The role of clustering in structure and reactions of light nuclei

Thomas Neff GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

Workshop on "Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy-ion collisions, and astrophysics " September 2-6, 2019 ECT*, Trento, Italy

Our Aim:

Solve the nuclear many-body problem for exotic nuclei with (realistic) NN interaction

Many-Body Method

Fermonic Molecular Dynamics (FMD)

L,

Realistic Effective Interaction

Unitary Correlation Operator Method (UCOM)

Nucleon-Nucleon Interaction

H H

- repulsive core: nucleons can not get closer than ≈ 0.5 fm → central correlations
- strong dependence on the orientation of the spins due to the **tensor force** (mainly from π -exchange) \rightarrow **tensor correlations**
- the nuclear force will induce strong shortrange correlations in the nuclear wave function

 $\hat{S}_{12} = 3(\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{r}}_{12})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{r}}_{12}) - (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)$

Unitary Correlation Operator Method

Correlation Operator

 $\hat{C} = \hat{C}_{\Omega}\hat{C}_r$

Correlated Hamiltonian

 $\hat{C}^{\dagger}(\hat{T}+\hat{V})\hat{C}=\hat{T}+\hat{V}_{\text{UCOM}}+\ldots$

Central correlator shifts nucleons apart, Tensor correlator aligns nucleons with spin

 realistic two-body spin-orbit force is too weak, use phenomenogical correction for heavier nuclei in the p-shell

Fermionic Molecular Dynamics

Nuclear structure calculations with a Gaussian wave-packet basis

1.00

0.75

0.50

0.25

Fermionic Molecular Dynamics

Fermionic

Intrinsic many-body states

 $|Q\rangle = \hat{\mathcal{A}}\{|q_1\rangle \otimes \cdots \otimes |q_A\rangle\}$

are antisymmetrized A-body states

Molecular

Single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes |\chi_{i}^{\uparrow}, \chi_{i}^{\downarrow}\rangle \otimes |\xi\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width *a_i* is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

FMD basis contains harmonic oscillator shell model and Brink-type cluster configurations as limiting cases

Projection after Variation

Variation and Projection

- minimize the energy of the intrinsic state
- intrinsic state may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, angular (and linear) momentum

Generator coordinates

 use generator coordinates (radii, quadrupole or octupole deformation, strength of spin-orbit force) to create additional basis states

$$\hat{P}^{\pi} = \frac{1}{2}(1 + \pi \hat{\Pi})$$

$$\hat{P}_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J} (\Omega) \hat{R}(\Omega)$$

$$\hat{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\hat{\mathbf{P}} - \mathbf{P}) \cdot \mathbf{X}\}\$$

Variation after Projection

Variation after Projection

- Correlation energies can be quite large for well deformed and/or clustered states
- For light nuclei it is possible to perform real variation after projection
- Can be combined with generator coordinate method

Multiconfiguration Mixing

- Set of N intrinsic states optimized for different spins and parities and for different values of generator coordinates are used as basis states
- Diagonalize in set of projected basis states

Variation

$$\min_{\{q_{\nu}\}} \frac{\langle Q | \hat{H} - \hat{T}_{cm} | Q \rangle}{\langle Q | Q \rangle}$$

Variation after Projection

$$\min_{\{q_{\nu},c^{\alpha}_{K}\}} \frac{\sum_{KK'} c^{\alpha}_{K} {}^{*} \langle Q | (\hat{H} - \hat{T}_{cm}) \hat{P}^{\pi} \hat{P}^{J}_{KK'} | Q \rangle c^{\alpha}_{K'}}{\sum_{KK'} c^{\alpha}_{K} {}^{*} \langle Q | \hat{P}^{\pi} \hat{P}^{J}_{KK'} | Q \rangle c^{\alpha}_{K'}}$$

(Intrinsic) Basis States

$$\left\{ \left| \mathbf{Q}^{(a)} \right\rangle, a = 1, \ldots, N \right\}$$

Generalized Eigenvalue Problem

$$\sum_{K'b} \underbrace{\langle Q^{(\alpha)} | \hat{H} \hat{P}^{\pi} \hat{P}^{J}_{KK'} \hat{P}^{\mathbf{P}=0} | Q^{(b)} \rangle}_{\text{Hamiltonian kernel}} C^{\alpha}_{K'b} = E^{J^{\pi}\alpha} \sum_{K'b} \underbrace{\langle Q^{(\alpha)} | \hat{P}^{\pi} \hat{P}^{J}_{KK'} \hat{P}^{\mathbf{P}=0} | Q^{(b)} \rangle}_{\text{norm kernel}} C^{\alpha}_{K'b}$$

⁸Be: GCM/RGM and Antisymmetrization

• Describe ⁸Be by superposition of ⁴He clusters at distances *R_i*

$$\left|\Psi_{\rm GCM}\right\rangle = \sum_{i} c_{i} \hat{\mathcal{A}}\left\{\left|\Psi_{\alpha}(-\mathbf{R}_{i}/2)\right\rangle \otimes \left|\Psi_{\alpha}(+\mathbf{R}_{i}/2)\right\rangle\right\}$$

 This can be rewritten using intrinsic ⁴He wavefunctions and the relative motion given by a RGM wavefunction

$$\langle \boldsymbol{\rho}, \xi_a, \xi_b, \mathbf{X} | \Psi_{\text{GCM}} \rangle = \int d^3 r \, \Phi_{\text{GCM}}(\mathbf{r}) \, \hat{\mathcal{A}} \left\{ \delta(\boldsymbol{\rho} - \mathbf{r}) \Phi_{\alpha}(\xi_a) \Phi_{\alpha}(\xi_b) \right\} \Psi_{\text{cm}}(\mathbf{X})$$

with

$$\Phi_{\rm GCM}(\mathbf{r}) = \sum_{i} c_{i} \left(\frac{\mu_{A}}{\pi a}\right)^{3/4} \exp\left\{-\mu_{A} \frac{(\mathbf{r} - \mathbf{R}_{i})^{2}}{2a}\right\}$$

compare with THSR wavefunction

$$\Phi_{\text{THSR}}(\mathbf{r}) = \exp\left\{-\frac{r_x^2 + r_y^2}{b^2 + \beta_x^2} - \frac{r_z^2}{b^2 + \beta_z^2}\right\}$$

⁸Be: From RGM to α-α Wavefunction

RGM basis states

$$\langle \boldsymbol{\rho}, \xi_a, \xi_b | \Phi_{\alpha\alpha}(\mathbf{r}) \rangle = \hat{\mathcal{A}} \{ \delta(\boldsymbol{\rho} - \mathbf{r}) \Phi_{\alpha}(\xi_a) \Phi_{\alpha}(\xi_b) \}$$

RGM norm kernel

H

4

 $N(\mathbf{r},\mathbf{r}') = \left\langle \Phi_{\alpha\alpha}(\mathbf{r}) \middle| \Phi_{\alpha\alpha}(\mathbf{r}') \right\rangle$

• Wavefunction for relative motion of two point-like α 's

$$\phi_{\alpha\alpha}(\mathbf{r}) = \int d^3r' N^{-1/2}(\mathbf{r},\mathbf{r}') \Phi_{GCM/THSR}(\mathbf{r}')$$

³He(α,γ)⁷Be and ³H(α,γ)⁷Li Radiative Capture

PRL 106, 042502 (2011)

PHYSICAL REVIEW LETTERS

week ending 28 JANUARY 2011

Microscopic Calculation of the ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha, \gamma){}^{7}\text{Li}$ Capture Cross Sections Using Realistic Interactions

Thomas Neff* GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany (Received 12 November 2010; published 25 January 2011)

FMD Basis States

- FMD wave functions use Gaussian wave packets as single-particle basis states
- Many-body basis states are Slater determinants projected on parity, angular momentum and total linear momentum
- FMD basis contains both harmonic oscillator and Brink-type cluster wave functions as special cases
- a realistic low-momentum interaction is obtained from the Argonne v₁₈ interaction by the Unitary Correlation Operator Method in two-body approximation

- Polarized configurations are obtained by variation after projection for all spins and parities
- Frozen configurations are generated from ⁴He and ³He ground states
- at the channel radius many-body wave functions are matched to Whittaker and Coulomb solutions for point-like clusters with the *R*-matrix method

Bound and Scattering States

- centroid energy of bound states well reproduced, splitting between 3/2- and 1/2states too small
- charge radii and quadrupole moment test the tails of bound state wave functions
- s- and *d*-wave capture dominate at small energies
- polarized configurations are important for describing the phase shifts

Capture Cross Section

good agreement with new high quality
 ³He(α,γ)⁷Be data regarding both energy
 dependence and normalization

 calculations reproduce energy dependence but not normalization of ³H(α,γ)⁷Li data by Brune *et al.*

Cluster States in ¹²C

FMD and Cluster Model Calculations

¹²C: Microscopic α-Cluster Model

- ¹²C is described as a system of three α -particles
- α -particles are given by HO (0s)⁴ wave functions
- wave function is fully antisymmetrized
- effective Volkov nucleon-nucleon interaction adjusted to reproduce α-α and ¹²C ground state properties
- Internal region: α's on triangular grid
- External region: ⁸Be(0+,2+,4+)-α configurations

$$|\Psi_{IMK\pi}^{3\alpha}(\mathbf{R}_1,\mathbf{R}_2,\mathbf{R}_3)\rangle = \hat{P}^{\pi}\hat{P}_{MK}^{j}\hat{\mathcal{A}}\left\{\left|\Psi_{\alpha}(\mathbf{R}_1)\right\rangle\otimes\left|\Psi_{\alpha}(\mathbf{R}_2)\right\rangle\otimes\left|\Psi_{\alpha}(\mathbf{R}_3)\right\rangle\right\}$$

Double Projection

$$\left| \Psi_{IK}^{^{8}\text{Be}} \right\rangle = \sum_{i} \hat{P}_{K0}^{I} \hat{\mathcal{A}} \left\{ \left| \Psi_{\alpha} \left(-\frac{r_{i}}{2} \mathbf{e}_{z} \right\rangle \otimes \left| \Psi_{\alpha} \left(+\frac{r_{i}}{2} \mathbf{e}_{z} \right) \right\} c_{i}^{I} \right. \right.$$

$$\left. \Psi_{IK;JM\pi}^{^{8}\text{Be},\alpha} (R_{j}) \right\rangle = \hat{P}^{\pi} \hat{P}_{MK}^{J} \hat{\mathcal{A}} \left\{ \left| \Psi_{IK}^{^{8}\text{Be}} \left(-\frac{R_{j}}{3} \mathbf{e}_{z} \right) \right\rangle \otimes \left| \Psi_{\alpha} \left(+\frac{2R_{j}}{3} \mathbf{e}_{z} \right) \right\rangle \right\}$$

External Region

¹²C: FMD + ⁸Be-⁴He Cluster Configurations

H

¹²C: Matching to Coulomb Asymptotics

- asymptotically only Coulomb interaction between ⁸Be and α
- calculate spectroscopic amplitudes with RGM wavefunction
- use microscopic *R*-matrix method to match logarithmic derivative of spectroscopic amplitudes to Coulomb solutions

Bound states (Whittaker)

$$\psi_c(r) = A_c \frac{1}{r} W_{-\eta_c, L_c+1/2}(2\kappa_c r), \qquad \kappa_c = \sqrt{-2\mu(E-E_c)}$$

Resonances (purely outgoing Coulomb - complex energy)

$$\psi_c(r) = A_c \frac{1}{r} O_{L_c}(\eta_c, k_c r), \qquad k_c = \sqrt{2\mu(E - E_c)}$$

Scattering States (incoming + outgoing Coulomb)

$$\psi_c(r) = \frac{1}{r} \left\{ \delta_{L_c, L_0} I_{L_c}(\eta_c, k_c r) - S_{c, c_0} O_{L_c}(\eta_c, k_c r) \right\}, \qquad k_c = \sqrt{2\mu(E - E_c)}$$

¹²C: Spectrum including Continuum

 FMD provides a consistent description of *p*-shell states, negative parity states and cluster states

¹²C: ⁸Be-α Spectroscopic Amplitudes

- Ground state overlap with $^{8}Be(0^{+})+\alpha$ and $^{8}Be(2^{+})+\alpha$ configurations of similar magnitude
- Hoyle state overlap dominated by $^{8}Be(0^{+})+\alpha$ configurations, large spatial extension

Electron scattering on 12C

FMD and Cluster Model Calculations

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 98 (2007) 032501M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 105 (2010) 022501

¹²C: Elastic Cross Section

• Using DWBA to calculate the theoretical cross sections

• FMD doing a little bit better in reproducing the cross section

¹²C: Inelastic Cross Section

Inelastic cross section rather well described, confirming the dilute nature of the Hoyle state

L

¹²C: Inelastic Formfactor revisited

Motivation

- Astrophysics requires a precision value for the monopole matrix element
- Literature values differed by up to 10%

Our Approach

- Add new electron scattering data from Darmstadt at low momentum transfer
- Use a model independent approach to extract form factor/transition density
- Self-consistent calculation in DWBA
- Compare extraction from lowmomentum data only with global form factor fit

$$F_{\rm tr}(q) = \frac{4\pi}{Z} \int_0^\infty \rho_{\rm tr}(r) \, j_0(qr) \, r^2 \, dr$$

$$\left|F_{tr}^{exp}(q_i)\right|^2 = \frac{4\pi}{Z^2}B(C0, q_i, E_{0i}) \frac{B^{PWBA}(q_i)}{B^{DWBA}(q_i, E_{0i})}$$

¹²C: Reanalyzed Monopole Form Factor

 Model independent ansatz: best fit with 6 parameters (b, c₁ ... c₅)

$$F_{\rm tr}(q) = \frac{1}{Z} e^{-\frac{1}{2}(bq)^2} \sum_{n=1}^{n_{\rm max}} c_n \ (bq)^{2n}$$

¹²C: Transition Densities

 Models agree reasonably well with extracted transition density, deviations at large distances

L

$$\rho_{\rm tr}(r) = \frac{1}{b^3} \, {\rm e}^{-\frac{1}{2} \left(\frac{r}{b}\right)^2} \, \sum_{n=0}^{n_{\rm max}} d_n \left(\frac{r}{b}\right)^{2n}$$

Monopole Matrix Element

 Due to experimental error bars the fit to low-momentum data is less precise than the extraction from the global fit

H

I,

Cluster States in ¹¹C

FMD + Cluster Configurations

L

¹¹C: Outline of Calculation

I) FMD Calculation using VAP basis states

- Perform VAP calculations for the first couple of eigenstates for each spin and parity
- Can we observe the appearance of cluster structures?
- This provides only a relatively small set of basis states especially for loosely bound and spatially extended states

II) Cluster model calculations with ⁷Be-⁴He and ⁸Be-³He configs

- ⁷Be(3/2-,1/2-) clusters described using a superposition of ⁷Be(3/2-) VAP state and an extended ⁴He-³He config
- ⁸Be(0+,2+) clusters described using a superposition of ⁸Be(0+) VAP state and an extended ⁴He-⁴He config
- Double-projection of ⁷Be-⁴He and ⁸Be-³He configs at distances of D=1.5, ..., 9.0 fm

III) Full calculation with combined FMD and Cluster basis states

- Basis is overcomplete
- Cluster configs become orthogonal at large distances where the overlap between the clusters vanishes

¹¹C: FMD Variation after Projection

p-shell states with some hint of clustering

¹¹C: FMD Variation after Projection

states with apparent cluster structure

¹¹C: Diagonalization with FMD VAP States

clustered states are well above threshold

¹¹C: FMD vs (FMD)-Cluster Model

¹¹C: FMD plus (FMD)-Cluster Model

¹¹C: FMD vs Full Calculation

consistent picture of p-shell and clustered states

Summary and Conclusions

Unitary Correlation Operator Method

Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

- Gaussian wave-packet basis contains HO shell model and Brink-type cluster states
- R-matrix method for description of continuum states

³He(α,γ)⁷Be Capture Reaction

- Consistent description of bound-state properties, phase shifts and capture cross section
- Good agreement with ${}^{3}He(\alpha,\gamma){}^{7}Be$ data, but normalization off for ${}^{3}H(\alpha,\gamma){}^{7}Li$

Cluster states in ¹²C and ¹¹C

- Compare α -cluster model and FMD
- Consistent picture for ground state band, negative parity states and cluster states in the continuum
- The importance of ⁸Be+⁴He cluster structures in ¹²C and ⁷Be+⁴He and ⁸Be+³He cluster structures in ¹¹C
- Careful evaluation of electron scattering data to extract the monopole matrix element