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Where do these clusters form?
in http://essayweb.net/astronomy/blackhole.shtml

NS mergers

scenarios where light and heavy clusters are important:
supernovae, NS mergers, (crust of) neutron stars

in https://www.ligo.org/detections/GW170817.php 
Credit: Soares-Santos et al. and DES Collab



Neutron stars
• Divided in 3 main layers:

1. Outer crust 
2. Inner crust 
3. Core

N. Chamel and P. Hansel, 

Liv. Rev. Rel.11,10, 2008

•Surface:  Fe, P=0
•Outer crust: Neutron rich nuclei embedded in electron sea
• Inner crust: Above neutron drip density, nucleons form geometrical 
structures (non-spherical: pasta phases) embedded in neutron and 
electron background gas. 

• Core: Uniform matter, in the centre exotic matter may exist.  

• NS: catalized cold stellar matter:

56



How do these clusters affect the 
star?

• They influence supernova properties: the clusters can 
modify the neutrino transport, affecting the cooling of 
the proto-neutron star.

•These clusters may also affect the cooling of binary 
and accreting systems. 

•Magnetars (neutron stars with very strong magnetic 
fields) may have an inner crust even more complex.



• The SN EoS should incorporate: all relevant clusters, (mean-field) 
interaction between nucleons and clusters, and a suppression 
mechanism of clusters at high densities.


•Different methods: nuclear statistical equilibrium, quantum statistical 
approach, and


•RMF approach: clusters as new degrees of freedom, with effective 
mass dependent on density.


• In-medium effects: cluster interaction with medium described via the 
meson couplings, or effective mass shifts, or both


•Constrains are needed to fix the couplings:

low densities: Virial EoS

high densities: cluster formation has been measured in HIC


Supernova EoS with light clusters



Non-linear Walecka Model
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results with a parametrized TF calculation, where the
surface energy and the nucleon distribution are calcu-
lated differently, and they have reached the conclusion
that the parametrized approximation is a reasonable one.
We also compare our results with a 3D finite tempera-
ture Skyrme-Hartree-Fock calculation [8, 24], where four
different Skyrme interactions have been used, and where
subtle variations in the low and high density transitions
into and out of the pasta phase were found.
The paper is organized as follows. In section II, we

briefly review the formalism used and in section III, the
results are discussed. Finally, in section IV, some con-
clusions are drawn.

II. FORMALISM

We consider a system of baryons, with mass M inter-
acting with and through an isoscalar-scalar field φ with
mass ms, an isoscalar-vector field V µ with mass mv and
an isovector-vector field bµ with mass mρ. When de-
scribing npe matter we also include a system of electrons
with mass me. Protons and electrons interact through
the electromagnetic field Aµ. The Lagrangian density
reads:

L =
∑

i=p,n

Li + Le + Lσ + Lω + Lρ + Lγ ,

where the nucleon Lagrangian reads

Li = ψ̄i [γµiD
µ −M∗]ψi, (1)

with

iDµ = i∂µ − gvV
µ −

gρ
2
τ · bµ − e
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2

Aµ, (2)

M∗ = M − gsφ (3)

and the electron Lagrangian is given by

Le = ψ̄e [γµ (i∂
µ + eAµ)−me]ψe. (4)

The isoscalar part is associated with the scalar sigma
(σ) field φ, and the vector omega (ω) field Vµ, whereas
the isospin dependence comes from the isovector-vector
rho (ρ) field biµ (where µ stands for the four dimensional
space-time indices and i the three-dimensional isospin
direction index). The associated Lagrangians are:
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where Ωµν = ∂µVν −∂νVµ, Bµν = ∂µbν −∂νbµ− gρ(bµ×
bν) and Fµν = ∂µAν − ∂νAµ.

The model comprises the following parameters: three
coupling constants gs, gv and gρ of the mesons to the nu-
cleons, the bare nucleon mass M , the electron mass me,
the masses of the mesons, the electromagnetic coupling
constant e =

√

4π/137 and the self-interacting coupling
constants κ, λ and ξ. In this Lagrangian density, τ is the
isospin operator.

We use the FSU parametrization [25], expected to de-
scribe well the crust [9], even if it does not describe a
2 M⊙ neutron star. This parametrization also includes
a nonlinear ωρ coupling term, which affects the density
dependence of the symmetry energy. This term is given
by:

Lωρ = Λvg
2
vg

2
ρbµ · bµ VµV

µ. (5)

The state that minimizes the energy of asymmet-
ric nuclear matter is characterized by the distribution
functions, f0k±, of particles (+) and antiparticles (−)
k = p, n, e, given by:

f0j± =
1

1 + e(ϵ0j∓νj)/T
, j = p, n (6)

with
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√
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(0)
0 −
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2
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(0)
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and

f0e± =
1

1 + e(ϵ0e∓µe)/T
, (8)

with

ϵ0e =
√

p2 +m2
e, (9)

where µk is the chemical potential of particle k = p, n, e.

In the mean field approximation, the thermodynamic
quantities of interest are given in terms of the meson
fields, which are replaced by their constant expectation
values. For homogeneous neutral nuclear matter, the en-
ergy density, the entropy density, the free energy density,
and the pressure are given, respectively, by [26–28]:



Light clusters
•Interaction with the medium via 

the meson couplings.

with

the vector cluster-meson coupling

for the fermions tritons and helions, 

and for the bosons alphas and deuterons, we have:

•New degrees of freedom of the system.

and

with j=t,h,d,4He



In-medium effects -    
•Binding energy of each cluster:

with the nucleon effective mass and

the cluster effective mass.

the scalar cluster-meson coupling

needs to be determined from exp. constraints

PRC 97, 045805 2018



In-medium effects -      
•Binding energy of each cluster:
with the nucleon effective mass and

the cluster effective mass.

the energy states occupied by 

the gas are excluded: 

double counting avoided!
associated with the gas lowest

energy levels

energetic counterpart of 

classical ExV mechanism  

PRC 97, 045805 2018

binding energy shift



•The total baryonic density is defined as:

• The global proton fraction as

with the mass fraction of cluster i.

• Charge neutrality must be imposed:

Supernova EoS with light clusters

•The light clusters are in chemical equilibrium, with the 
chemical potential of each cluster i defined as



Determination of x : Virial EoSs

• VEoS: model-independent constraint, only depends on experimentally binding energies

and scattering phase shifts. 

• Provides correct zero-density limit for finite T EoS.

• Breaks down when interaction with particles becomes stronger:

takes action!!



Contribution of     

•       completely negligible in the VEoS 

range of densities

• but rises fast for larger densities
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Cluster fractions - effect of     

important for dissolution of clusters!
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Equilibrium constants    

• Kc calculated with 

data from HIC:  

Qin et al, PRL 108, 172701 2012

• Unique existing 

constraint on 

in-medium 

modifications

of light clusters

at finite T

• Our model describes quite well experimental data!
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Light clusters: classical + exotic    

• The largest contribution of the exotic 
clusters occurs at the maximum of 
the distribution of the clusters.

PRC 99, 055806 2019
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FIG. 1. Surface tension as a function of the global proton fraction
for the FSU model and three different temperatures.

The free energy density is given by

F = f F I + (1 − f )F II + Fe + εsurf + εCoul, (21)

where F I and F II are the free energy densities of the high-
and low-density phases I and II , respectively, and Fe is the
contribution of the electrons.

Its minimization is done with respect to four variables: the
size of the geometric configuration, rd , which gives, just like
in the CP case, the condition εsurf = 2εCoul [10], the baryonic
density in the high-density phase, ρI , the proton density in the
high-density phase, ρI

p, and the volume fraction, f , defined as

f = ρ − ρII

ρI − ρII
. (22)

The equilibrium conditions then become

PI = PII − εsurf

(
1

2α
+ 1
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−
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p
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(
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)

,
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n = µII

n ,

µI
p = µII
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f (1 − f )
(
ρI

p − ρII
p

) , (23)

with α = f for droplets, rods and slabs, α = 1 − f for tubes
and bubbles. The expression for $ depends on the dimension,
D and volume fraction, f , of the heavy clusters, and is given
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FIG. 2. Mass fraction of the classical light clusters, i.e., 4He, 3He, 3H, 2H, (dashed), and mass fraction of the exotic ones (solid), for
FSU, T = 5 (top) and 10 MeV (bottom), taking yp = 0.2 (left), and yp = 0.41 (right), for several calculations with different choices for the
maximum baryonic number allowed for the light clusters.
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In this section, we show the effect of including light
clusters of different atomic Z and baryonic A number, in order
to determine how far we have to go in A to get convergent
results. We classify the following four clusters, deuteron,
triton, helion, and α, as classical light clusters, because they
have already been considered in the composition of dense
matter at finite temperature by different authors [5,7,38].
The bound nuclear species with 4 ! A ! 12 will be called
exotic light clusters. The formalism is developed within the
FSU model [39], a model that reproduces well the properties
of nuclear matter at saturation and subsaturation densities,
describing, therefore, reasonably well the inner crust of stars.
Although it can not produce two solar-mass neutron stars,
this problem can be overcome by including an extra potential
above the saturation density that prevents the effective mass
from decreasing, making the EoS harder [40].

Figure 2 shows the mass fraction of exotic and classical
clusters considering different calculations where all exper-
imentally known nuclear species [41] were included up to
a maximum cluster baryonic number, which is varied from
Amax = 6 to Amax = 12. The mass fraction of clusters is de-
fined as

Yi = Ai
ρi(Ai, Zi )

ρ

YA =
∑

Z

Yi(Z, Ai = A)

YZ =
∑

A

Yi(Zi = Z, A)

YI =
∑

A

Yi(Ii = I, A) (27)

Ylight =
Amax∑

i=2

Yi

Yclass = Yd + Yt + Yh + Yα.

Yexo = Ylight − Yclass

throughout the text. In the above expressions, I is the isospin
projection of each cluster and it is defined as I = (Z − N )/2.

The sum in the expression of Yexo is limited to the exotic
clusters, that is, it excludes 2H, 3H, 3He, and 4He. Note that
our approximation of considering clusters as point-like parti-
cles would not be adequate for heavy clusters, which we treat
separately by including their spatial density distribution. Since
the role of light clusters is most important in the presence of
heavy clusters, their fraction is always small and we believe
that their spatial extension does not play an important role. A
similar approach was undertaken in Ref. [5]. The influence
of the medium in the light clusters is taken into account
through the shift on the binding energy and the couplings of
the clusters to the mesons.

As we can see from Fig. 2, results taking A ! 10 and
A ! 12 do not change much the total cluster distribution Ylight,
and, therefore, in the following we will not consider clusters
with A > 12. The largest contribution of the exotic clusters
occurs for intermediate densities, when the total distribution
of clusters has a peak, as we will see next.

IV. LIGHT CLUSTERS WITH A ! 12

In the following, we discuss the role of the exotic clus-
ters and the effect of including them in the calculation of
warm nonhomogeneous matter. In particular, we will discuss
(i) their relative abundance with respect to the classical clus-
ters, (ii) which clusters give a larger contribution, and (iii) we
will define effective classical cluster fractions, which can be
compared to experimental cluster yields measured in heavy-
ion collisions.

A. How important are the exotic clusters?

Taking into account the results of the previous section,
in the following, we include in the calculations, besides the
classical light clusters, the exotic light clusters with A ! 12,
and study their contribution in detail.

Figure 3 shows the fractions of classical light clusters
for T = 5 and 10 MeV, and proton fractions 0.2 and 0.41,
considering two calculations: including or excluding exotic
clusters with A ! 12. The solid black line shows the total
mass fraction of the effective classical light clusters, which
takes into account the decay modes of the exotic clusters into
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FIG. 4. Mass fraction of the classical light clusters, i.e.,
4He, 3He, 3H, 2H, (dashed), and mass fraction of the exotic clusters
(solid), for the FSU model, yp = 0.2–0.5 with T = 5 (top) and
10 MeV (bottom).
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stable light cluster, thus mimicking the final yield that is
measured in a heavy-ion experiment after secondary decay.
Of the four classical light clusters, only 3H and 4He have
effective densities and mass fractions because none of the
exotic clusters decay into 2H no 3He.

The following decay modes are going to be considered
[41] (for simplicity, the leptons emitted in the decay are not
specified):

5He −→ 4He + n
4H −→ 3H + n

7He −→ 6Li + n
6H −→ 3H + 3n
5H −→ 3H + 2n
5Li −→ 4He + p

8Be −→ 2(4He)
7Be −→ 7Li
9He −→ 2(4He) + n

7H −→ 3H + 4n

because these are the most abundant clusters, i.e., have a mass
fraction of Yi > 10−2. Considering these decays, we define the
following effective densities, ρ̃i, as:

ρ̃4He = ρ4He + ρ5He + ρ5Li + 2ρ8Be + 2ρ9He

ρ̃3H = ρ3H + ρ4H + ρ5H + ρ6H + ρ7H

ρ̃6Li = ρ6Li + ρ7He

ρ̃7Li = ρ7Li + ρ7Be

ρ̃n = ρn + ρ5He + ρ4H + ρ7He + 3ρ6H

+ 2ρ5H + ρ9He + 4ρ7H

ρ̃p = ρp + ρ5Li (31)
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FSU, xs=0.8, δB≠0
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A ≤ 12
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Y(free)
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FIG. 8. Total fraction of free particles (black), light clusters
(magenta), exotic light clusters (green), and classical light clusters
(cyan), for a CLD (solid) and HM (dashed) calculations. In both
calculations we are including δB and A ! 12. The heavy cluster
(red) from a CLD calculation is also shown. The results are for FSU,
yp = 0.2, xs = 0.8, and T = 5 MeV.

In Fig. 6, the α, triton, and free nucleons (neutrons and
protons) densities are shown for two different calculations:
(i) the effective (dash-dotted lines), and primary (dashed lines)
cluster densities, taking A ! 12; and (ii) the primary cluster
densities (solid lines), taking A ! 4. From the first calcula-
tion, we immediately conclude that the exotic clusters play a
non-negligible role at intermediate densities. Comparing both
calculations, i.e., the distribution of light clusters, with or
without the exotics, it is clear that there are differences: at the
peak of the distribution, the mass fractions without the exotic
clusters may be more abundant, if the temperature is not too
high and the proton fraction is not too small, but at smaller
and larger densities, the effective classical light cluster are
more abundant. We can then say that including the classical
light clusters only takes into account, in a reasonable way, the
distribution of light clusters with A ! 12. However, we will
next verify that, in fact, the equilibrium constants are affected.

In Fig. 7, we have calculated the equilibrium constants, Kc,
for the α and triton clusters considering the two following
cases: (i) the calculation contains all clusters with A ! 12,
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FIG. 9. Total fraction of free particles (black), light clusters
(magenta), exotic light clusters (green), and classical light clusters
(cyan), for a CLD with (solid) and without δB (dotted). The heavy
cluster (red) is also shown. The results are for FSU, T = 5 MeV,
and xs = 0.8, for yp = 0.2 (top) and yp = 0.41 (bottom). In both
calculations we are taking A ! 12.
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stable light cluster, thus mimicking the final yield that is
measured in a heavy-ion experiment after secondary decay.
Of the four classical light clusters, only 3H and 4He have
effective densities and mass fractions because none of the
exotic clusters decay into 2H no 3He.

The following decay modes are going to be considered
[41] (for simplicity, the leptons emitted in the decay are not
specified):

5He −→ 4He + n
4H −→ 3H + n
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6H −→ 3H + 3n
5H −→ 3H + 2n
5Li −→ 4He + p

8Be −→ 2(4He)
7Be −→ 7Li
9He −→ 2(4He) + n

7H −→ 3H + 4n

because these are the most abundant clusters, i.e., have a mass
fraction of Yi > 10−2. Considering these decays, we define the
following effective densities, ρ̃i, as:

ρ̃4He = ρ4He + ρ5He + ρ5Li + 2ρ8Be + 2ρ9He
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FIG. 8. Total fraction of free particles (black), light clusters
(magenta), exotic light clusters (green), and classical light clusters
(cyan), for a CLD (solid) and HM (dashed) calculations. In both
calculations we are including δB and A ! 12. The heavy cluster
(red) from a CLD calculation is also shown. The results are for FSU,
yp = 0.2, xs = 0.8, and T = 5 MeV.

In Fig. 6, the α, triton, and free nucleons (neutrons and
protons) densities are shown for two different calculations:
(i) the effective (dash-dotted lines), and primary (dashed lines)
cluster densities, taking A ! 12; and (ii) the primary cluster
densities (solid lines), taking A ! 4. From the first calcula-
tion, we immediately conclude that the exotic clusters play a
non-negligible role at intermediate densities. Comparing both
calculations, i.e., the distribution of light clusters, with or
without the exotics, it is clear that there are differences: at the
peak of the distribution, the mass fractions without the exotic
clusters may be more abundant, if the temperature is not too
high and the proton fraction is not too small, but at smaller
and larger densities, the effective classical light cluster are
more abundant. We can then say that including the classical
light clusters only takes into account, in a reasonable way, the
distribution of light clusters with A ! 12. However, we will
next verify that, in fact, the equilibrium constants are affected.

In Fig. 7, we have calculated the equilibrium constants, Kc,
for the α and triton clusters considering the two following
cases: (i) the calculation contains all clusters with A ! 12,
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FIG. 9. Total fraction of free particles (black), light clusters
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the classical ones, and it will be discussed in more detail in
Sec. IV C. The inclusion of the exotic clusters has no effect
on the low-density distribution of the classical clusters close
to the cluster onset, neither on the cluster distribution close to
the melting densities. The largest differences occur at the max-
imum of the cluster distribution, and indicate that for these
densities, a larger number of degrees of freedom contribute.
The main implications of the cluster mass distribution are
related with the contribution that clusters may give to transport
properties of matter.

B. Which clusters are the most abundant?

We next study the effect of temperature and proton-neutron
matter asymmetry on the abundances of the light clusters. In
Fig. 4, the mass fractions of the classical and exotic light
clusters are plotted for several proton fractions and T = 5 and
10 MeV.

The exotic clusters do not play a role at small densities,
close and above the onset density of the classical light clusters.
A similar conclusion is drawn at the transition to homo-
geneous matter: the classical light clusters determine this

transition. However, at the maximum of the clusters fraction
distributions, the exotic clusters are more abundant if the
temperature is not too high. At the maximum distribution, the
difference between exotic and classical clusters increases as
the proton fraction decreases. The relative contribution of the
exotic clusters becomes more important for very asymmetric
matter and low temperatures. These differences have already
disappeared for T ≈ 10 MeV.

Table I shows the five most abundant clusters at five fixed
densities, for T = 5 and 10 MeV and proton fractions of 0.2
and 0.41. At low densities, 2H is always the most abundant
cluster. This tendency increases to larger densities and for
larger temperatures, together with more symmetric matter: for
T = 10 MeV and yp = 0.41, 2H is the most abundant for all
densities. The largest and most asymmetric cluster within the
five most abundant clusters is 7He, and occurs for the lowest
temperature considered, the smallest yp, and at the two largest
densities included in the table, 10−2 and 2 × 10−2 fm−3,
though its abundance does not reach 5%. However, it is
clear from the table that, at T = 5 MeV and yp = 0.41,
the two most abundant clusters concentrate 30–35% of the
distribution, with a fast reduction to 10–15% to the next three
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FIG. 6. Effective densities (dash-dotted lines) of free nucleons (orange), tritons (green), and α (black), compared to their primary (without
the contribution of secondary decay, see text) densities (dashed lines) in a calculation with A ! 12, as a function of the total density, considering
T = 5 (top) and 10 MeV (bottom), and taking yp = 0.2 (left) and 0.41 (right). A calculation with A ! 4 is also shown (solid lines).
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• Exotic clusters are 
non-negligible at 
intermediate 
densities.


• For low T, at the 
peak of the 
distribution: the 
mass fractions 
without exotic are 
more abundant.


• For high T, the 
opposite happens: 
there is an increase 
of the effective.



Equilibrium constants with exotic 
clusters    

• Contribution of 
exotic clusters 
are non-
negligible at 
higher densities. 

FULL DISTRIBUTION OF CLUSTERS WITH UNIVERSAL … PHYSICAL REVIEW C 99, 055806 (2019)

most abundant ones. For yp = 0.2, the distribution is more
uniform: the two most abundant correspond to 15–20% of the
total distribution, while the less abundant ones to 10–16%.
Temperature and a smaller proton fraction turn the distribution
more uniform.

Other important conclusions can be inferred from the table:
(i) For T = 10 MeV and yp = 0.41, the heaviest nucleus is
5He, with isospin −1/2. The heaviest one with largest isospin
magnitude is 4H (I = −1). Reducing the proton fraction to
0.2, 6H is the most massive and most asymmetric (I = −2),
but occurs only with a 3% abundance. 4H and 5He are the
exotic clusters with the most important contribution. (ii) For
T = 5 MeV and yp = 0.41, there is no cluster with A > 5.
However, for yp = 0.2, 7He (I = −3/2) has a non-negligible
contribution, close to 5%. We conclude that the exotic clusters
have a more important role at lower temperatures and larger
proton-neutron asymmetries. Moreover, the results of Table I
seem to indicate that it is enough to consider a small subset of
exotic clusters with A ! 7 and |I| ! {3/2, 2}.

In order to establish the role of isospin, charge and mass,
we plot in Fig. 5, the average isospin of the light clusters, ⟨I⟩,
the average charge ⟨Z⟩, and the average number of nucleons
in the light clusters ⟨A⟩, given by

⟨I⟩ =
∑

i Iiρi∑
i ρi

(28)

⟨Z⟩ =
∑

i Ziρi∑
i ρi

(29)

⟨A⟩ =
∑

i Aiρi∑
i ρi

(30)

as a function of density. The regions shown in Fig. 5 were
obtained allowing for the coupling of the light clusters to the
scalar field to vary in the range 0.8 < xs < 0.9.

We first discuss the role of isospin. In the left panels of
Fig. 5, we plot for two temperatures, T = 5 and 10 MeV, and
two proton fractions, yp = 0.2 and 0.41, the average isospin
cluster. As expected, for neutron-rich matter, the clusters that
most contribute are neutron rich, and the more neutron-rich
matter is, the larger the fraction of clusters with a negative
isospin. For yp = 0.2 and T = 5 MeV, the presence of clusters
that have at least N − Z = 2 is large, although temperature
reduces strongly this effect. We, therefore, conclude that it
is important to include in the calculation of very asymmetric
matter exotic neutron-rich clusters. Even for T = 10 MeV, the
maximum of the average isospin is above − 1

2 for yp = 0.2.
In the middle panels of Fig. 5, the average charge of the

light clusters has been plotted. We consider the same two
proton fractions and temperatures, as before. It is seen that
the presence of clusters with a large charge, i.e., Z > 2, is
more important in symmetric matter and low temperature.
In particular, for the proton fraction yp = 0.41, the effect
of clusters with Z > 2 at T = 5 MeV is non-negligible,
while for yp = 0.2 or T = 10 MeV, their role is small. The
larger the value of xs, the larger the contribution of clusters
with Z > 2.

We finally refer to the role of the light cluster mass. The
average mass number of the light clusters is shown in the right

panels of Fig. 5. This quantity is essentially not affected by the
proton fraction, but it is sensitive to the temperature: the larger
the T , the smaller the contribution from the most massive
clusters. For T = 10 MeV, the maximum mass average of
clusters is ≈4, while for T = 5 MeV, this value raises to
≈5. The fraction xs also has a noticeable effect: larger values
favor more massive clusters, because it introduces a larger
attraction.

C. Consideration of decay modes

Having as an objective the comparison of the cluster abun-
dances within our model with the experimental data, we will
calculate equilibrium constants as defined in Ref. [19]. When
considering exotic clusters we should keep in mind that many
of them are unstable in vacuum, and therefore, in heavy-
ion collisions, they will decay before reaching the detectors.
We, therefore, introduce effective cluster mass fractions and
densities that take this effect into account. Specifically, we
sum up all the cluster mass fractions that decay into a given
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FIG. 7. Chemical equilibrium constants of α (top), and triton
(bottom) for FSU, and yp = 0.41, and for the universal gs j = (0.85 ±
0.05)Ajgs fitting, from a calculation with only the four classical light
clusters (red with arrow bars), and a calculation with A ! 12, taking
the effective densities, and xs = 0.85 (cyan/gray thick line). The
experimental results of Qin et al. [19] (yellow/gray shaded region)
are also shown.
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• The temperature, proton fraction and density as a function of Vsurf, for 
the intermediate mass system.

Experimental chemical equilibrium 
constants with INDRA data  
• Experimental data includes 4He, 3He, 3H, 2H, and 6He.

• 3 experimental systems: 136Xe+124Sn, 124Xe+124Sn, and 124Xe+112Sn.

• Vsurf is the velocity of 
the emitted particles at 
the nuclear surface, so 
fastest particles 
correspond to earliest 
emission times.

R. Bougault et al, for the INDRA 
collab, submitted to J. Phys. G 

(2019)
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Experimental chemical equilibrium 
constants with INDRA data  

• Here the chemical 
equilibrium constants are 
for the intermediate-mass 
system, 124Xe+124Sn.


R. Bougault et al, for the INDRA 
collab, submitted to J. Phys. G 

(2019)
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Experimental chemical equilibrium 
constants with INDRA data  

• When we apply our model we need a higher x_s to fit this data, 0.88 
(6He)-0.91 (4He), as compared to Qin data, that prefers 0.85.


• The low-density region is very underestimated, and the high-density region 
is well reproduced.


• The Qin fit is slightly better, but qualitatively it is the same.

• More work is needed to understand this behaviour.
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The pasta phases
•Competition between Coulomb and nuclear forces leads to 
frustrated system

•Geometrical structures, the pasta phases, evolve with density 
until they melt crust-core transition

•Criterium: pasta free energy must be lower than the  
correspondent hm state

G. Watanabe et al, PRL 103, 121101, 2009
C. J. Horowitz et al, PRC 70, 065806, 2004 

QMD calculations:

cases studied in this Letter, we set the proton fraction equal
to 0.3, a likely value for CCSNmatter. The minimum of the
free energy in a cell at a given particle number density,
temperature, and proton fraction is sought as a function of
three free parameters: the number of particles in the cell
(determining the cell size) and !, ", the parameters of the
quadrupole moment of the neutron distribution. Each
minimization takes approximately 12 hours of CPU time
on a single core of the Cray XT5/XK6 machine and is
performed in a trivially parallel mode, typically using
45 000 processors.

We present here a complete calculation for T ¼ 2 MeV
and the particle number density range 0:02–0:12 fm"3. We
observed the onset of the pasta phase and its dissolution to
uniform matter. All classical pasta formations, starting
from spherical droplets through rods, slabs, tubes (cylin-
drical holes), and bubbles (spherical holes) were observed
fully self-consistently for all Skyrme force models. The
shapes are illustrated in Fig. 1 for the SMC700 Skyrme
force as an example at threshold densities for each shape.
We show the 3D image in the top row and the yx, xz, and yz
projections in the 2nd, 3rd, and 4th rows, respectively. In
the tube and bubble regions we found the cylindrical
(spherical) holes appearing exactly in the edges (corners)
of the unit cell and not in the center as expected in the bcc
or fcc symmetries, which are in principle allowed in a
cubic box. The reason for this effect is likely to be that
in our model we calculate the density distribution only in
one octant of the cell and assemble the whole cell using
reflection symmetry. This procedure reduces the higher
order bcc and fcc symmetries to a simple cubic symmetry.
The use of reflection symmetry makes the 3D-SHF model

manageable. Removal of that symmetry would increase the
demand on computational time by a factor of 8 which is not
realistic at this time.
In addition, we determined the transition densities

between individual phases as shown in Fig. 2. For com-

FIG. 1 (color online). First row: Pasta phases calculated using the SQMC700 Skyrme interaction, T ¼ 2 MeV and yp ¼ 0:3. Rows
2, 3, 4: 2D projection of the pasta phases on the (y, x), (x, z), and (y, z) planes, respectively. The neutron density distribution is shown at
the density corresponding to the onset of each phase, known with the uncertainty given in brackets. Blue (red) color indicates the
bottom (top) of the density scale: 0.001 (dark blue)—0.02475 (light blue)—0.0485 (green)—0.07225 (light orange)—0.095 (red) fm"3.
The pasta formation shown here appears for all the Skyrme models, but the threshold density changes somewhat; see Fig. 2. For more
explanation see text.
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FIG. 2 (color online). Comparison of phase diagrams at T ¼
2 MeV and yp ¼ 0:3 as calculated for the four Skyrme inter-
actions used in the 3D-SHF model. The sequence of phases from
bottom to top is spherical droplets (magenta): no pasta, rods
(yellow), cross-rods (blue), slabs (red), cylindrical holes (tubes,
orange), and spherical holes (bubbles, green). The white gaps
between colored boxes represent transition regions in which
calculation is not available. The onset densities of each phase
can be compared with results of Sonoda et al. [12], who found
the following regions of densities (all in fm"3 rounded to 3
decimal places): 0.017–0.029 (spherical droplets), 0.034 (rods),
0.059–0.063 (slabs), 0.080–0.084 (cylindrical holes), and 0.088–
0.109 (spherical holes). For more explanation see text.
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Cluster fractions - CLD vs HM

• The heavy cluster (CLD+cl) calculation: light clusters less abundant but increase their 
melting density.


• Increasing T: the onset of both heavy and light clusters moves to larger densities.    

• Heavy cluster with light clusters (CLD+cl) VS. homogeneous matter with light clusters (HM+cl). 

• Light clusters with A    12. 
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Pasta versus Cluster fractions with pastas  

The inclusion of light clusters

• moves the onset of the heavy cluster to larger densities

• reduces the mass fraction of the heavy cluster

• increases the fraction of free nucleons in the background  

PRC 99, 055806 2019

FULL DISTRIBUTION OF CLUSTERS WITH UNIVERSAL … PHYSICAL REVIEW C 99, 055806 (2019)
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FIG. 10. Total fraction of free particles (black), light clusters (magenta), exotic light clusters (green), classical light clusters (cyan), and
heavy cluster (red) for a CLD with (solid) and without light clusters (cl) (dash-dotted) calculations. The results are for FSU, xs = 0.8, with
yp = 0.2 (top), and 0.41 (bottom), for T = 5 (left) and T = 7 (right). In both calculations, we are taking A ! 12.

and the Kc are determined for the corresponding effective
distributions (magenta), which we call effective equilibrium
constants; (ii) the calculation contains only the four classical
clusters, and the Kc are calculated as in Ref. [20] (red). These
distributions are compared with the experimental data of Qin
et al. [19]. When we compare these two calculations, we
see that, for the same temperature and density, the effective
equilibrium constants become larger, as it might be expected,
since besides the true distributions, there is a large number of
other channels that contribute.

V. COMPRESSIBLE LIQUID DROP (CLD)
CALCULATION WITH A ! 12

Until now, we have considered homogeneous matter (HM)
with light clusters, both the classical and the exotic ones. We
next test how the fraction of heavy clusters (pasta) is affected
with the inclusion of the exotic clusters. For that, we consider
a CLD calculation with light clusters, taking A ! 12, and
where the inclusion of the extra term in the binding energy of
the light clusters, δB, defined in Eq. (15), is also considered.
In the following, the heavy cluster will always be calculated
in the droplet configuration.

In this calculation, we consider the following definitions
for the total proton mass fraction, yTot

p , the total neutron mass
fraction, yTot

n , and the total mass fraction of a light cluster with
A nucleons and N neutrons, Y Tot

cl(A,N):

yTot
p =

(
Yp1 f ρ1 + Yp2 (1 − f )ρ2

)/
ρ,

yTot
n =

(
Yn1 f ρ1 + Yn2 (1 − f )ρ2

)/
ρ, (32)

Y Tot
cl(A,N) = (Ycl(A,N)1 f ρ1 + Ycl(A,N)2(1 − f )ρ2)/ρ.

Yi1 (Yi2) is the particle fraction in the dense phase 1 (gas
phase 2), ρ the average baryonic density, and f the volume
fraction occupied by the heavy cluster.

It is interesting to observe that, though in the above def-
inition, we allow the presence of light clusters in the whole
Wigner-Seitz cell, independent of the density, it turns out
that Ycl(A,N)1 = 0 for all (A, N ), showing that our universal
coupling prescription naturally produces the expected ex-
cluded volume effect of the dense cluster, here identified with
the dense phase 1. We also define the total fraction of free
nucleons Yfree, the total fraction of light, classical, and exotic
clusters, respectively, Ylight, Yclass, Yexo, and the fraction of
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Summary
•A simple parametrisation of in-medium effects acting on light clusters is 
proposed in a RMF framework.


• Interactions of clusters with medium described by modification of 
sigma-meson coupling constant.


•Clusters dissolution obtained by the density-dependent extra term on 
the binding energy. 


•                         reproduces both virial limit and Kc from Texas HIC 
data.


•Exotic clusters (4<A<12) have effects on the clusters abundances and 
equilibrium constants.


•Light clusters and pasta structures are relevant and should be explicitly 
included in EoS for CCSN simulations and NS mergers.


•The two data sets, Texas and INDRA, are compatible, but one prefers a 
lower x_s than the other. More work is needed to understand this 
behaviour.


Thank you!


