



# **Preliminary Experimental Results of**

### the Molecular States in <sup>16</sup>C

Speaker: Yang LIU

Supervisor: Prof. YanLin Ye

Sept. 3<sup>rd</sup>, 2019 @ ECT\* workshop

School of Physics and State Key Lab of Nuclear Physics and Technology, Peking University





#### **1. Introduction**

- **2**. Previous experiments on <sup>16</sup>C clustering
- **3.** <sup>16</sup>C Experimental Setup of PKU
- **4.** Preliminary Data Analysis Results
- **5.** Summary







#### Cluster toward neutron dripline



W. von Oertzen, Phys. Rep. 432(2006)43-113

- ✓ Neutron-rich domain
- ✓ High Excitation energy

## **Introduction: Experimental studies**



Present work

<sup>4</sup>He+<sup>8</sup>He

Event-mixing

0<sup>+</sup>(10.3MeV)

2<sup>+</sup>(12.1MeV)

4<sup>+</sup>(13.6MeV)

Freer et al

<sup>4</sup>He+<sup>8</sup>He

20

25



# **Introduction: Experimental studies**





Introduction: <sup>16</sup>C



<sup>16</sup>C Molecular-orbital structure in neutron-rich C isotopes. N. Itagaki et. al., PRC64(2001)014301



The excited states of <sup>16</sup>C with  $\pi^2\sigma^2$  configuration for the 4 four valence neutrons is one of the most promising candidates for the linear-chain structure. (~25MeV)

```
September 3, 2019
```



-60

energy  $(J\pi=0^+)$ 

*September*<sup>2</sup> 3, 2019 (degrees)

energy [MeV] 99-20

-90

-100

#### Introduction: <sup>16</sup>C



r<sub>n</sub>



1.0

0.8

0.6 overlap

0.2

0

10

8



T. Baba et. al., PRC 90, 064319 (2014)

 $J^{\pi}$ 

 $E_x$ 

 $r_p$ 

The linear-chain configuration generates a rotational band built on the 0<sub>5</sub><sup>+</sup> state at 15.5MeV that is close to the <sup>4</sup>He+<sup>12</sup>Be and <sup>6</sup>He+<sup>10</sup>Be threshold energies and stable against the bending motion.

### **Introduction:** <sup>16</sup>C



#### 16**C** Characteristic <sup>4</sup>He and <sup>6</sup>He decay patterns in the linear-chain states in <sup>16</sup>C



The <sup>6</sup>He reduced widths are about 2 times smaller than <sup>4</sup>He.

*September 3, 2019* 

Peking University

 $0_{6}^{+}$ 

 $2^{+}_{9}$ 





#### **1. Introduction**

### **2**. Previous experiments on <sup>16</sup>C clustering

#### **3.** <sup>16</sup>C Experimental Setup of PKU

### **4. Preliminary Data Analysis Results**

#### **5.** Summary

**Previous experiments on <sup>16</sup>C clustering** 



<sup>16</sup>C is inelastically excited by <sup>12</sup>C target foils and then breaks up into two fragments.

35MeV/A, <sup>16</sup>C, 2\*10<sup>4</sup>pps zero degree telescope

P J Leask et.al., J. Phys. G 27 (2001) B9–B14



The high <sup>16</sup>C beam energy (35MeV/A) opens so many additional reaction channels that the *Q*-value is not good enough to exclude the influence of breakup fragments in different final states.

September 3, 2019



<sup>16</sup>C is inelastically excited by <sup>12</sup>C target foils and then breaks up into two fragments.



46MeV/A, <sup>16</sup>C, 300pps zero degree telescope

The reaction products in unbound states may contribute to the decay channel so no significant structure was seen in the excitation energy spectra.

The beam intensity is so low (300pps) that the statistics is insufficient to get peaks information or spin-parity values.

N. I. Ashwood et.al., PRC 70, 064607 (2004).



<sup>16</sup>C is inelastically excited by  $(CH_2)_n$  target and  $(CD_2)_n$  target then breaks up into two fragments.

**49.5MeV/A**, <sup>16</sup>**C**, **10**<sup>5</sup>**pps Cover angle: 2.2deg-6.4deg** <sup>1</sup>H(<sup>16</sup>C ,<sup>6</sup>He+<sup>10</sup>Be), <sup>2</sup>H(<sup>16</sup>C ,<sup>6</sup>He+<sup>10</sup>Be), <sup>12</sup>C(<sup>16</sup>C ,<sup>6</sup>He+<sup>10</sup>Be)



**Previous experiments on <sup>16</sup>C clustering** 



<sup>16</sup>C is inelastically excited by  $(CH_2)_n$  target and  $(CD_2)_n$  target then breaks up into two fragments.







#### **1. Introduction**

#### **2. Previous experiments on <sup>16</sup>C clustering**

### **3.** <sup>16</sup>C Experimental Setup at PKU

#### **4. Preliminary Data Analysis Results**

### **5.** Summary



Main goals:

To Investigate the 3alpha linear-chain structure in the high-lying excited state of  ${}^{16}C(Ex=14 \sim 25MeV)$  via  ${}^{2}H({}^{16}C,{}^{4}He + {}^{12}Be){}^{2}H$  and  ${}^{2}H({}^{16}C,{}^{6}He + {}^{10}Be){}^{2}H$  inelastically break up reaction at 24MeV/A with both the invariant mass and missing mass methods.



### <sup>16</sup>C Experimental Setup at PKU





### <sup>16</sup>C Experimental Setup at PKU









#### **1. Introduction**

- **2. Previous experiments on** <sup>16</sup>**C clustering**
- **3.** <sup>16</sup>C Experimental Setup at PKU
- **4.** Preliminary Data Analysis Results

### **5.** Summary



#### **Reaction events on Silicon detectors:**



- ✓ DSSD tracking of particles
- ✓ dE-E PID curves of particles

*September 3, 2019* 

Sat Apr 13 18:27:29 2019



#### **Particle Identification:**



✓ Excellent DSSD Front & Back Energy Normalization
✓ Precisely Selection of DSSD Timing Information



#### Verification of the experimental technique: (<sup>4</sup>He+<sup>4</sup>He)



September 3, 2019



#### Target contaminations analysis: CD<sub>2</sub> (C, D, H)

Inelastic break up reaction:  $P + T \rightarrow 1 + 2 + T$ 

The momentum of the recoiled target:

$$p_{\rm t}^2 = (p_{\rm P} - p_1 - p_2)^2$$

The energy of the recoiled target:

$$E_{\rm t}=E_P-E_1-E_2+Q$$

*EP*-plot procedure:

 $E_{\rm t} = p_{\rm t}^2 / 2A_{\rm t}$ 





The fitted slope is about ½, indicating the recoiled particles are <sup>2</sup>H. 22

E. Costanzo et. al., NIMA 295 (1990) 373-376





#### Thanks:

#### **IMP-RIBLL1** Cooperators for technical support.

- **PKU Experimental Group for experimental cooperation.**
- HEU Experimental Group for experimental preparation.

# **Thanks for your attention!**







September 3, 2019