Light clusters and pasta phases in warm stellar matter

Helena Pais
CFisUC, University of Coimbra, Portugal

in collaboration with F. Gulminelli (LPC-Caen, France), C. Providência (Univ. Coimbra), and G. Roepke (Univ. Rostock, Germany), and with R. Bougault and the INDRA collaboration (GANIL)
Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collision, and astrophysics

ECT*, Trento, September 4, 2019
Acknowledgments:
Organising Committee
FCT Fundação para a Ciência e a Tecnologia

Where do these clusters form?

in http://essayweb.net/astronomy/blackhole.shtml

in https://www.ligo.org/detections/GW170817.php Credit: Soares-Santos et al. and DES Collab

GW170817

DECam observation
(0.5-1.5 days post merger)

NS mergers
scenarios where light and heavy clusters are important: supernovae, NS mergers, (crust of) neutron stars

Neutron stars

- Divided in 3 main layers:

1. Outer crust 2. Inner crust
 3. Core

- NS: catalized cold stellar matter:

- Surface: ${ }^{56} \mathrm{Fe}, \mathrm{P}=0$
- Outer crust: Neutron rich nuclei embedded in electron sea
- Inner crust: Above neutron drip density, nucleons form geometrical structures (non-spherical: pasta phases) embedded in neutron and electron background gas.
- Core: Uniform matter, in the centre exotic matter may exist.

How do these clusters affect the star?

- They influence supernova properties: the clusters can modify the neutrino transport, affecting the cooling of the proto-neutron star.
- These clusters may also affect the cooling of binary and accreting systems.
- Magnetars (neutron stars with very strong magnetic fields) may have an inner crust even more complex.

Supernova EoS with light clusters

- The SN EoS should incorporate: all relevant clusters, (mean-field) interaction between nucleons and clusters, and a suppression mechanism of clusters at high densities.
- Different methods: nuclear statistical equilibrium, quantum statistical approach, and
- RMF approach: clusters as new degrees of freedom, with effective mass dependent on density.
- In-medium effects: cluster interaction with medium described via the meson couplings, or effective mass shifts, or both
- Constrains are needed to fix the couplings:
low densities: Virial EoS
high densities: cluster formation has been measured in HIC

Non-linear Walecka Model

mesons: mediation of nuclear force

$$
\mathcal{L}=\sum_{i=p, n} \mathcal{L}_{i}+\mathcal{L}_{e}+\mathcal{L}_{\sigma}+\mathcal{L}_{\omega}+\mathcal{L}_{\rho}+\mathcal{L}_{\omega \rho}
$$

non-linear mixing coupling

$$
\begin{aligned}
& \mathcal{L}_{i}=\bar{\psi}_{i}\left[\gamma_{\mu} i D^{\mu}-M^{*}\right] \psi_{i} \\
& \mathcal{L}_{e}=\bar{\psi}_{e}\left[\gamma_{\mu}\left(i \partial^{\mu}+e A^{\mu}\right)-m_{e}\right] \psi_{e}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\sigma} & =\frac{1}{2}\left(\partial_{\mu} \phi \partial^{\mu} \phi-m_{s}^{2} \phi^{2}-\frac{1}{3} \kappa \phi^{3}-\frac{1}{12} \lambda \phi^{4}\right) \\
\mathcal{L}_{\omega} & =-\frac{1}{4} \Omega_{\mu \nu} \Omega^{\mu \nu}+\frac{1}{2} m_{v}^{2} V_{\mu} V^{\mu}+\frac{1}{4!} \xi g_{v}^{4}\left(V_{\mu} V^{\mu}\right)^{2} \\
\mathcal{L}_{\rho} & =-\frac{1}{4} \mathbf{B}_{\mu \nu} \cdot \mathbf{B}^{\mu \nu}+\frac{1}{2} m_{\rho}^{2} \boldsymbol{b}_{\mu} \cdot \boldsymbol{b}^{\mu}
\end{aligned}
$$

non-linear mixing coupling term: responsible for density dependence of

$$
\mathcal{L}_{\omega \rho}=g_{\omega \rho} g_{\rho}^{2} g_{v}^{2} V_{\mu} V^{\mu} \mathbf{b}_{\nu} \cdot \mathbf{b}^{\nu}
$$

Light clusters

- New degrees of freedom of the system.
- Interaction with the medium via the meson couplings.

$$
\begin{aligned}
\mathcal{L} & =\sum_{j=t, h} \mathcal{L}_{j}+\mathcal{L}_{\alpha}+\mathcal{L}_{d} \\
\quad \begin{array}{l}
\text { with } \\
\mathcal{L}_{j}
\end{array} & =\bar{\psi}\left[\gamma_{\mu} i D_{j}^{\mu}-M_{j}^{*}\right] \psi, \quad i D_{j}^{\mu}=i \partial^{\mu}-g_{v j} \omega^{\mu}-\frac{g_{\rho}}{2} \boldsymbol{\tau}_{j} \cdot \mathbf{b}^{\mu}
\end{aligned}
$$

for the fermions tritons and helions, and for the bosons alphas and deuterons, we have:

$$
\begin{aligned}
\mathcal{L}_{\alpha}= & \frac{1}{2}\left(i D_{\alpha}^{\mu} \phi_{\alpha}\right)^{*}\left(i D_{\mu \alpha} \phi_{\alpha}\right)-\frac{1}{2} \phi_{\alpha}^{*}\left(M_{\alpha}^{*}\right)^{2} \phi_{\alpha}, \\
\mathcal{L}_{d}= & \frac{1}{4}\left(i D_{d}^{\mu} \phi_{d}^{\nu}-i D_{d}^{\nu} \phi_{d}^{\mu}\right)^{*}\left(i D_{d \mu} \phi_{d \nu}-i D_{d \nu} \phi_{d \mu}\right) \\
& -\frac{1}{2} \phi_{d}^{\mu *}\left(M_{d}^{*}\right)^{2} \phi_{d \mu}, \quad i D_{j}^{\mu}=i \partial^{\mu}-g_{v j} \omega^{\mu}
\end{aligned}
$$

$$
M_{j}^{*}=A_{j} m-g_{s j} \phi_{0}-\left(B_{j}^{0}+\delta B_{j}\right) \text { with } \mathrm{j}=\mathrm{t}, \mathrm{~h}, \mathrm{~d}, 4 \mathrm{He}
$$

In-medium effects $-g_{s j}$

- Binding energy of each cluster: $B_{j}=A_{j} m^{*}-M_{j}^{*}, \quad j=d, t, h, \alpha$
with $\quad m^{*}=m-g_{s} \phi_{0}$ the nucleon effective mass and

$$
M_{j}^{*}=A_{j} m-g_{s j} \phi_{0}-\left(B_{j}^{0}+\delta B_{j}\right) \text { the cluster effective mass. }
$$

the scalar cluster-meson coupling

$$
g_{s j}=x_{s j} A_{j} g_{s}
$$

needs to be determined from exp. constraints

In-medium effects $-\delta B_{j}$

- Binding energy of each cluster: $B_{j}=A_{j} m^{*}-M_{j}^{*}, \quad j=d, t, h, \alpha$ with $m^{*}=m-g_{s} \phi_{0}$ the nucleon effective mass and

$$
M_{j}^{*}=A_{j} m-g_{s j} \phi_{0}-\left(B_{j}^{0}+\delta B_{j}\right) \text { the cluster effective mass. }
$$

binding energy shift

$$
\delta B_{j}=\frac{Z_{j}}{\rho_{0}}\left(\epsilon_{p}^{*}-m \rho_{p}^{*}\right)+\frac{N_{j}}{\rho_{0}}\left(\epsilon_{n}^{*}-m \rho_{n}^{*}\right)
$$

energetic counterpart of classical ExV mechanism

$$
\begin{aligned}
& \epsilon_{j}^{*}=\frac{1}{\pi^{2}} \int_{0}^{p_{F_{j}} \text { (gas) }} p^{2} e_{j}(p)\left(f_{j+}(p)+f_{j-}(p)\right) d p \\
& \rho_{j}^{*}=\frac{1}{\pi^{2}} \int_{0}^{p_{F_{j}} \text { (gas) }} p^{2}\left(f_{j+}(p)+f_{j-}(p)\right) d p
\end{aligned}
$$

the energy states occupied by the gas are excluded: double counting avoided!
associated with the gas lowest energy levels

Supernova EoS with light clusters

-The total baryonic density is defined as:

$$
\rho=\rho_{p}+\rho_{n}+4 \rho_{\alpha}+2 \rho_{d}+3 \rho_{h}+3 \rho_{t}
$$

- The global proton fraction as

$$
Y_{p}=y_{p}+\frac{1}{2} y_{\alpha}+\frac{1}{2} y_{d}+\frac{2}{3} y_{h}+\frac{1}{3} y_{t}
$$

with $y_{i}=A_{i}\left(\rho_{i} / \rho\right)$ the mass fraction of cluster i .

- Charge neutrality must be imposed: $\rho_{e}=Y_{p} \rho$
- The light clusters are in chemical equilibrium, with the chemical potential of each cluster i defined as

$$
\mu_{i}=N_{i} \mu_{n}+Z_{i} \mu_{p}
$$

Determination of x_{s} : Virial EoS

- VEoS: model-independent constraint, only depends on experimentally binding energies and scattering phase shifts.
- Provides correct zero-density limit for finite T EoS.
- Breaks down when interaction with particles becomes stronger:

Contribution of δB_{j}

Cluster fractions - effect of δB_{j}

δB_{j} important for dissolution of clusters!

Equilibrium constants

- Kc calculated with data from HIC:
$K_{c}[j]=\frac{\rho_{j}}{\rho_{n}^{N_{j}} \rho_{p}^{Z_{j}}}$

- Unique existing constraint on in-medium modifications of light clusters at finite T

- Our model describes quite well experimental data!

Light clusters: classical + exotic

Decays and effective densities

- Decay modes:

$$
\begin{aligned}
& { }^{5} \mathrm{He} \longrightarrow{ }^{4} \mathrm{He}+\mathrm{n} \\
& { }^{4} \mathrm{H} \longrightarrow{ }^{3} \mathrm{H}+\mathrm{n} \\
& { }^{7} \mathrm{He} \longrightarrow{ }^{6} \mathrm{Li}+\mathrm{n} \\
& { }^{6} \mathrm{H} \longrightarrow{ }^{3} \mathrm{H}+3 \mathrm{n} \\
& { }^{5} \mathrm{H} \longrightarrow{ }^{3} \mathrm{H}+2 \mathrm{n} \\
& { }^{5} \mathrm{Li} \longrightarrow{ }^{4} \mathrm{He}+\mathrm{p} \\
& { }^{8} \mathrm{Be} \longrightarrow 2\left({ }^{4} \mathrm{He}\right) \\
& { }^{7} \mathrm{Be} \longrightarrow{ }^{7} \mathrm{Li} \\
& { }^{9} \mathrm{He} \longrightarrow 2\left({ }^{4} \mathrm{He}\right)+\mathrm{n} \\
& { }^{7} \mathrm{H} \longrightarrow{ }^{3} \mathrm{H}+4 \mathrm{n} \\
& \text { - Effective densities: } \\
& \widetilde{\rho}_{4}{ }^{\mathrm{He}}=\rho_{4} \mathrm{He}+\rho_{5} \mathrm{He}+\rho_{5}{ }_{\mathrm{Li}}+2 \rho_{8_{\mathrm{Be}}}+2 \rho^{9} \mathrm{He} \\
& \widetilde{\rho}_{3}{ }_{\mathrm{H}}=\rho_{3} \mathrm{H}+\rho_{4} \mathrm{H}+\rho_{5} \mathrm{H}+\rho_{6} \mathrm{H}+\rho_{7} \mathrm{H} \\
& \tilde{\rho}_{6}{ }_{\mathrm{Li}}=\rho_{6}{ }_{\mathrm{Li}}+\rho_{{ }^{7} \mathrm{He}} \\
& \widetilde{\rho}_{7}{ }_{\mathrm{Li}}=\rho_{{ }^{7} \mathrm{Li}}+\rho_{{ }^{7} \mathrm{Be}} \\
& \widetilde{\rho}_{\mathrm{n}}=\rho_{\mathrm{n}}+\rho_{5} \mathrm{He}+\rho_{4} \mathrm{H}+\rho^{7} \mathrm{He}+3 \rho_{6} \mathrm{H} \\
& +2 \rho_{5} \mathrm{H}+\rho^{9} \mathrm{He}+4 \rho_{7} \mathrm{H} \\
& \widetilde{\rho}_{\mathrm{p}}=\rho_{\mathrm{p}}+\rho_{5}{ }_{\mathrm{Li}}
\end{aligned}
$$

Decays and effective densities

- Exotic clusters are non-negligible at intermediate densities.
- For low T, at the peak of the distribution: the mass fractions without exotic are more abundant.
- For high T, the opposite happens: there is an increase of the effective.

Equilibrium constants with exotic clusters

Experimental chemical equilibrium constants with INDRA data

- Experimental data includes $4 \mathrm{He}, 3 \mathrm{He}, 3 \mathrm{H}, 2 \mathrm{H}$, and 6 He .
- 3 experimental systems: $136 \mathrm{Xe}+124 \mathrm{Sn}, 124 \mathrm{Xe}+124 \mathrm{Sn}$, and $124 \mathrm{Xe}+112 \mathrm{Sn}$.

R. Bougault et al, for the INDRA collab, submitted to J. Phys. G (2019)
- Vsurf is the velocity of the emitted particles at the nuclear surface, so fastest particles correspond to earliest emission times.
- The temperature, proton fraction and density as a function of Vsurf, for the intermediate mass system.

Experimental chemical equilibrium constants with INDRA data

```
R. Bougault et al, for the INDRA collab, submitted to J. Phys. G
(2019)
```


- Here the chemical equilibrium constants are for the intermediate-mass system, 124Xe+124Sn.

Experimental chemical equilibrium constants with INDRA data

- When we apply our model we need a higher x_s to fit this data, 0.88 (6 He)-0.91 (4He), as compared to Qin data, that prefers 0.85 .
- The low-density region is very underestimated, and the high-density region is well reproduced.
- The Qin fit is slightly better, but qualitatively it is the same.
- More work is needed to understand this behaviour.

The pasta phases

-Competition between Coulomb and nuclear forces leads to frustrated system

- Geometrical structures, the pasta phases, evolve with density until they melt \longrightarrow crust-core transition
-Criterium: pasta free energy must be lower than the correspondent hm state

QMD calculations:
G. Watanabe et al, PRL 103, 121101, 2009
C. J. Horowitz et al, PRC 70, 065806, 2004

Cluster fractions - CLD vs HM

- Heavy cluster with light clusters (CLD+cl) VS. homogeneous matter with light clusters (HM+cl).
- Light clusters with $\mathrm{A} \leq 12$.

- The heavy cluster (CLD+cl) calculation: light clusters less abundant but increase their melting density.
- Increasing T: the onset of both heavy and light clusters moves to larger densities.

Pasta versus Cluster fractions with pastas

The inclusion of light clusters

- moves the onset of the heavy cluster to larger densities
- reduces the mass fraction of the heavy cluster
- increases the fraction of free nucleons in the background

Summary

Thank you!

- A simple parametrisation of in-medium effects acting on light clusters is proposed in a RMF framework.
- Interactions of clusters with medium described by modification of sigma-meson coupling constant.
- Clusters dissolution obtained by the density-dependent extra term on the binding energy.
- $x_{s j}=0.85 \pm 0.05$ reproduces both virial limit and Kc from Texas HIC data.
- Exotic clusters ($4<A<12$) have effects on the clusters abundances and equilibrium constants.
- Light clusters and pasta structures are relevant and should be explicitly included in EoS for CCSN simulations and NS mergers.
- The two data sets, Texas and INDRA, are compatible, but one prefers a lower x_s than the other. More work is needed to understand this behaviour.

