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Introduction



Binary Cluster Models

Many α-cluster states could be studied within the binary cluster
models (a.k.a. local potential approach, extreme cluster models,
potential model, etc).

Applications:

1 Structural and decay properties of parent nucleus
= α + doubly magic core:
8Be = α + α, 20Ne = α + 16O, 44Ti = α + 40Ca, 104Te = α + 100Sn,
212Po = α + 208Pb.

2 α decays in medium-mass, heavy, and superheavy nuclei:
systematic studies along various isotopic and isotonic chains, α-decay fine

structures, etc.

3 Potential-model approach to nuclear reaction problems:
elastic scattering, inelastic scattering, fusion reactions, etc.

D. S. Delion, Theory of Particle and Cluster Emission (2010).
D. S. Delion, Z. Ren, A. Dumitrescu, D. Ni (2018).
I. Thompson, F. M. Nunes (2009).
K. Hagino, N. Takigawa (2012).



Parent Nucleus = α+ Doubly Magic Core:

Binary cluster models have been applied successfully to study
α-cluster structures in parent nucleus = α + doubly magic core,
giving a unified description of the energy spectrum,
electromagnetic transitions, α decays, nuclear sizes, etc.

Three essentials:

1 relevant degrees of freedoms = α cluster + spherical doubly
magic core;

2 Wildermuth condition used to implement Pauli blocking
between the α cluster and the core nucleus;

3 effective potentials between the α cluster and the core
nucleus:
×: squared-well potential, cosh potential, Woods-Saxon
(WS) potential, double-folding potential, etc.√

: WS+WS3 potential, Woods-Saxon-Gaussian (WSG)
potential, (WS+WS3)×(1+Gaussian) potential, etc.



Q: What’s the microscopic origin of the WSG

potential?

A: Perhaps closely related to Pauli blocking.



Non-Localized Cluster Model

Non-localized cluster model is proposed by Bo Zhou, Y. Funaki,
H. Horiuchi, Zhongzhou Ren, G. Röpke, P. Schuck, A. Tohsaki,
Chang Xu, T. Yamada in 2012-2014, and generalizes the key
insights behind α-particle condensates of THSR
(Tohsaki-Horiuchi-Schuck-Röpke).

The non-localized cluster model is based on the new picture of
non-localized clustering, which is different from the traditional
picture of localized clustering.

Local Clustering Non-Local Clustering



The non-localized cluster model has been used to study structural
properties of α-cluster states in various nuclei and hypernuclei,
including

6,8He, 8−12Be, 9,10B, 10,12C, 16O, 20Ne;
9
ΛBe, 13

ΛC.

Y. Funaki, H. Horiuchi, A. Tohsaki (2015).
M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, Ulf-G. Meißner (2018).
Bo Zhou, Y. Funaki, H. Horiuchi, A. Tohaski (2019).

Further Direction:

Generalize non-localized cluster model to nuclear reactions.
Take the α-α elastic scattering as the first step.



New Double-Folding Potential from
the Brink Wave Function



Woods-Saxon-Gaussian Potential

Within the framework of the binary cluster model,
the WSG potential + Coulomb potential + centrifugal potential
could give a reliable description of the effective potential between
the α cluster and the core nucleus,

VN(r) = − V0

1 + exp[(r − R)/a]
{1 + α exp[−β(r − R)2]}, (1)

VC (r) =

{
ZcZαe2

r
, r ≥ R,

ZcZαe2

2R

[
3−

(
r
R

)2
]
, r < R,

(2)

VL(r) =
~2

2µr 2

(
L +

1

2

)2

. (3)

The free parameters in the WSG potential are determined by fitting
the energy spectrum of parent nucleus = α+doubly magic core,

V0 = 203.3 MeV, a = 0.73 fm, α = −0.478, β = 0.054 fm−2.

RD(20Ne) = 3.25 fm, RD(44Ti) = 4.61 fm, RD(212Po) = 6.73 fm. (4)



Wildermuth Condition

used to implement partially the Pauli blocking between the α
cluster and the core nucleus, imposing selection rules on the
number n of the nodes in the wave function through the global
quantum number G = 2n + L, with

G (20Ne) = 8, G (44Ti) = 12, G (212Po) = 18. (5)



20Ne:



Standard Double-Folding Potential

Traditionally, the double-folding potential is given by

U(r) = λ

∫
drAdraρc(rA)ρα(ra)VNN(r + rA − ra), (6)

with ρc(rA) and ρα(ra) being the density profiles of the core
nucleus and the α cluster, VNN(r) being the M3Y effective
potential, and λ ∼ 0.5 being the renormalization factor.

The density profile of the α cluster is often taken to be of the
Gaussian shape

ρα(ra) = 0.4299 exp(−0.7024r2
a ), (7)

with parameters determined by the electron-scattering data.

The density profiles ρα(ra) and ρc(rA) are frozen as the α cluster
approaches the core nucleus from the infinity.



212Po

WSG Potential
M3Y Potential
Renormalized M3Y Potential
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New Double-Folding Potential

Recent studies on quartetting wave function approach suggest
that, as the α cluster approaches the core nucleus from the infinity,
its density profile encounters deformations (or dissolutions) due to
the Pauli blocking.

G. Röpke et al. (2014).
C. Xu et al. (2016, 2017).
D. Deng, Z. Ren (2017).
D. Deng, Z. Ren, N. Wang (2019).

Basic Picture

At the infinity, the α cluster is identified with the α particle in
the vacuum.

As the α cluster approaches the core nucleus, it starts to
sense the Pauli-blocking effect of the core nucleus and the
nucleons inside the α cluster are redistributed.

As the α cluster arrives at the center of the core nucleus, the
α-cluster state is “dissolved” (almost) completely and the
nucleons occupy the valence orbits of the core nucleus.



The “dissolution” of the α cluster inside infinite nuclear matter
and heavy nuclei has been studied microscopically, which shows the
importance of the Pauli blocking.

G. Röpke et al. (2014).

Alternative: use the Brink wave function to simulate dynamics of
the α cluster approaching the finite core nucleus from the infinity.

ΨS({rA, σAz , τAz ; ra, σaz , τaz}) = AAa{ΦA({rA, σAz , τAz})Φa({ra, σaz , τaz},S)},

ΦA({rA, σAz , τAz}) = det{ϕβn1 l1m1σ1τ1
· · ·ϕβnAT lAT

mAT
σAT

τAT
}/
√

AT !,

Φa({ra, σaz , τaz},S) = det{ϕαSσAT +1τAT +1
· · ·ϕαSσAT +AατAT +Aα

}/
√
Aα!,

ϕβnA lAmAσAτA
(rA, σAz , τAz) = φβnA lAmA

(rA)χσA(σAz)ξτA(τAz),

ϕαSσaτa(ra, σaz , τaz) = φS(ra)χσa(σaz)ξτa(τaz),

φS(ra) = (α/π)3/4 exp
[
−α(ra − S)2/2

]
. (8)

S z

rA
ra



Evolving density profile of the α cluster:

ΨS({rA, σAz , τAz ; ra, σaz , τaz}) = AAa{ΦA({rA, σAz , τAz})Φa({ra, σaz , τaz},S)},

=⇒ΨS({rA, σAz , τAz ; ra, σaz , τaz}) = AAa{ΦA({rA, σAz , τAz})Φ̃a({ra, σaz , τaz},S)},

Φ̃a({ra, σaz , τaz},S) = det{ψαSσAT +1τAT +1
· · ·ψαSσAT +AατAT +Aα

}/
√
Aα!,

ψαSσaτa(ra, σaz , τaz) = N (S, σa, τa)
[
ϕαSσaτa(ra, σaz , τaz)

−
AT∑
A=1

〈ϕβnA lAmAσAτA
|ϕαSσaτa〉ϕ

β
nA lAmAσAτA

(ra, σaz , τaz)
]
. (9)

Take 20Ne = α + 16O as an example:
The width parameters α and β for the α cluster and the target nucleus are

determined by fitting the experimental data on the root-mean-square (RMS)

charge radii.



Preliminary Results

Evolving density profile of the α cluster:



New Double-Folding Potential for the α-16O System

W (S) =

∫
drAdraρA(rA)ρa(ra, S)VNN(ra − rA), (10)

M3Y :VNN(r) = 7999
exp(−4r)

4r
− 2134

exp(−2.5r)

2.5r
− 262 δ(r) +

e2

r
. (11)
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Structural Properties of 20Ne

The new double-folding potential gives improved results on the
structural properties of 20Ne compared with the standard
double-folding potential.



α-α Elastic Scattering from
Non-Localized Cluster Model



Brink-THSR Wave Function + Calculable R-Matrix Theory

The Brink-THSR wave function is one of mathematical
realizations of the non-localized clustering and hybrids the Brink
and the THSR wave function

ΨBrink-THSR(β,T) = N

∫
d3R exp

(
− R2

2β2

)
ΦB(R + T). (12)

O

-R/2

-T/2

+R/2

+T/2

Two containers are localized at the endpoints separated by the
generator coordinate T, while the α cluster moves non-locally in
the container.



The Brink-THSR wave function in the intrinsic frame is given by

Ψ(β,T) = N

∫
d3R exp

(
− R2

2β2

)
ΦB(R + T),

ΦB(R + T) = det{ϕ0s(r1 − R/2− T/2)χσ1τ1 · · ·ϕ0s(r4 − R/2− T/2)χσ4τ4

× ϕ0s(r5 + R/2 + T/2)χσ5τ5 · · ·ϕ0s(r8 + R/2 + T/2)χσ8τ8}/
√

2× 8!,

ϕ0s(r ± R/2± T/2) = (πb2)−3/4 exp

[
− (r ± R/2± T/2)2

2b2

]
, (13)

which could be further simplified as

Ψ(β,T) = ΨCM(XCM)× Ψ̂(β,T),

ΨCM(XCM) =

(
8

πb2

)3/4

exp

(
−4X2

CM

b2

)
,

Ψ̂(β,T) =
1√
140

A12

[
Γ(ρ, β,T)φ̂(α1)φ̂(α2)

]
Γ(ρ, β,T) =

(
2

π

)3/4
b3/2

(b2 + 2β2)3/2
exp

[
− (ρ− T)2

b2 + 2β2

]
. (14)



To describe physical states with the definite angular momentum
and parity, we consider further the partial-wave expansion of the
Brink-THSR wave function

Ψ(β,T) = ΨCM(XCM)× 4π
∑
LM

Ψ̂L(β,T )YLM(Ωρ)Y ∗LM(ΩT ), (15)

Ψ̂L(β,T ) =
1√
140

A12ΓL(ρ, β,T )φ̂(α1)φ̂(α2), (16)

ΓL(ρ, β,T ) =

(
2

π

)3/4
b3/2

(b2 + 2β2)3/2
exp

(
− ρ2 + T 2

b2 + 2β2

)
iL

(
2ρT

b2 + 2β2

)
. (17)

Here, iL(x) =
√

π
2x IL+1/2(x), with IL+1/2(x) being the modified

Bessel function of the first kind.



Calculable R-Matrix Theory

The wave function of the scattering state has asymptotic
behavior different from the bound state, which has to be handled
carefully.

In the calculable R-matrix theory, the configuration space is
divided into the interior region and the exterior region.

O a ρ

VNucl+VCoul VCoul

ΨL
int(ρ) ΨL

ext(ρ)∼[HL
(-)
(ρ)-SLHL

(+)
(ρ)]/ρ

interior region exterior region

ΨL
int(a)=ΨL

exp(a)

dΨL
int(a)/da=dΨL

exp(a)/da

P. Descouvemont and D. Baye, Rept. Prog. Phys. 73, 036301 (2010).



Bloch-Schrödinger Equation

An elegant way to realize the calculable R-matrix theory is through
the Bloch-Schrödinger equation

(HL + L − E )Ψint
L = LΨext

L , (18)

with L = ~2

2µaδ(ρ− a) d
dρρ being the Bloch operator.

The Hamiltonian HL is not Hermitian over the interval ρ ∈ [0, a],∫ a

0

dρψHLφ−
∫ a

0

dρ φHLψ =
~2

2µ
[ψ′(a)φ(a)− ψ(a)φ′(a)], (19)

which is non-vanishing!

This problem is solved with the help of the Bloch operator∫ a

0

dρψ(HL + L)φ =

∫ a

0

dρ φ(HL + L)ψ. (20)



In the interior region, the wave function Ψ̂int
L (E ) at the reaction

energy E (in the CM frame) is given by

Ψ̂int
L (E ) =

∫
dTfL(T )Ψ̂L(β,T ) =

∑
n

f̃L(Tn)Ψ̂L(β,Tn). (21)

In the exterior region, the short-range nuclear interaction and the
anti-symmetrization between the two α clusters could be safely
neglected. The radial component of the exterior wave function
takes the form of

Ψ̂ext
L (E ) = g ext

L (ρ)φ̂(α1)φ̂(α2), (22)

g ext
L (ρ) =

1

ρ

[
H(−)

L (η, kρ)− SL(E )H(+)
L (η, kρ)

]
, (23)

where H(∓)
L (η, kρ) are the ingoing/outgoing Coulomb-Hankel

functions.



Substituting Eq. (21) into the Bloch-Schrödinger equation, we have∑
n′

Cnn′ f̃L(Tn′) = 〈Ψ̂l(β,Tn)|L|Ψ̂ext
L (E )〉 , (24)

Cnn′ =
(

Ψ̂L(β,Tn)|HL + L − E |Ψ̂L(β,Tn′)
)
. (25)

The round brackets “( )” in Eq. (25) refer to the interior matrix
element, which is evaluated within the interior region only.

With the matrix elements {Cnn′}, the R matrix and S matrix are
given by

RL =
~2a

2µ

∑
nn′

ΓL(a, β,Tn)(C )−1
nn′ΓL(a, β,Tn′), (26)

SL =
H(−)

L (η, ka)− kaH(−)′

L (η, ka)RL

H(+)
L (η, ka)− kaH(+)′

L (η, ka)RL

, (27)

where H(∓)′

L (η, ka) is the derivative of H(∓)
L (η, ka) with respect to

ka. With the S matrix given in Eq. (27), the interior wave function
Ψint

L could be obtained by solving the linear equations Eq. (24).



Numerical Results

Energy Surface

The energy surfaces of the
α+α system given by a single

Brink-THSR wave function

EL(β,T ) =
〈Ψ̂L(β,T )|HL|Ψ̂L(β,T )〉
〈Ψ̂L(β,T )|Ψ̂L(β,T )〉

.



Phase Shifts
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For β = 0, 0.5, 1 fm, the non-localized cluster model gives the
theoretical results consistent with the experimental data.



Momentum-Space Gaussian
Expansion Method and Chiral

Potentials



Momentum-Space Gaussian Expansion Method

Gaussian expansion method (GEM) is a theoretical approach to
quantum few-body problem developed by Kyushu group
(Kamimura, Hiyama, Kino, etc). It solves the few-body
Schrödinger equation in the configuration space and has been
carried out for two-body, three-body, four-body, and five-body
systems.

E. Hiyama, Y. Kino, M. Kamimura (2003).
E. Hiyama (2012).
E. Hiyama, M. Kamimura (2018).

Motivation: There are interactions that are given naturally in the
momentum space and become non-local in the configuration
space, e.g., the chiral potential.

Goal: Extend the GEM from the configuration space to the
momentum space. =⇒ Momentum-Space Gaussian Expansion
Method (MSGEM).



Jacobi Coordinate in the Momentum Space

p =
m2

m1 + m2
p1 −

m1

m1 + m2
p2,

P = p1 + p2.

Trial Wave Function:

〈p|LM〉 =

Nmax∑
N=1

cN φ
N
L (νN ; p)YLM(np),

φN
L (νN ; p) =

√√√√
(2π)3

2
5
2

+Lν
3
2

+L

N

Γ(L + 3
2
)
pL exp(−νNp2).

Geometric progression:
νN = 1/s2

N , sN = s1a
N−1,

with N = 1, · · · ,Nmax .

Generalized Eigenvalue Problem:
Nmax∑
N=1

[(TN′N + VN′N)− ENN′N ] cN = 0,

TN′N ≡ 〈νN′ ; LM|T2|νN ; LM〉 ,
VN′N ≡ 〈νN′ ; LM|V |νN ; LM〉 ,
NN′N ≡ 〈νN′ ; LM|νN ; LM〉 .

N2 N1

N2

N1

p

p'

θ

z

x



Chiral Potentials

Chiral potentials are based on the chiral effective field theory,
and relate the dynamics of nucleons and pions to that of quarks
and gluons through the chiral symmetry breaking.

Main Features:

UV cutoff Λ ∼ 500 MeV, IR scale Q ∼ mπ;

power-counting scheme for systematical treatments of chiral
and momentum expansions; theoretical uncertainty estimation;

unified derivation of two-body, three-body, and many-body
nuclear forces;

accurate descriptions of the nucleon-nucleon scattering data
with χ2/datum ∼ 1 at the N3LO.

generally non-local in the configuration space, formulated
naturally in the momentum space;

· · · .



The chiral nucleon-nucleon potential is given by
V (p′, p) = [V1π(p′, p) + V2π(p′, p) + Vct(p′, p) + · · · ]

× f (p′, p; n)×
(
mN/

√
EpE ′p

)nMR

.

with f (p′, p; n) = exp[−(p′/Λ)2n − (p/Λ)2n] being the regulator
function, Λ being the cutoff parameter and n being the
non-perturbative regularization index.



Leading Order:

V np
LO(p′,p) = V np

1π (p′,p) + V
(0)
ct (p′,p) + V np

EM(p′,p),

V np
1π (p′,p) = −V1π(p′,p,mπ0 ) + 2(−1)I+1V1π(p′,p,mπ±),

V1π(p′,p,m) = − g2
A

4F 2
π

σ1 · q σ2 · q
q2 + m2

,

V
(0)
ct (p′,p) = CS + CT σ1 · σ2,

V np
EM(p′,p) = V γ

T (q)

[
σ1 · q σ2 · q −

1

3
(σ1 · σ2)q2

]
− V γ

LS(q)

[
− i

2
(σ1 + σ2) · (q × k)

]
− V γ

LA(q)

[
− i

2
(σ1 − σ2) · (q × k)

]
,

V γ
T (q) =

4πe2

q2

κnµp

4mnmp
, V γ

LS(q) = V γ
LA(q) =

4πe2

q2

κn
mnmN

.



Next-to-Leading Order:

VNLO(p′,p) = VLO(p′,p) + V
(2)
2π (p′,p) + V

(2)
ct (p′,p),

V
(2)
2π (p′,p) = W

(2)
C (q) τ1 · τ2 + V

(2)
S (q)σ1 · σ2 + V

(2)
T (q)σ1 · q σ2 · q,

W
(2)
C (q) =

L(q, Λ̃)

384π2F 4
π

[
4m2

π(1 + 4g2
A − 5g4

A) + q2(1 + 10g2
A − 23g4

A)

− 48g4
Am

4
π

ω2

]
,

V
(2)
S (q) =

3g4
A

64π2F 4
π

q2L(q, Λ̃),

V
(2)
T (q) = − 3g4

A

64π2F 4
π

L(q, Λ̃),

V
(2)
ct (p′,p) = C1q

2 + C2k
2 +

(
C3q

2 + C4k
2
)
σ1 · σ2

+ C5

[
− i

2
(σ1 + σ2) · (q × k)

]
+ C6 σ1 · q σ2 · q + C7 σ1 · k σ2 · k .



Next-to-Next-to-Leading Order:

VN2LO(p′,p) = VLO(p′,p) + VNLO(p′,p) + V
(3)
2π (p′,p).

V
(3)
2π (p′,p) = V

(3)
C (q) + W

(3)
S (q)σ1 · σ2 τ1 · τ2

+ W
(3)
T (q)σ1 · q σ2 · q τ1 · τ2.

V
(3)
C (q) =

3g2
A

16πF 4
π

[
2m2

π(c3 − 2c1) + c3q
2
]

(2m2
π + q2)A(q, Λ̃),

W
(3)
S (q) =

g2
A

32πF 4
π

c4 ω
2q2A(q, Λ̃),

W
(3)
T (q) = − g2

A

32πF 4
π

c4 ω
2A(q, Λ̃).



Preliminary Results

MSGEM for Deuteron:[
p2

mN
+ V − E

]
|JMIIz〉 = 0,

〈p, {s1z , s2z}, {ι1z , ι2z}|JMIIz〉 =
Nmax∑
N=1

cNLφ
N
L (νN ; p)

× [YL(np)χS(s1z , s2z)]JMξIIz (ι1z , ι2z),

Generalized Eigenvalue Problem:
Nmax∑
N=1

∑
L′

[
(T JSIIz

N′L′,NL + V JSIIz
N′L′,NL)− ENJSIIz

N′L′,NL

]
cNL = 0,

T JSIIz
N′L′,NL = 〈νN′ ; JMIIz , L

′S |T2|νN ; JMIIz , LS〉

= δL′L m
−1
N 2

1
2 +L(3 + 2L)(νN′νN)

1
4 (3+2L)(νN′ + νN)−

5
2−L,

V JSIIz
N′L′,NL = 〈νN′ ; JMIIz , L

′S |V |νN ; JMIIz , LS〉 ,

NJSIIz
N′L′,NL = 〈νN′ ; JMIIz , L

′S |νN ; JMIIz , LS〉

= δL′L 2
3
2 +L(νN′νN)

1
4 (3+2L)(νN′ + νN)−

3
2−L.



Take the Göteborg-Tennessee realization of the chiral potential up

to the N2LO,
the MR switch-off/on parameter nMR = 1,

the SFR cut-off Λ̃ = 700 MeV,

the non-perturbative regularization index n = 3,

the non-perturbative regularization cut-off Λ = 500 MeV.
B. D. Carlsson, A. Ekström, C. Forssen, D. Fahlin Strömberg, G. R. Jansen,

O. Lilja, M. Lindby, B. A. Mattsson, K. A. Wendt (2016).



Conclusions



1 New Double-Folding Potential from the Brink Wave Function

robustness with different M3Y effective potentials,
improve harmonic-oscillator shell-model description of the core
nucleus,
extend to heavier nucleus.

2 α-α Elastic Scattering from Non-Localized Cluster Model

container evolution in nuclear reaction.

3 Momentum-Space Gaussian Expansion Method and Chiral
Potentials

Deuteron properties at unphysical pion mass,
Triton, 3He, 4He.



Thanks!


