ECT* nuclear physics workshop "Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics

ECT* WORKSHOP 2019

Microscopic Description of Multi-clusters in Light Nuclei

Bo Zhou

Hokkaido University

2019/09/04@ECT*

1. The THSR wave function and Container picture

2. 2D container of α particles in 3⁻ and 4⁻ states of ¹²C

3. Real-Time Evolution Method for cluster calculations

4. Summary and Prospect

Alpha Cluster Condensation in ¹²C and ¹⁶O

A. Tohsaki,¹ H. Horiuchi,² P. Schuck,³ and G. Röpke⁴ ¹Department of Fine Materials Engineering, Shinshu University, Ueda 386-8567, Japan ²Department of Physics, Kyoto University, Kyoto 606-8502, Japan ³Institut de Physique Nucléaire, F-91406 Orsay Cedex, France ⁴FB Physik, Universität Rostock, D-18051 Rostock, Germany (Received 29 June 2001; published 17 October 2001)

A new α -cluster wave function is proposed which is of the α -particle condensate type. Applications to ¹²C and ¹⁶O show that states of low density close to the 3 and 4 α -particle thresholds in both nuclei are possibly of this kind. It is conjectured that all self-conjugate 4*n* nuclei may show similar features.

$$\Phi^{\text{THSR}}(\beta) = \int d^3 R_1 \dots d^3 R_n \exp\left[-\frac{R_1^2 + \dots + R_n^2}{\beta^2}\right] \Phi^{\text{Brink}}(R_1, \dots, R_n)$$

$$\propto \phi_G \mathcal{A}\left\{\prod_{i=1}^n \left[\exp\left(-\frac{2(X_i - X_G)^2}{B^2}\right)\phi(\alpha_i)\right]\right\} \xrightarrow{\beta \text{ can be considered as the size parameter of the nucleus}}{\phi(\alpha) \propto \exp\left[-\sum_{1 \le i \le j \le 4} (r_i - r_j)^2 / (8b^2)\right]} \xrightarrow{\beta \text{ can be considered as the size parameter of the nucleus}}{B^2 = b^2 + 2\beta^2}$$

In the past almost 20 years,

✓ The alpha condensation concept <u>Tohsaki et al., Rev. Mod. Phys. 89, 011002 (2017).</u>

3

✓ Container picture for general cluster states

Container picture

Single THSR wave function≈Superposed Brink wave functions

The clusters make the nonlocalized motion in a container whose size is described by parameter β

$$\mathcal{A}\{\exp\left[-\frac{8X_{\text{rel}}^2}{5(\boldsymbol{b}^2+2\boldsymbol{\beta}^2)}\right]\phi(\alpha)\phi(^{16}0)\}$$

B. Zhou, Y. Funaki, H.Horiuch, Zz. Ren, et al., PRL110(2013), PRC89 (2014).

Rich cluster structures of 0⁺ states in ¹²C

- **OCM**_K : <u>C. Kurokawa and K. Kato, PRC 71, 021301(2005); NPA 792, 87 (2007).</u>
- **OCM**_o : <u>S. Ohtsubo, Y. Fukushima, M. Kamimura, and E. Hiyama, PTEP, 2013, 073D02.</u>

Extended $2\alpha + \alpha$ THSR Wave Function

Radius-Constraint Method for removing the continuum states.

Y. Funaki, et al., Prog. Theor. Phys. 115, 115(2006).

The 0_3^+ and 0_4^+ states of ¹²C

Why do we study the negative-parity states in ¹²C?

Why do we study the negative-parity states in ¹²C?

Recent years, many cluster states have been described quite well by single THSR wave functions.

	⁸ Be	¹² C	²⁰ Ne
0+	1.000(1.8, 7.8)	$0^+_1:0.93(1.5, 1.5)$ $(0^+_1:0.978)^a$ $0^+_2:0.993(5.3, 1.5)$	0.993(0.9, 2.5)
2+ 4+		2	0.988(0.0, 2.2) 0.978(0.0, 1.8)
3-	Y. Funaki, et al., Prog. Pa	art. Nucl. Phys. 82, 78 (2015).	1.000(3.7, 1.4) 0.999(3.7, 0.0)

PHYSICAL REVIEW C 99, 051303(R) (2019)

Rapid Communications

Nonlocalized motion in a two-dimensional container of α particles in 3⁻ and 4⁻ states of ¹²C

Bo Zhou,^{1,2} Yasuro Funaki,³ Hisashi Horiuchi,⁴ Masaaki Kimura,^{2,5} Zhongzhou Ren,⁶ Gerd Röpke,⁷ Peter Schuck,⁸ Akihiro Tohsaki,⁴ Chang Xu,⁹ and Taiichi Yamada¹⁰

We want to try to construct a single THSR-type wave function describing exactly the negative-parity sates of ^{12}C .

Container picture for negative-parity states in ¹²C

Effective nucleon-nucleon interaction:

$$V_N = \sum_{i>j} \{(1-M) - MP_{\sigma}P_{\tau}\}_{ij} \sum_{n=1}^2 v_n e^{-\frac{r_{ij}^2}{a_n^2}}.$$

Kamimura *et al*. RGM, {Volkov2,*M*=0.59,*b*=1.35 fm}

Nucl. Phys. A351, 456, 1981.

$$\begin{split} \Phi(\boldsymbol{\beta}, \boldsymbol{S}_1, \boldsymbol{S}_2) &= \int d^3 R_1 d^3 R_2 \exp[-\frac{(\boldsymbol{R}_1 - \boldsymbol{S}_1)^2}{2\boldsymbol{\beta}^2} - \frac{2(\boldsymbol{R}_2 - \boldsymbol{S}_2)^2}{3\boldsymbol{\beta}^2}] \Phi^B(\boldsymbol{R}_1, \boldsymbol{R}_2) \\ &\propto \phi_G \mathcal{A}\{\exp[-\frac{(\boldsymbol{\xi}_1 - \boldsymbol{S}_1)^2}{b^2 + 2\boldsymbol{\beta}^2} - \frac{(\boldsymbol{\xi}_2 - \boldsymbol{S}_2)^2}{3/4 \ (b^2 + 2\boldsymbol{\beta}^2)}] \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3)\}, \\ \Phi^B(\boldsymbol{R}_1, \boldsymbol{R}_2) &\propto \phi_G \mathcal{A}\{\exp(-\frac{(\boldsymbol{\xi}_1 - \boldsymbol{R}_1)^2}{b^2} - \frac{(\boldsymbol{\xi}_2 - \boldsymbol{R}_2)^2}{3/4 \ b^2}) \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3)\}, \end{split}$$

 $\boldsymbol{\xi}_1 = \boldsymbol{X}_2 - \boldsymbol{X}_1$ $\boldsymbol{\xi}_2 = \boldsymbol{X}_3 - (\boldsymbol{X}_1 + \boldsymbol{X}_2)/2$

Variational calculations for the projected 3⁻ THSR wave function

Variational calculations for the projected 4⁻ THSR wave function

Two local minimum points appear in a valley in the contour plot.

E₁(βx=βy=1.9, βz=0.2)=-76.87 MeV E₂(βx=βy=1.2, βz=3.0)=-76.79 MeV

The two optimum wave functions are very close after the parity and angular momentum projections.

$$|\langle \Phi_1^{4-} | \Phi_2^{4-} \rangle|^2 = 0.98$$

The **similar intrinsic cluster structure** is suggested for the 3⁻ and 4⁻ states.

Jpi	βx=βy	βz	Min.Eng
3-	1.5	3	-80.85
3-	2	0.5	-80.70
4⁻	1.9	0.2	-76.87
4⁻	1.2	3	-76.79

GCM Brink calculations for the 3⁻ and 4⁻ states

 \odot We mainly focus on the first 3⁻ and 4⁻ states in the GCM calculations.

© The "intrinsic shape" is difficult to be extracted from the superposed wave functions.

Nonlocalized motion for 3α clusters in ^{12}C

$$\propto \mathcal{A}\{\exp[-\frac{(\boldsymbol{\xi}_1 - \boldsymbol{S}_1)^2}{b^2 + 2\boldsymbol{\beta}^2} - \frac{(\boldsymbol{\xi}_2 - \boldsymbol{S}_2)^2}{3/4 \ (b^2 + 2\boldsymbol{\beta}^2)}]\phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\}$$

$$S_1 = (S, 0, 0), S_2 = (0, \sqrt{3}/2S, 0)$$

- There are two distinct pockets around 3 fm for the 3⁻ and 4⁻ states for Brink wave functions (β=0).
- ➢ If we introduce the width variable of the relative wave function β, we find more deeper energies and S→0.
- The obtained single THSR wave functions are almost equivalent to RGM solutions.

TABLE I. Calculated energies from the single optimal THSR wave functions in Eq. (1), the single optimal Brink wave functions in Eq. (2), and the Brink-GCM wave functions for the 3^- and 4^- states. The values of the squared overlap between the single optimal THSR/Brink wave functions and the Brink-GCM wave functions are also shown.

J^{π}	$E_{\min}^{\text{Brink}}(\boldsymbol{R}_1, \boldsymbol{R}_2)$	$E_{\min}^{\text{THSR}}(\boldsymbol{\beta})$	$E_{ m GCM}^{ m Brink}$	$ \langle \Phi_{\text{GCM}}^{\text{Brink}} \Phi_{\min}^{\text{Brink}}(\boldsymbol{R}_1, \boldsymbol{R}_2) \rangle ^2$	$ \langle \Phi_{\text{GCM}}^{\text{Brink}} \Phi_{\min}^{\text{THSR}}(\boldsymbol{\beta}) \rangle ^2$
3-	-78.4	-80.9	-81.6	0.78	0.96
4-	-74.4	-76.9	-77.8	0.72	0.92

Nonlocalized motion for 3α clusters in ^{12}C

FIG. 3 (color online). Intrinsic density profiles of the 3α - (Left) and 4α - (Right) linear-chain states generated from the THSR wave functions before angular-momentum projection at $(\beta_x = \beta_y = 0.1 \text{ fm}, \beta_z = 5.1 \text{ fm})$ and $(\beta_x = \beta_y = 0.1 \text{ fm}, \beta_z = 8.2 \text{ fm})$, respectively.

T.Suhara, et al., PRL112, 062501 (2014).

Due to the Pauli principle, an effective localized clustering in the container model was found in the two-cluster ²⁰Ne system and 3α and 4α one-dimensional linear-chain system.

Intrinsic cluster structure for 3α clusters in ^{12}C

We really obtained the single high-accuracy THSR-type wave functions for 3⁻ and 4⁻ states,

$$\propto \mathcal{A}\{\exp[-\frac{(\boldsymbol{\xi}_1 - \boldsymbol{S}_1)^2}{b^2 + 2\boldsymbol{\beta}^2} - \frac{(\boldsymbol{\xi}_2 - \boldsymbol{S}_2)^2}{3/4 (b^2 + 2\boldsymbol{\beta}^2)}]\phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\}$$

we take $\beta_x = \beta_y = 2.0$ fm and $\beta_z = 0.5$ fm as the size parameters

B. Zhou, et al., Phys. Rev. C 99, 051303(R) (2019).

The extension of the THSR wave function

The complete THSR wave function is explicit but has vector parameters

$$\beta \rightarrow (\beta_1, \beta_2, S_1, S_2)$$

Original

Complex

- Time-consuming computations
- Picture is not simple enough for explanation

$$\begin{split} \Phi(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{S}_1, \boldsymbol{S}_1) &= \int d^3 R_1 d^3 R_2 \exp\left[-\frac{(\boldsymbol{R}_1 - \boldsymbol{S}_1)^2}{\beta_1^2} - \frac{(\boldsymbol{R}_2 - \boldsymbol{S}_2)^2}{\beta_2^2}\right] \Phi^B(\boldsymbol{R}_1, \boldsymbol{R}_2) \\ &\propto \phi_G \mathcal{A}\{\exp\left[-\frac{(\boldsymbol{\xi}_1 - \boldsymbol{S}_1)^2}{B_1^2} - \frac{(\boldsymbol{r}_2 - \boldsymbol{S}_2)^2}{B_2^2}\right] \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3)\}, \\ &B_1^2 = b^2 + \boldsymbol{\beta}_1^2, \ B_2^2 = \frac{3}{4}b^2 + \boldsymbol{\beta}_2^2. \end{split}$$

REM	-81.6464	-76.6464		
2D-THSR	-81.2035	-78.3471	-77.1384	-75.4085

(*Preliminary*)

(*Preliminary*)

Recent Real-Time Evolution Method Calculations

from Hokkaido University group

(Kimura, Motoki, Shin, Bo)

(by Kimura)

Model wave function (time-dependent wave packets)

 \bigcirc Slater determinant of nucleon wave packets

$$\Phi(t) = \mathcal{A}\left\{\phi(\mathbf{Z}_1(t)), ..., \phi(\mathbf{Z}_A(t))\right\}$$

$$\phi(\mathbf{Z}_{i}(t)) = \exp\left\{-\nu(\mathbf{r} - \mathbf{Z}_{i}(t))^{2}\right\} (\alpha_{i}(t) |\uparrow\rangle + \beta_{i}(t) |\downarrow\rangle)$$

 \bigcirc Dynamical variables of the model (time-dependent parameters)

 $Z_i(t)$: Centroids of wave packets (position and momentum)

 $lpha_i(t)\ eta_i(t)$: Spin directions

$$H = \sum_{i=1}^{A} t(i) - t_{cm} + \sum_{i < j}^{A} v(ij)$$

 \bigcirc Microscopic Hamiltonian with effective/bara NN interactions

Time-dependent variational principle

 $i\hbar \frac{d\mathbf{Z}_{i}(t)}{dt} = \sum_{i} C_{ij}^{-1} \frac{\partial \mathcal{H}}{\partial \mathbf{Z}_{j}^{*}(t)}$

$$\delta \int dt \, \frac{\langle \Phi(t) | i\hbar d/dt - H | \Phi(t) \rangle}{\langle \Phi(t) | \Phi(t) \rangle} = 0$$

O Equation of Motion for nucleon wave packets

⁶He (6 nucleons)

$$\mathcal{H} = \frac{\langle \Phi(t) | H | \Phi(t) \rangle}{\langle \Phi(t) | \Phi(t) \rangle}, \quad C_{ij} = \frac{\partial^2}{\partial \mathbf{Z}_i^* \partial \mathbf{Z}_j} \log \langle \Phi(t) | \Phi(t) \rangle$$

by Kimura

O By solving EOM, we obtain ensemble of wave functions

O This ensemble has nice properties

J. Schnack and H. Feldmeier, NPA601, 181 (1996). A. Ono and H. Horiuchi, PRC53, 845 (1996), PRC53, 2341 (1996).

① The ensemble has ergodicity

All possible quantum states will appear after long-time propagation

② The ensemble follows *quantum* statistics

Important quantum states appear more frequently, if the excitation energy is properly chosen

♥ We superpose time dependent wave function and diagonalize the Hamiltonian

$$\begin{split} \Psi^{J\pi} &= f_1 \left[\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right] + f_2 \left[\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right] + f_3 \left[\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right] + f_4 \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \right] \\ &= \int_0^{T_{max}} dt \ f(t) \hat{P}^J_{MK} \Phi(t) \end{split}$$

 $f_1, f_2, f_3, f_4, \ldots$ are determined by the diagonalization of Hamiltonian

- The result (eigen energy & wave function) should be converged after the long-time propagation
- \bigcirc The result should not depend on the initial condition at t=0

Benchmark calculations for few-body systems

From Kimura

Benchmark calculations for ¹²C (3α cluster system)

□ The two-dimensional container picture for the ¹²C The nonlocalized motion of 3⁻ and 4⁻ states. GCM-THSR calculations for spectrum of ¹²C

 The real time-evolution method for nuclear cluster structure AMD as a nucleon wave function calculations in REM (⁶He) Pure Nα cluster wave function calculation in REM (¹⁶O) Neutron-rich nuclei studies in REM (⁹Be,¹⁰Be,¹²Be,¹³C)

Thanks for my collaborators and your attentions !

Yasuro Funaki Taiichi Yamada Zhongzhou Ren Chang Xu Qing Zhao Masaaki Kimura Hisashi Horiuchi Akihiro Tohsaki Mengjiao Lyu Gerd Röpke Peter Schuck

(Kanto Gakuin Univ.) (Kanto Gakuin Univ.) (Tongji Univ.) (Nanjing Univ.) (Nanjing Univ.) (Hokkaido Univ.) (Osaka Univ.) (Osaka Univ.) (Osaka Univ.) (Rostock Univ.) (Paris-Sud Univ.)