Alpha condensates and dynamics of cluster formation

Yasuro Funaki

(Kanto Gakuin U.)

ECT* Workshop on Light clusters in nuclei and nuclear matter @Trento, Italy. September 2–6, 2019. Excited states above the Hoyle state

Alpha condensate and clusters in ¹⁶O

Excited states above the Hoyle state

Alpha condensate and clusters in ¹⁶O

 3α extended THSR wave function ($\beta_1 = \beta_2$: original THSR)

$$\Phi_{\alpha}(\boldsymbol{\beta}, b) = \exp\left(-2\sum_{k}^{x, y, z} \frac{r_{k}^{2}}{b^{2} + 2\beta_{k}^{2}}\right) \phi_{\alpha}(b)$$

 $\Phi_{{}^{12}C}^{e\text{THSR}}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,b) = \Psi_G^{-1}\mathcal{A}\{\Phi_\alpha(\boldsymbol{\beta}_1,b)\Phi_\alpha(\boldsymbol{\beta}_1,b)\Phi_\alpha(\boldsymbol{\beta}_2,b)\}$

 Ψ_G : Total center-of-mass w.f. to be eliminated

Internal w.f. of α particle

 3α extended THSR wave function ($\beta_1 = \beta_2$: original THSR)

$$\Phi_{\alpha}(\boldsymbol{\beta}, b) = \exp\left(-2\sum_{k}^{x, y, z} \frac{r_k^2}{b^2 + 2\beta_k^2}\right) \phi_{\alpha}(b)$$

 $\Phi_{{}^{12}C}^{eTHSR}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,b) = \Psi_G^{-1}\mathcal{A}\{\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_2,b)\}$

 Ψ_G : Total center-of-mass w.f. to be eliminated

Hill-Wheeler eq. or GCM (generator coordinate method)

$$\sum_{\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2} \left\langle \hat{P}_{MK}^J \Phi_{^{12}C}^{\text{eTHSR}}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,b) \middle| \hat{H} - E \middle| \hat{P}_{MK}^J \Phi_{^{12}C}^{\text{eTHSR}}(\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2,b) \right\rangle f(\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2) = 0$$

 \hat{P}_{MK}^{J} : Angular momentum projection operator

Hamiltonian (NN force: Volkov No.2 force)

$$\widehat{H} = -\frac{\hbar^2}{2m} \sum_{i}^{12} \nabla_i^2 - T_G + \sum_{i < j}^{12} (V_{ij}^{(N)} + V_{ij}^{(C)})$$

 $\boldsymbol{\beta}_{i} = \left(\beta_{ix} = \beta_{iy}, \beta_{iz}\right)$

With (axially symmetric) deformation

Spurious continuum components are effectively eliminated by r² constraint method. See Y. F. et al., PTP **115**, 115 (2006).

Results (of ¹²C)

Y. F. et al., PPNP 82, 78-132 (2015).

Results (of ¹²C)

Y. F. et al., PPNP 82, 78-132 (2015).

Results (of ¹²C)

-6

Y. F. et al., PPNP 82, 78-132 (2015).

Rich alpha cluster dynamics built on the Hoyle state, as if the Hoyle state were the g.s. of cluster excitations

All excited states above the threshold are governed by cluster dynamics $^{\rm -8.0}$ $\mbox{\tiny -8.0}$

0₃⁺ state: higher nodal excitation of the Hoyle state

 0_1^+ state: 2 nodes

 0_2^+ state: 3 nodal oscillation (nodes disappear due to the dissolution of ⁸Be core) 0_3^+ state: 4 nodes (higher nodal structure) Y. F., PRC **92**, 021302(R) (2015).

Alpha-alpha correlation in the 0_3^+ state

 $M(E0; 0_3^+ \rightarrow 0_2^+) = 34.5 \ [efm^2]$

Very large monopole transition strength between the 0_2^+ and 0_3^+ states

$$O_B = \sum_{i=1}^{12} (\mathbf{r}_i - \mathbf{r}_{cm})^2 = \sum_{k=1}^{3} \sum_{i \in \alpha_k} (\mathbf{r}_i - \mathbf{X}_k)^2 + 2\xi_1^2 + \frac{8}{3}\xi_2^2$$

Natural to consider a large portion from alpha-alpha relative motion (ξ_1), too.

B. Zhou et al., PRC **94**, 044319 (2016).

Squared overlap with single THSR config. for the O_4^+ state of ${}^{12}C$

For the 0_4^+ state Clear linear-chain structure

Well reproduced by REM.

R. Imai et al., arXiv: 1802.03523.

Well reproduced by REM.

R. Imai et al., arXiv: 1802.03523.

Excited states above the Hoyle state

Alpha condensate and clusters in ¹⁶O

0₄⁺ state: T. Wakasa, Y. F. et al., PLB 653, 173 (2007). Y. F. et al., PRL101, 081502 (2008).

Decay widths are well reproduced.

 $\Gamma \left(0_{4}^{+}
ight)_{
m OCM} \sim 0.8 \; {
m MeV}$ $\Gamma (0_5^+)_{OCM} < 0.2 \text{ MeV}$ $\Gamma (0_{6^{+}})_{OCM} = 0.13 \text{ MeV}$ (calculated based on R-matrix theory) $\Gamma = P \cdot \gamma^2$: (partial) decay width γ^2 : reduced width (alpha+12C components) *P*: penetration factor Γ (0₄⁺ at 13.6 MeV) = 0.6 MeV Γ (0₅⁺ at14.0 MeV) = 0.19 MeV $(0_6^+ \text{ at15.2 MeV}) = 0.17 \text{ MeV}$

Exp.

 $\Gamma \left(0_{4}^{+}
ight)_{
m OCM} \sim 0.8 \; {
m MeV}$ $\Gamma (0_5^+)_{OCM} < 0.2 \text{ MeV}$ $\Gamma (0_{6^{+}})_{OCM} = 0.13 \text{ MeV}$ (calculated based on R-matrix theory) $\Gamma = P \cdot \gamma^2$: (partial) decay width γ^2 : reduced width (alpha+12C components) *P*: penetration factor Γ (0₄⁺ at 13.6 MeV) = 0.6 MeV Γ (0₅⁺ at14.0 MeV) = 0.19 MeV $(0_6^+ \text{ at15.2 MeV}) = 0.17 \text{ MeV}$

Exp.

0

 $\Gamma\left(0_{4}^{+}
ight)_{
m OCM}\sim0.8~
m MeV$ $\Gamma (0_5^+)_{OCM} < 0.2 \text{ MeV}$ $\Gamma (0_{6^{+}})_{OCM} = 0.13 \text{ MeV}$ (calculated based on R-matrix theory) $\Gamma = P \cdot \gamma^2$: (partial) decay width γ^2 : reduced width (alpha+12C components) *P*: penetration factor Γ (0₄⁺ at 13.6 MeV) = 0.6 MeV Γ (0₅⁺ at14.0 MeV) = 0.19 MeV $(0_6^+ \text{ at15.2 MeV}) = 0.17 \text{ MeV}$

 $\gamma_3^2 = 0.218$ MeV $P_3 = 3.7 \times 10^{-6}$ $\Gamma\left(0_{4}^{+}
ight)_{
m OCM}\sim0.8~
m MeV$ 0_{6}^{+} $\Gamma_{3} = P_{3} \cdot \gamma_{3}^{2} = 8 \times 10^{-8} \text{ MeV}$ $\Gamma (0_{5^{+}})_{OCM} < 0.2 \text{ MeV}$ 15 $\alpha + {}^{12}C(0_2^+)$ $\Gamma (0_6^+)_{OCM} = 0.13 \text{ MeV}$ (calculated based on R-matrix theory) $\alpha + {}^{12}C(2_1^+)$ $\Gamma = P \cdot \gamma^2$: (partial) decay width $\gamma_2^2 = 0.0068 \text{ MeV}$ γ^2 : reduced width 10 $P_2 = 4.7$ (alpha+12C components) $\Gamma_2 = P_1 \cdot \gamma_1^2 = 0.032 \text{ MeV}$ *P*: penetration factor $\alpha + {}^{12}C(0_1^+)$ $\gamma_1^2 = 0.0087 \text{ MeV}$ Γ (0₄⁺ at 13.6 MeV) = 0.6 MeV 5 $P_1 = 12$ Γ (0₅⁺ at14.0 MeV) = 0.19 MeV $\Gamma_1 = P_1 \cdot \gamma_1^2 = 0.104 \text{ MeV}$ $(0_6^+ \text{ at15.2 MeV}) = 0.17 \text{ MeV}$ () Exp.

$$\begin{array}{c} \gamma_{3}^{2} = 0.218 \text{ MeV} \\ P_{3} = 3.7 \times 10^{-6} \\ 0_{6}^{+} \Gamma_{3} = P_{3} \cdot \gamma_{3}^{2} = 8 \times 10^{-7} \text{ MeV} \\ \hline \left(0_{4}^{+} \right)_{0 \text{CM}} \sim 0.8 \text{ MeV} \\ \hline \left(0_{5}^{+} \right)_{0 \text{CM}} < 0.2 \text{ MeV} \\ \hline \left(0_{5}^{+} \right)_{0 \text{CM}} < 0.2 \text{ MeV} \\ \hline \left(0_{6}^{+} \right)_{0 \text{CM}} = 0.13 \text{ MeV} = \Gamma_{1} + \Gamma_{2} + \Gamma_{3} \\ \text{(calculated based on R-matrix theory)} \\ \hline \left(2 + \frac{\alpha + 12}{\Gamma_{2}} C(2_{1}^{+}) \right) \\ \gamma_{2}^{2} = 0.0068 \text{ MeV} \\ P_{2} = 4.7 \\ \Gamma_{2} = P_{1} \cdot \gamma_{1}^{2} = 0.032 \text{ MeV} \\ \hline \left(2 + \frac{\alpha + 12}{\Gamma_{2}} C(0_{1}^{+}) \right) \\ \gamma_{1}^{2} = 0.0087 \text{ MeV} \\ P_{1} = 12 \\ \Gamma_{1} = P_{1} \cdot \gamma_{1}^{2} = 0.104 \text{ MeV} \\ \hline \left(0_{5}^{+} \text{ at } 13.6 \text{ MeV} \right) = 0.6 \text{ MeV} \\ \hline \left(0_{6}^{+} \text{ at } 15.2 \text{ MeV} \right) = 0.17 \text{ MeV} \\ \hline \left(0_{6}^{+} \text{ at } 15.2 \text{ MeV} \right) = 0.17 \text{ MeV} \\ \hline \end{array} \right)$$

 4α extended THSR wave function ($\beta_1 = \beta_2$: original THSR)

$$\Phi_{\alpha}(\boldsymbol{\beta}, b) = \exp\left(-2\sum_{k}^{x, y, z} \frac{r_{k}^{2}}{b^{2} + 2\beta_{k}^{2}}\right) \phi_{\alpha}(b)$$

 $\Phi_{{}^{16}0}^{\mathrm{eTHSR}}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,b) = \Psi_{G}^{-1}\mathcal{A}\{\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_2,b)\}$

 Ψ_G : Total center-of-mass w.f. to be eliminated

Internal w.f. of α particle

 4α extended THSR wave function ($\beta_1 = \beta_2$: original THSR)

$$\Phi_{\alpha}(\boldsymbol{\beta}, b) = \exp\left(-2\sum_{k}^{x, y, z} \frac{r_{k}^{2}}{b^{2} + 2\beta_{k}^{2}}\right) \phi_{\alpha}(b)$$

 $\Phi_{{}^{16}0}^{\mathrm{eTHSR}}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,b) = \Psi_{G}^{-1}\mathcal{A}\{\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_2,b)\}$

 Ψ_G : Total center-of-mass w.f. to be eliminated

Hill-Wheeler eq. or GCM (generator coordinate method)

$$\sum_{\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2} \left\langle \hat{P}_{MK}^J \Phi_{16_0}^{\text{eTHSR}}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,b) \middle| \hat{H} - E \middle| \hat{P}_{MK}^J \Phi_{16_0}^{\text{eTHSR}}(\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2,b) \right\rangle f(\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2) = 0$$

 $\hat{P}^{J}_{\!M\!K}$: Angular momentum projection operator

With (axially symmetric)

 $\boldsymbol{\beta}_{i} = \left(\beta_{ix} = \beta_{iy}, \beta_{iz}\right)$

deformation

Hamiltonian (NN force: F1 force)

A. Tohsaki, PRC **49**, 1814 (1994).

$$\widehat{H} = -\frac{\hbar^2}{2m} \sum_{i}^{16} \nabla_i^2 - T_G + \sum_{i \le i}^{16} (V_{ij}^{(N)} + V_{ij}^{(C)}) + \sum_{i \le i \le k}^{16} V_{ijk}^{(N)}$$

Spurious continuum components are effectively eliminated by r² constraint method. See Y. F. et al., PTP **115**, 115 (2006).

S²-factor

Summary and future work

Rich spectra above the Hoyle state

03+: higher nodal, vibration ··· ?

04+: linear chain, triplet state,…?

1-: gas of alphas!?, 1P(0S)² ? as well as 3-, by Bo-san tomorrow

160: cluster states -> describable by `container' evolution 0_V^+ (0_6^+ in OCM) 4 alphas in an identical orbit

A strong peak around 23.5 MeV in 20Ne, which strongly decays into the 06+ state in 16O, by Kawabata group.

Strong candidate of 5-alpha condensate! -> 12C+2alpha OCM, 5-alpha OCM, 5-alpha THSR Now on going

to my Collaborators

Bo Zhou (Hokkaido U.)

Zhongzhou Ren (Tongji U.)

Chang Xu (Nanjing U.)

Lyu Meng Jiao (RCNP)

Zhao Qing (Nanjing U.)

Taiichi Yamada (Kanto Gakuin U.)

Tadahiro Suhara (Matsue)

Hisashi Horiuchi (RCNP)

Akihiro Tohsaki (RCNP)

Peter Schuck (IPN, Orsay)

Gerd Röpke (Rostock U.)

and for your attention.