted by the thermal model
- Thermal and coalescence models describe the (anti-)(hyper-)nuclei data rather well
- d/p ratio shows increasing trend for pp and p-Pb collisions and seems to saturate for Pb-Pb multiplicities
- Resonances give clear indication of a hadronic phase which is slightly contradicting the findings for light nuclei
- New and more precise data can be expected from the LHC on the presented topics in the next years

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
- 1.) ct spectra (default)

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
- 1.) ct spectra (default)

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
 1.) ct spectra (default)
 2.) "unbinned" method using sideband region for fitting the background and the signal region for extracting the lifetime of the hypertriton

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
 1.) ct spectra (default)
 2.) "unbinned" method using sideband region for fitting the background and the signal region for extracting the lifetime of the hypertriton

- Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime
- Two methods used which agree nicely:
 1.) ct spectra (default)
 2.) "unbinned" method using sideband region for fitting the background and the signal region for extracting the lifetime of the hypertriton

Expectations

- Run 3 & Run 4 (2021 2029) of LHC will deliver much more statistics (50 kHz Pb-Pb collision rate)
- Upgraded ALICE detector will be able to cope with the high luminosity
- TPC Upgrade: GEMs for continous readout
- ITS Upgrade: less material budget and more precise tracking for the identification of hyper-nuclei
- Physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4

ITS Upgrade TDR: J. Phys. G 41, 087002 (2014)

State	$\mathrm{d}N/\mathrm{d}y$	B.R.	$\langle Acc \times \epsilon \rangle$	Yield
$^{-3}_{\Lambda}H$	1×10^{-4}	25%	$11 \ \%$	44000
$^{\overline{4}}_{\Lambda}H$	2×10^{-7}	50%	7~%	110
${\overline 4\over\Lambda} He$	2×10^{-7}	32%	8 %	130

Expectations

Expected significance >5s for the full data set to be collected in Run 3 & 4

Deuterons

- Spectra become harder with increasing multiplicity in p-Pb and Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- MB pp spectrum shows no sign of radial flow \rightarrow multiplicity bins show hardening (GeV/c

V0M Multiplicity Classes

Blast-Wave p+p

Blast-Wave d+d Coalescence d

2.2

1.6

1.2

0.8

0.6

04

5

10

15

20

25

ECT* Workshop, Trento - Benjamin Dönigus

🕁 p+p O d+d

30

🚫 Blast-Wave p+p Blast-Wave d+d

35

Coalescence parameter B₂

- Coalescence parameter B_2 decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B_2 scales like the HBT radii → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

ALICE Collaboration, arXiv:1709.08522

Coalescence parameter B₂

- Coalescence parameter B₂ decreases with centrality in Pb-Pb
- Similar effect seen in p-Pb: decrease with multiplicity, but less pronounced
- B₂ scales like the HBT radii
 → Decrease with centrality in Pb-Pb is understood as an increase in the source volume

ALICE Collaboration, arXiv:1709.08522

Thermal model fits

- Different models describe particle yields including light (hyper-)nuclei well with $T_{\rm ch}$ of about 156 MeV
- Including nuclei in the fit causes no significant change in T_{ch}

SHARE3: G. Torrieri, et al., CPC 167, 229 (2005); CPC 175, 635 (2006); CPC 185, 2056 (2014)

- Observations similar to QM2014 results
- Including nuclei drives a non-equilibrium fit towards the equilibrium values

³He/p ratio increases also when going from pp to p-Pb, until it reaches the grand canonical thermal model value (³He/p=8x10⁻⁶ at T_{ch} = 156 MeV) ECT* Workshop, Trento - Benjamin Dönigus 105 **Experiment: ALICE**

GOETHE

UNIVERSITÄT

Multiplicity classes: pp

• VOM Multiplicity Classes: $\left\{ \begin{array}{l} I \to \langle dN_{ch}/d\eta \rangle \approx 3.5 \times \langle dN_{ch}/d\eta \rangle^{\text{INEL}>0} \\ \vdots \\ X \to \langle dN_{ch}/d\eta \rangle \approx 0.4 \times \langle dN_{ch}/d\eta \rangle^{\text{INEL}>0} \end{array} \right\}$

Table A.1: Event multiplicity classes, their corresponding fraction of the INEL>0 cross-section ($\sigma/\sigma_{INEL>0}$) and their corresponding $\langle dN_{ch}/d\eta \rangle$ at midrapidity ($|\eta| < 0.5$). The value of $\langle dN_{ch}/d\eta \rangle$ in the inclusive (INEL>0) class is 5.96 \pm 0.23. The uncertainties are the quadratic sum of statistical and systematic contributions and represent standard deviations.

Class name	Ι	Π	III	IV	V	VI	VII	VIII	IX	Х
$\sigma/\sigma_{ m INEL>0}$	0-0.95%	0.95-4.7%	4.7-9.5%	9.5-14%	14–19%	19-28%	28-38%	38-48%	48-68%	68–100%
$\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}oldsymbol{\eta} angle$	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3	8.45 ± 0.25	6.72 ± 0.21	5.40 ± 0.17	3.90 ± 0.14	2.26 ± 0.12

ALICE Collaboration: J. Adam et al., Nature Physics 13 (2017) 535

TRD nuclei trigger

- A trigger on light (anti-)nuclei using the dependence of the ionisation on the charge number of the particle crossing the gas was studied intensively
- A first run in the p-Pb taking 2016

- Currently running in the standard trigger mix of ALICE in the pp data taking
- Expected enhancement mainly on Z=2 (anti-)nuclei, but possible reach up to (anti-)alpha even in pp is anticipated in 2017/2018 data taking campaign

ALICE Collaboration: J. Adam et al., PRC 93, 024917 (2016)

Combined Blast-Wave fit

ALICE Collaboration: J. Adam et al., PRC 93, 024917 (2016)

Simultaneous Blast-Wave fit of π^+ , K⁺, p, d and ³He spectra for central Pb-Pb collisions leads to values for $\langle \beta \rangle$ and T_{kin} close to those obtained when only π ,K,p are used

All particles are described rather well with this simultaneous fit

Expectations

- Run 3 & Run 4 of LHC will deliver much more statistics (50 kHz Pb-Pb collision rate)
- Upgraded ALICE detector will be able to cope with the high luminosity
- TPC Upgrade: GEMs for continous readout
- ITS Upgrade: less material budget and more precise tracking for the identification of hyper-nuclei
- Physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4

ITS Upgrade TDR: J. Phys. G 41, 087002 (2014)

State	$\mathrm{d}N/\mathrm{d}y$	B.R.	$\langle Acc \times \epsilon \rangle$	Yield
$^{3}_{\Lambda}H$	1×10^{-4}	25%	$11 \ \%$	44000
${}^4_{\Lambda}H$	2×10^{-7}	50%	7~%	110
${\overline 4\over\Lambda} He$	2×10^{-7}	32%	8 %	130

ALICE

Precision mass measurement

- The precise measurement of (anti-)nuclei ALICE Collaboration: Nature Phys. 11, 811 (2015) mass difference allows probing any difference in the interaction between nucleons and anti-nucleons
- Performed test of the CPT invariance of residual QCD "nuclear force" by looking at the mass difference between nuclei and anti-nuclei

- → Mass and binding energies of nuclei and anti-nuclei are compatible within uncertainties
 - → Measurement confirms the CPT invariance for light nuclei.

ECT* Workshop, Trento - Benjamin Dönigus

L. Zhu, C.M. Ko, X. Yin: PRC 92, 064911 (2015)

ALICE Collaboration: PRC 93, 024917 (2016)

ECT* Workshop, Trento - Benjamin Dönigus

TPC PID in Pb-Pb

ALICE Collaboration: PRC 93, 024917 (2016)

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

Anti-tritons

Hypernuclei

Hypertriton identification

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

> Bound state of Λ , p, n $m = 2.991 \text{ GeV}/c^2 (B_{\Lambda} = 130 \text{ keV})$ \rightarrow rms radius: 10.3 fm Decay modes: $^{3}_{\Lambda}\text{H} \rightarrow ^{3}\text{He} + \pi^{-}$ $^{3}_{\Lambda}\text{H} \rightarrow ^{3}\text{H} + \pi^{0}$ $^{3}_{\Lambda}\text{H} \rightarrow \text{d} + \text{p} + \pi^{-}$ $^{3}_{\Lambda}\mathrm{H} \rightarrow \mathrm{d} + \mathrm{n} + \pi^{0}$ + anti-particles

→ Anti-hypertriton was first observed by the STAR Collaboration:

ECT* Workshop, Trento - Benjamin Dönigus

Science 328,58 (2010) 124

Hypertriton signal

• Peaks are clearly visible for particle and anti-particle \rightarrow Extracted yields in 3 p_T bins and 2 centrality classes

• Peaks are also clearly visible for particle and anti-particle \rightarrow Extracted yields in 4 p_T bins and 3 centrality classes

Hypertriton spectra

• Anti-hypertriton/Hypertriton ratio consistent with unity vs. p_{T}

Hypertriton yield

 Production in 3 centrality classes shows increase of production probability with increasing multiplicity

0.04

0.03

0.02

0.01

0

Hypertriton yield

- Production in 3 centrality classes shows increase of production probability with increasing multiplicity
- Ratio between anti-hypertriton-to-hypertriton unity for all centralities

Hypertriton yield vs. B.R.

ALICE

ALICE Collaboration: PLB 754, 360 (2016)

- The hypertriton branching ratio is not well known, only constrained by the ratio between all charged channels containing a pion
- Theory which prefers a value of around 25% gives a lifetime of the hypertriton close to the one of the free Λ

Hypertriton yield vs. B.R.

- The hypertriton branching ratio is not well known, only constrained by the ratio between all charged channels containing a pion
- Theory which prefers a value of around 25% gives a lifetime of the hypertriton close to the one of the free Λ

ECT* Workshop, Trento - Benjamin Dönigus

- Recently extracted lifetimes significantly below the free Λ lifetime
- Not expected from theory!
- Data before 2010 from emulsions
- Currently most precise data coming from heavy-ion collisions
- Better precision expected from larger data samples to be collected

P. Braun-Munzinger, bd, Invited review NPA in preparation

 Recently extracted lifetimes significantly below the free Λ lifetime → new ALICE result agrees with world average and free Λ lifetime

