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Nuclear matter phase diagram 
Core collapse supernovae 

T. Fischer, GSI Darmstadt 



Correlations in nuclear systems 

•  Kimura:  Clusters? 
•  Correlations in many-particle systems, finite density? 
•  Classical – quantum: antisymmetrization 
•  Bound states, continuum correlations 
•  Spectral function - quasiparticle concept 
•  Pairing: nupndown, puppdown, nuppdown 

•  Quartetting: nupndownpuppdown 

•  Correlations in thermodynamic equilibrium  
•  Center-of-mass motion, intrinsic motion are separated 
•  Inhomogeneous systems 
•  Time-dependent processes 



Effective wave equation  
for the deuteron in matter 
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Fermi distribution function 

Pauli-blocking 

BEC-BCS crossover: 
Alm et al.,1993 

Add self-energy 

Thouless criterion 

€ 

Ed (T,µ) = 2µ

In-medium two-particle wave equation in mean-field approximation 

Correlated medium? 



Few-particle Schrödinger equation 
in a dense medium 

4-particle Schrödinger equation with medium effects 
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Thouless criterion  
for quantum condensate: 

En,P=0(T,µ) = 4µ  



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz, Debye) 



Asymmetric nuclear light clusters in 
supernova matter  

A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, I. V. Panov, 
Monthly Notices of the Royal Astronomical Society 483, 5426 (2019) 



Light unstable clusters 

arXiv:1812.09494 



Core-collapse supernovae 

Density.  
 
electron fraction, and 
 
temperature profile 
 
of a 15 solar mass supernova 
at 150 ms after core bounce 
as function of the radius. 
 
Influence of cluster formation  
on neutrino emission  
in the cooling region and 
on neutrino absorption 
in the heating region ? 
K.Sumiyoshi et al., 
Astrophys.J. 629, 922 (2005) 



Composition of supernova core 

K.Sumiyoshi, 
G. R., 
PRC 77, 
055804 (2008) 

Mass fraction X  
of light clusters  
for a post-bounce  
supernova core 



EOS: continuum contributions 
Partial density of channel A,c at P (for instance, 3S1= d): 

separation: bound state part – continuum part ? 

parametrization (d – like): 

G. Roepke, PRC 92,054001 (2015) 



Deuteron-like scattering phase shifts 

0 10 20 30 40 50 60 70
energy Erel [MeV]

0

1

2

3

sc
at

te
rin

g 
ph

as
e 

sh
ift

n = 0.001 fm-3

n = 0.003 fm-3

n = 0.01 fm-3

n = 0.03 fm-3

n = 0.1 fm-3

T = 5 MeV
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deuteron bound state -2.2 MeV 

Virial coeff. ∝  

10

A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [23, 35, 36, 38, 39]

ntot
n (T, µn, µp) =

2
⇤3

h

bn(T )eµn/T + 2bnn(T )e2µn/T + 2bnp(T )e(µn+µp)/T + . . .
i

,

ntot
p (T, µn, µp) =

2
⇤3

h

bp(T )eµp/T + 2bpp(T )e2µp/T + 2bpn(T )e(µn+µp)/T + . . .
i

, (31)

Already the noninteracting, i.e. ideal Fermi gas of nucleons contains two e↵ects in contrast to the standard low-
density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0

TI=1(T ) from the neutron matter case as

ntot
B,neutron m.(T, µn, µp) = nqu

n (T, µn, µp) +
25/2

⇤3
e2µn/T v0

TI=1(T ) + . . . , (32)

and the residual isospin-singlet contribution v0
TI=0(T ) from the symmetric matter case (µp = µn) according to

ntot
B,symmetr.m.(T, µn, µp) = nqu

n (T, µn, µp) + nqu
p (T, µn, µp)

+
25/23
⇤3

e(µn+µp)/T
h

e�E0
d/T � 1 + v0

TI=0(T ) + v0
TI=1(T )

i

+ . . . , (33)

dots indicate higher orders in densities. The residual second virial coe�cients v0
c (T ) are given by [36]

v0
c (T ) =

1
⇡T

Z 1

0

dE e�E/T

⇢

�c(E)� 1
2

sin[2�c(E)]
�

. (34)

Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
to the Levinson theorem for each bound state the contribution �1 appears.
ii) The contribution � 1

2 sin[2�c(E)] appears to avoid double counting [32, 36] when introducing the quasiparticle
picture. E denotes the relative energy in the c.o.m. system.

The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0

c (T ) if the quasiparticle picture is introduced. The remaining contribution to the second virial coe�cient b⌧,⌧ 0(T ) is
absorbed in the quasiparticle shift. This has been discussed in detail in [32, 36, 39].

To give an approximation for v0
c (T ), we performed calculations within the generalized Beth-Uhlenbeck approach

[36] for a simple separable potential,

Vc(12, 1020) = ��ce
� (p1�p2)2

4�2 e
� (p01�p02)2

4�2 ��,�0�⌧,⌧ 0 (35)

with �d = 1287.37 MeV for the deuteron (isospin 0) channel, � = 1.474 fm�1, see [34], adapted to binding energy and
point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0

d(T )
has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)

Tamm-Dancoff 
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α-n scattering phase shifts 

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006) 



α-α scattering phase shifts 

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006) 
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G. R., Chang Xu, et al., PRC 90, 034304 (2014) 

212Po: α on top of 208Pb 
Problem: 
decay half-life too short  
 
Finite system:  
discrete spectrum  
of energy levels. 
Relax the 
Thomas-Fermi rule 
µ4=Etunneling 
  
 
Discrete spectrum: 
shell effects 



Clusters in an external potential 
c. o. m.  coordinate R, relative coordinates sj  

normalization 

Wave equation for the c.o.m. motion 

c.o.m. effective potential 

Wave equation for the intrinsic motion 

G. Roepke et al., PRC 90, 034304 (2014) 



Quantum condensate: quartetting 

A. Tohsaki et al., PRL 87, 192501 (2001) 


