ECT* nuclear physics workshop "Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics

ECT* WORKSHOP 2019

Microscopic Description of Multi-clusters in Light Nuclei

Bo Zhou

Hokkaido University

2019/09/04@ECT*

Outline

1. The THSR wave function and Container picture
2. 2D container of α particles in 3^{-}and 4^{-}states of ${ }^{12} C$
3. Real-Time Evolution Method for cluster calculations
4. Summary and Prospect

Alpha Cluster Condensation in ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

A. Tohsaki, ${ }^{1}$ H. Horiuchi, ${ }^{2}$ P. Schuck, ${ }^{3}$ and G. Röpke ${ }^{4}$
${ }^{1}$ Department of Fine Materials Engineering, Shinshu University, Ueda 386-8567, Japan
${ }^{2}$ Department of Physics, Kyoto University, Kyoto 606-8502, Japan
${ }^{3}$ Institut de Physique Nucléaire, F-91406 Orsay Cedex, France
${ }^{4}$ FB Physik, Universitat Rostock, D-18051 Rostock, Germany
THSR wave function (Received 29 June 2001; published 17 October 2001)
$\frac{\text { A new } \alpha \text {-cluster wave function is proposed which is of the } \alpha \text {-particle condensate type. Applications }}{{ }^{12} \mathrm{C}}$
to ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ show that states of low density close to the 3 and 4α-particle thresholds in both nuclei
are possibly of this kind. It is conjectured that all self-conjugate $4 n$ nuclei may show similar features.

$$
\begin{gathered}
\Phi^{\text {THSR }}(\beta)=\int d^{3} \mathbf{R}_{1} \ldots d^{3} R_{n} \operatorname{Exp}\left[-\frac{\mathbf{R}_{1}^{2}+\ldots+R_{n}^{2}}{\beta^{2}}\right] \Phi^{\text {Brink }}\left(R_{1}, \ldots, R_{n}\right) \\
\propto \phi_{G} \mathcal{A}\left\{\prod_{i=1}^{n}\left[\operatorname{Exp}\left(-\frac{2\left(X_{i}-X_{G}\right)^{2}}{B^{2}}\right) \phi\left(\alpha_{i}\right)\right]\right\} \\
\phi(\alpha) \propto \exp \left[-\sum_{1 \leq i<j \leq 4}\left(r_{i}-r_{j}\right)^{2} /\left(8 b^{2}\right)\right] \quad \begin{array}{l}
\beta \text { can be considered as the } \\
\text { size parameter of the nucleus }
\end{array} \\
B^{2}=b^{2}+2 \beta^{2}
\end{gathered}
$$

In the past almost 20 years,
\checkmark The alpha condensation concept
Tohsaki et al., Rev. Mod. Phys. 89, 011002 (2017).
\checkmark Container picture for general cluster states

Container picture for the clusters motion

The clusters make the localized motion confined by the inter-cluster distance parameter S.

$$
\mathcal{A}\left\{\exp \left[-\frac{8\left(\boldsymbol{X}_{\mathrm{rel}}-\boldsymbol{S}\right)^{2}}{5 \boldsymbol{b}^{2}}\right] \phi(\alpha) \phi\left({ }^{16} \mathrm{O}\right)\right\}
$$

Inversion doublet rotational bands in ${ }^{20} \mathrm{Ne}$
н Hnriurhi and K Ikada DTDAn 277(1968)

Single THSR wave function \approx Superposed Brink wave functions
The clusters make the nonlocalized motion in a container whose size is described by parameter β

$$
\mathcal{A}\left\{\exp \left[-\frac{8 X_{\mathrm{rel}}{ }^{2}}{5\left(\boldsymbol{b}^{2}+2 \boldsymbol{\beta}^{2}\right)}\right] \phi(\alpha) \phi\left({ }^{16} \mathrm{O}\right)\right\}
$$

Container picture

Rich cluster structures of $\mathbf{0}^{+}$states in ${ }^{12} \mathrm{C}$

$$
\begin{aligned}
& \Gamma \approx 1.42 \mathrm{MeV} \\
& \text { ーーーーーーーーーー } 0^{+} \text {(10.6) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (10.3) } \quad \Gamma \approx 1.45 \mathrm{MeV} \\
& \text { M. Itoh, et al., PRC84, } 054308(2011)
\end{aligned} 0^{+}(9.0)
$$

$$
\frac{\Gamma \approx 8.5 \times 10^{-6} \mathrm{MeV}}{3 \alpha \text { threshold energy }} 0^{+}(7.6)
$$

Resonance／Bent linear－chain state？

Shell－model state Compact cluster

Extended $2 \alpha+\alpha$ THSR Wave Function

B.Zhou, et al.,PTEP.2014,101D01.

$$
\begin{aligned}
& \Phi^{B}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right) \propto \phi_{G} \mathcal{A}\left\{\exp \left(-\frac{\left(\boldsymbol{r}_{1}-\boldsymbol{R}_{1}\right)^{2}}{b^{2}}-\frac{\left(\boldsymbol{r}_{2}-\boldsymbol{R}_{2}\right)^{2}}{\frac{3}{4} b^{2}}\right) \phi\left(\alpha_{1}\right) \phi\left(\alpha_{2}\right) \phi\left(\alpha_{3}\right)\right\} \\
& \Phi\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right)=\int d^{3} R_{1} d^{3} R_{2} \exp \left[-\sum_{i=1}^{2}\left(\frac{R_{i x}^{2}}{\beta_{i x}^{2}}+\frac{R_{i y}^{2}}{\beta_{i y}^{2}}+\frac{R_{i z}^{2}}{\beta_{i z}^{2}}\right)\right] \Phi^{B}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right) \\
& \propto \phi_{G} \mathcal{A}\left\{\exp \left[-\sum_{i=1}^{2}\left(\frac{r_{i x}^{2}}{B_{i x}^{2}}+\frac{r_{i y}^{2}}{B_{i y}^{2}}+\frac{r_{i z}^{2}}{B_{i z}^{2}}\right)\right] \phi\left(\alpha_{1}\right) \phi\left(\alpha_{2}\right) \phi\left(\alpha_{3}\right)\right\} \\
& B_{1 k}^{2}=b^{2}+\beta_{1 k}^{2}, B_{2 k}^{2}=\frac{3}{4} b^{2}+\beta_{2 k}^{2}
\end{aligned}
$$

Effective nucleon-nucleon interaction: $\quad V_{N}=\sum_{i>j}\left\{(1-M)-M P_{\sigma} P_{\tau}\right\}_{i j} \sum_{n=1}^{2} v_{n} e^{-\frac{r_{i j}^{2}}{a_{n}^{2}}}$.
Radius-Constraint Method for removing the continuum states.

The $\mathrm{O}_{3}{ }^{+}$and $\mathrm{O}_{4}{ }^{+}$states of ${ }^{12} \mathrm{C}$

Why do we study the negative-parity states in ${ }^{12} \mathrm{C}$?

(0) A geometrical arrangement picture of the three alpha particles was proposed.

© Reconstructing transition density, 3α clustering triangle shape appears (Kimura's talk)

Why do we study the negative-parity states in ${ }^{12} \mathrm{C}$?

Recent years, many cluster states have been described quite well by single THSR wave functions.

	${ }^{8} \mathrm{Be}$	${ }^{12} \mathrm{C}$	${ }^{20} \mathrm{Ne}$
		$0_{1}^{+}: 0.93(1.5,1.5)$	
0^{+}	$1.000(1.8,7.8)$	$\left(0_{1}^{+}: 0.978\right)^{\mathrm{a}}$	$0.993(0.9,2.5)$
		$0_{2}^{+}: 0.993(5.3,1.5)$	
2^{+}			$0.988(0.0,2.2)$
4^{+}		$0.978(0.0,1.8)$	
3^{-}	Y. Funaki, et al., Prog. Part. Nucl. Phys. $82,78(2015)$.	$1.000(3.7,1.4)$	
		$0.999(3.7,0.0)$	

PHYSICAL REVIEW C 99, 051303(R) (2019)
Rapid Communications

Nonlocalized motion in a two-dimensional container of α particles in 3^{-}and 4^{-}states of ${ }^{12} \mathrm{C}$
Bo Zhou, ${ }^{1,2}$ Yasuro Funaki, ${ }^{3}$ Hisashi Horiuchi, ${ }^{4}$ Masaaki Kimura, ${ }^{2,5}$ Zhongzhou Ren, ${ }^{6}$ Gerd Röpke, ${ }^{7}$ Peter Schuck, ${ }^{8}$ Akihiro Tohsaki, ${ }^{4}$ Chang Xu, ${ }^{9}$ and Taiichi Yamada ${ }^{10}$

We want to try to construct a single THSR-type wave function describing exactly the negative-parity sates of ${ }^{12} \mathrm{C}$.

Container picture for negative-parity states in ${ }^{12} \mathrm{C}$

Kamimura et $a l$. RGM, $\{$ Volkov2, $M=0.59, b=1.35 \mathrm{fm}\}$

Nucl. Phys. A351, 456, 1981.

$$
\begin{aligned}
& \Phi\left(\boldsymbol{\beta}, \boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\int d^{3} R_{1} d^{3} R_{2} \exp \left[-\frac{\left(\boldsymbol{R}_{1}-\boldsymbol{S}_{1}\right)^{2}}{2 \boldsymbol{\beta}^{2}}-\frac{2\left(\boldsymbol{R}_{2}-\boldsymbol{S}_{2}\right)^{2}}{3 \boldsymbol{\beta}^{2}}\right] \Phi^{B}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right) \\
& \propto \phi_{G} \mathcal{A}\left\{\exp \left[-\frac{\left(\boldsymbol{\xi}_{1}-\boldsymbol{S}_{1}\right)^{2}}{b^{2}+2 \boldsymbol{\beta}^{2}}-\frac{\left(\boldsymbol{\xi}_{2}-\boldsymbol{S}_{2}\right)^{2}}{3 / 4\left(b^{2}+2 \boldsymbol{\beta}^{2}\right)}\right] \phi\left(\alpha_{1}\right) \phi\left(\alpha_{2}\right) \phi\left(\alpha_{3}\right)\right\} \\
& \Phi^{B}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right) \propto \phi_{G} \mathcal{A}\left\{\exp \left(-\frac{\left(\boldsymbol{\xi}_{1}-\boldsymbol{R}_{1}\right)^{2}}{b^{2}}-\frac{\left(\boldsymbol{\xi}_{2}-\boldsymbol{R}_{2}\right)^{2}}{3 / 4 b^{2}}\right) \phi\left(\alpha_{1}\right) \phi\left(\alpha_{2}\right) \phi\left(\alpha_{3}\right)\right\} \\
& \boldsymbol{\xi}_{1}=\boldsymbol{X}_{2}-\boldsymbol{X}_{1} \quad \boldsymbol{\xi}_{2}=\boldsymbol{X}_{3}-\left(\boldsymbol{X}_{1}+\boldsymbol{X}_{2}\right) / 2
\end{aligned}
$$

Variational calculations for the projected 3- THSR wave function

$$
\boldsymbol{S}_{1}=(S, 0,0), \boldsymbol{S}_{2}=(0, \sqrt{3} / 2 S, 0) \quad S=0.5 \mathrm{fm} .
$$

$$
P^{3-} \Phi(\beta x=\beta y, \beta z, S=0.5 \mathrm{fm})
$$

Two local minimum points appear in a valley in the contour plot.
$\mathbf{E}_{1}(\beta x=\beta y=1.5, \beta z=3.0)=-80.85 \mathrm{MeV}$
$\mathbf{E}_{2}(\beta x=\beta y=2.0, \beta z=0.5)=-80.78 \mathrm{MeV}$

The two optimum wave functions are very close after the parity and angular momentum projections.

$$
\left|<\Phi_{1}^{3-}\right| \Phi_{2}^{3-}>\left.\right|^{2}=0.98
$$

Variational calculations for the projected 4^{-}THSR wave function

Jpi	$\beta x=\beta y$	βz	Min.Eng
$3-$	1.5	3	-80.85
$3-$	2	0.5	-80.70
$4-$	1.9	0.2	-76.87
$4-$	1.2	3	-76.79

$$
\boldsymbol{P}^{4-} \Phi(\beta x=\beta y, \beta z, S=0.5 \mathrm{fm})
$$

Two local minimum points appear in a valley in the contour plot.

$$
\begin{aligned}
& \mathbf{E}_{1}(\beta x=\beta y=1.9, \beta z=0.2)=-76.87 \mathrm{MeV} \\
& \mathbf{E}_{2}(\beta x=\beta y=1.2, \beta z=3.0)=-76.79 \mathrm{MeV}
\end{aligned}
$$

The two optimum wave functions are very close after the parity and angular momentum projections.

$$
\left|<\Phi_{1}^{4-}\right| \Phi_{2}^{4-}>\left.\right|^{2}=0.98
$$

The similar intrinsic cluster structure is suggested for the 3^{-}and 4^{-}states.

GCM Brink calculations for the 3^{-}and 4^{-}states

© We mainly focus on the first 3^{-}and 4 states in the GCM calculations.
© The "intrinsic shape" is difficult to be extracted from the superposed wave functions.

Nonlocalized motion for 3α clusters in ${ }^{12} \mathbf{C}$

$$
\begin{array}{lll}
\hline \alpha \mathcal{A}\left\{\exp \left[-\frac{\left(\boldsymbol{\xi}_{1}-\boldsymbol{S}_{1}\right)^{2}}{b^{2}+2 \boldsymbol{\beta}^{2}}-\frac{\left(\boldsymbol{\xi}_{2}-\boldsymbol{S}_{2}\right)^{2}}{3 / 4}{ }^{\left(b^{2}+2 \boldsymbol{\beta}^{2}\right)}\right] \phi\left(\alpha_{1}\right) \phi\left(\alpha_{2}\right) \phi\left(\alpha_{3}\right)\right\}
\end{array}
$$

TABLE I. Calculated energies from the single optimal THSR wave functions in Eq. (1), the single optimal Brink wave functions in Eq. (2), and the Brink-GCM wave functions for the 3^{-}and 4^{-}states. The values of the squared overlap between the single optimal THSR/Brink wave functions and the Brink-GCM wave functions are also shown.

J^{π}	$E_{\min }^{\text {Brink }}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right)$	$E_{\min }^{\mathrm{THSR}}(\boldsymbol{\beta})$	$E_{\mathrm{GCM}}^{\text {Brink }}$	$\left\|\left\langle\Phi_{\mathrm{GCM}}^{\text {Brink }} \mid \Phi_{\min }^{\text {Brink }}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right)\right\rangle\right\|^{2}$	$\left\|\left\langle\Phi_{\mathrm{GCM}}^{\text {Brink }} \mid \Phi_{\min }^{\mathrm{THSR}}(\boldsymbol{\beta})\right\rangle\right\|^{2}$
3^{-}	-78.4	-80.9	-81.6	0.78	0.96
4^{-}	-74.4	-76.9	-77.8	0.72	0.92

Nonlocalized motion for 3α clusters in ${ }^{12} \mathrm{C}$

FIG. 3 (color online). Intrinsic density profiles of the 3α - (Left) and 4α - (Right) linear-chain states generated from the THSR wave functions before angular-momentum projection at $\left(\beta_{x}=\beta_{y}=0.1 \mathrm{fm}, \quad \beta_{z}=5.1 \mathrm{fm}\right)$ and $\left(\beta_{x}=\beta_{y}=0.1 \mathrm{fm}\right.$, $\beta_{z}=8.2 \mathrm{fm}$), respectively.
T.Suhara,et al.,PRL112,062501(2014).

Due to the Pauli principle, an effective localized clustering in the container model was found in the two-cluster ${ }^{20} \mathrm{Ne}$ system and 3α and 4α onedimensional linear-chain system.

Intrinsic cluster structure for 3α clusters in ${ }^{12} \mathrm{C}$

We really obtained the single high-accuracy THSR-type wave functions for 3^{-}and 4^{-}states,
$\propto \mathcal{A}\left\{\exp \left[-\frac{\left(\boldsymbol{\xi}_{1}-\boldsymbol{S}_{1}\right)^{2}}{b^{2}+2 \boldsymbol{\beta}^{2}}-\frac{\left(\boldsymbol{\xi}_{2}-\boldsymbol{S}_{2}\right)^{2}}{3 / 4\left(b^{2}+2 \boldsymbol{\beta}^{2}\right)}\right] \phi\left(\alpha_{1}\right) \phi\left(\alpha_{2}\right) \phi\left(\alpha_{3}\right)\right\}$
we take $\beta_{x}=\beta_{y}=2.0 \mathrm{fm}$ and $\beta_{z}=0.5 \mathrm{fm}$ as the size parameters

The extension of the THSR wave function

The complete THSR wave function is explicit but has vector parameters

$$
\beta \rightarrow\left(\beta_{1}, \beta_{2}, S_{1}, S_{2}\right)
$$

Original
Complex

- Time-consuming computations
- Picture is not simple enough for explanation

$$
\begin{gathered}
\Phi\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{S}_{1}, \boldsymbol{S}_{1}\right)=\int d^{3} R_{1} d^{3} R_{2} \exp \left[-\frac{\left(\boldsymbol{R}_{1}-\boldsymbol{S}_{1}\right)^{2}}{\beta_{1}^{2}}-\frac{\left(\boldsymbol{R}_{2}-\boldsymbol{S}_{2}\right)^{2}}{\beta_{2}^{2}}\right] \Phi^{B}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right) \\
\propto \phi_{G} \mathcal{A}\left\{\exp \left[-\frac{\left(\boldsymbol{\xi}_{1}-\boldsymbol{S}_{1}\right)^{2}}{B_{1}^{2}}-\frac{\left(\boldsymbol{r}_{2}-\boldsymbol{S}_{2}\right)^{2}}{B_{2}^{2}}\right] \phi\left(\alpha_{1}\right) \phi\left(\alpha_{2}\right) \phi\left(\alpha_{3}\right)\right\}, \\
B_{1}^{2}=b^{2}+\boldsymbol{\beta}_{1}^{2}, B_{2}^{2}=\frac{3}{4} b^{2}+\boldsymbol{\beta}_{2}^{2} .
\end{gathered}
$$

REM	-81.6464	-76.6464	
2D-THSR	-81.2035	-78.3471	-77.1384

REM	-77.9464	-75.646		
2D-THSR	-77.6791	-75.215	-73.1463	-71.1002

Recent Real-Time Evolution Method Calculations

from Hokkaido University group

(Kimura, Motoki, Shin, Bo)

$$
\underset{\text { Nuclear state }}{\Psi}=\sum_{n=1}^{N_{\max }} c_{n} \frac{\Phi_{n}}{\text { Model wave function }}
$$

(by Kimura)

Real-Time evolution method

Model wave function (time-dependent wave packets)

Slater determinant of nucleon wave packets $\Phi(t)=\mathcal{A}\left\{\phi\left(\boldsymbol{Z}_{1}(t)\right), \ldots, \phi\left(\boldsymbol{Z}_{A}(t)\right)\right\}$ $\phi\left(\boldsymbol{Z}_{i}(t)\right)=\exp \left\{-\nu\left(\boldsymbol{r}-\boldsymbol{Z}_{i}(t)\right)^{2}\right\}\left(\alpha_{i}(t)|\uparrow\rangle+\beta_{i}(t)|\downarrow\rangle\right)$

Dynamical variables of the model (time-dependent parameters)
$Z_{i}(t)$: Centroids of wave packets (position and momentum)
$\alpha_{i}(t) \beta_{i}(t)$: Spin directions

$$
H=\sum_{i=1}^{A} t(i)-t_{c m}+\sum_{i<j}^{A} v(i j)
$$Microscopic Hamiltonian with effective/bara NN interactions

Real-Time evolution method

(O) Time-dependent variational principle

$$
\delta \int d t \frac{\langle\Phi(t)| i \hbar d / d t-H|\Phi(t)\rangle}{\langle\Phi(t) \mid \Phi(t)\rangle}=0
$$

(o) Equation of Motion for nucleon wave packets
${ }^{6} \mathrm{He}$ (6 nucleons)

$$
\searrow i \hbar \frac{d \boldsymbol{Z}_{i}(t)}{d t}=\sum_{j} C_{i j}^{-1} \frac{\partial \mathcal{H}}{\partial \boldsymbol{Z}_{j}^{*}(t)}
$$

$$
\mathcal{H}=\frac{\langle\Phi(t)| H|\Phi(t)\rangle}{\langle\Phi(t) \mid \Phi(t)\rangle}, \quad C_{i j}=\frac{\partial^{2}}{\partial \boldsymbol{Z}_{i}^{*} \partial \boldsymbol{Z}_{j}} \log \langle\Phi(t) \mid \Phi(t)\rangle
$$

by Kimura

O By solving EOM, we obtain ensemble of wave functions

Real-Time evolution method

© This ensemble has nice properties
J. Schnack and H. Feldmeier, NPA601, 181 (1996).
A. Ono and H. Horiuchi, PRC53, 845 (1996), PRC53, 2341 (1996).

(1) The ensemble has ergodicity

All possible quantum states will appear after long-time propagation
(2) The ensemble follows quantum statistics

Important quantum states appear more frequently,
if the excitation energy is properly chosen

Real-Time evolution method

© We superpose time dependent wave function and diagonalize the Hamiltonian

$$
\begin{aligned}
\Psi^{J \pi} & =f_{1} \rightleftharpoons+f_{2} \sim+f_{3} \square+f_{4} \cdots \cdots \\
& =\int_{0}^{T_{\operatorname{Tax}}} d t f(t) \hat{P}_{M K}^{J} \Phi(t)
\end{aligned}
$$

$f_{1}, f_{2}, f_{3}, f_{4}, \ldots$ are determined by the diagonalization of Hamiltonian
O The result (eigen energy \& wave function) should be converged after the long-time propagation

The result should not depend on the initial condition at $t=0$

Benchmark calculations for few-body systems

From Kimura

Benchmark calculations for ${ }^{12} \mathrm{C}$ (3α cluster system)

Summary and Prospect

\square The two-dimensional container picture for the ${ }^{12} \mathrm{C}$ The nonlocalized motion of 3^{-}and 4^{-}states. GCM-THSR calculations for spectrum of ${ }^{12} \mathrm{C}$
\square The real time-evolution method for nuclear cluster structure AMD as a nucleon wave function calculations in REM $\left({ }^{6} \mathrm{He}\right)$ Pure $\mathrm{N} \alpha$ cluster wave function calculation in REM $\left({ }^{16} \mathrm{O}\right)$ Neutron-rich nuclei studies in REM $\left({ }^{9} \mathrm{Be},{ }^{10} \mathrm{Be},{ }^{12} \mathrm{Be},{ }^{13} \mathrm{C}\right)$

Thanks for my collaborators and your attentions!

Yasuro Funaki	(Kanto Gakuin Univ.) Taiichi Yamada (Kanto Gakuin Univ.) (Tongji Univ.)
Zhangzhou Ren	(Nanjing Univ.)
Chang Xu	(Nanjing Univ.) Zhao
Masaaki Kimura	(Hokkaido Univ.)
Hisashi Horiuchi	(Osaka Univ.)
Akihiro Tohsaki	(Osaka Univ.)
Mengjiao Lyu	(Osaka Univ.)
Gerd Röpke	(Rostock Univ.)
Peter Schuck	(Paris-Sud Univ.)

