Cluster states probed by alpha (and proton) inelastic scattering

Y. Kanada-En'yo (Kyoto Univ.) Collaborators:

Y. Shikata, Y. Chiba, Y. Yoshida,

T. Suhara, K. Ogata,

1.Introduction

low-energy (LE) monopole/dipole excitations & cluster states

LE-ISM, LE-ISD for cluster states

LE strengths (<15 MeV): observed by hadron probes alpha/proton inelastic scattering What is the origin? maybe, various LE modes

Yamada et al. PRC85, 034315 (2012) Chiba et al. PRC93 (2016) no.3, 034319 INTER-Clu ISM, ISD: compressional operators excite inter-cluster motion

$$M(ISD;\mu) = \sum_{i} r_{i}^{3} Y_{1\mu}(\hat{\mathbf{r}}_{i})$$

 $M(IS0) = \sum [r_i^2] Y_{00}(\hat{\mathbf{r}}_i) \sqrt{4\pi}$

Various modes contribute to LE strengths ex) case of Dipole

Many modes may arise from various Dof: 1p1h ex, cluster, nuclear currents etc.

Aims

To clarify natures and origins of LE modes:
 How do they decouple from HE GRs.
 Why do they come down to low energy
 Structure calculation with AMD+cl-GCM cluster, deformation, 1p1h, vib/rot, GR

How to experimentally probe them

Reaction analysis of alpha inelastic scattering

alpha (and/or proton) inelastic scattering can be good probe

 Isoscaler(and isovector) monopole, dipole excitations

search for new cluster states

Determination of B(IS0), B(ISD)?
 But, ... a problem in reaction calculation:
 It largely overestimate cross sections of
 only 0+ excitations by a factor of 3-5.

A puzzle: overestimation of monopole cross sections by factors of 3-5

traditional reaction model no problem in 2+, 3-, but overshoot only 0+ cross section by a factor of 3-5

Adachi et al. PRC97,014601(2018)

Success of MCC calc. with g-matrix folding model microscopic coupled-channel (MCC) successful reproduction of ¹²C(0⁺₂) cross sections with 3α-RGM density Minomo et al. C 93, 051601(R) (2016)

MCC: strategy

2.Formulatoion of structure model: sAMD+GCM

Shifted basis AMD

AMD method for structure study

 $\begin{array}{l} \text{Shifted basis AMD (sAMD)} \\ \Phi = \det \left\{ \varphi_{1}, \varphi_{2}, \cdots, \varphi_{A} \right\} & \text{Ground st. wave functions} \\ & & & & \\ & &$

Small shift for 8 orientations (8A basis)

8A basis is enough for IS0,E1,IS1 in 12C and Be

sAMD+GCM

SAMD+GCM: all bases are superposed. J π -projection, cm motion are treated microscopically

Today's topics

- 1. cluster states in ¹²C
- 2. alpha scattering off ¹²C,¹⁶O
- 3. cluster states in ¹⁴C

Topic 1 Cluster states in ¹²C with sAMD+3αGCM

multi-cluster: gas, triangle, linear chain

Results of ¹²C: sAMD+3αGCM for ISM and ISD excitations

IS Monopole, Dipole strengths in 12C: sAMD+GCM(3α)

Low-energy strengths for cluster states separately from GRs. Why the LE strengths are fragmented into a few cluster states?

B(ISM) of ¹²C

Vortical nature in 0_1^+ to 1_2^-

2α-cluster rotation induces vortical (toroidal) current.

1⁻2

Compressive and toroidal dipole strengths

CD:compressive TD:toroidal $(\nabla \cdot \mathbf{j}) r^3 Y_{1\mu} \quad (\nabla \times \mathbf{j}) \cdot r^3 \mathbf{Y}_{11\mu}$ SAMD: small amp.

sAMD +3α(R<3 fm)

sAMD +3α(full)

Topic 2 Alpha inelastic scattering with MCC

microscopic reaction calculations with g-matrix folding model

successful reproduction of ¹²C(0⁺₂) cross sections with RGM density by Minomo et al. Minomo et al. C 93, 051601(R) (2016)

No overshooting problem of 0+ cross sections

Reliable reaction approach: There is no phenomenological adjustable parameters in the reaction part

Minomo et al. PRC93 (2016) K-E, Ogata PRC99 (2019) K-E. Ogata ORC99 (2019)

Structure part micro. structure model (AMD, Cluster-GCM, RGM) 1p1h, cluster, vib/rot, vortical, GR

Matter and transition densities

great merits: no phenomenological adjustable parameters for real and imaginary potentials.

Results of ${}^{12}C(\alpha, \alpha')$ and ${}^{16}O(\alpha, \alpha')$ MCC with AMD densities

Cross sections are successfully described: Alpha inelastic scattering can be a good probe for searching new cluster states

What we can learn from α, α' scattering?

Search for new cluster states

Determination of B(IS0) and B(IS1)

Information of transitions between excited states

Rotational band from cluster gas

AMD is better RGM: too strong coupling with 2⁺₂

- Determination of B(E0) for 0^+_3
- Experimental discovery of 2⁺₂ by Itoh

Topic 2-2

Cluster states in ¹⁶O with sAMD+GCM

Ikeda diagram 4α gas?

¹²C+α? **©** 7.2

¹⁶O_{gs}

Band structures of ¹⁶O

large amplitude cluster states ${}^{12}C(0+_1)+\alpha$ bands K=0+ (0+_1, 2+_1, 4+_1), K=0- (1-_2, 3-_2, 5-_1)

small amplitude modes Ground band(0+ $_1$, 3- $_1$, 4+ $_2$), vib(TD) 1- $_1$

Monopole excitations in ¹⁶O

α scattering off ¹⁶O (first MCC calc.)

0+ states: large amp. cluster modes successfully reproduces 0+ cross sections
1- state: small amp. mode Larger B(IS1) by a factor of 1.3 is favored

Application to unstable nuclei (p,p') scattering for 2^+_1 transitions

to measure quadrupole deformation

Proton/neutron differences (Mn/Mp ratio) can be discussed

Topic 3 Cluster states in ¹⁴C with AMD+(3α+nn)GCM

Triangle / Linear states in ¹⁴C*

¹⁴C:AMD+(3α +nn)GCM

combined with cluster config.

¹⁴C results : AMD+(3α+nn)GCM 3α linear chain

¹⁴C : linear chain states comparison with obsevation

exp: Yamaguchi et al PLB766(2017)

0+: monopole excitations in ¹⁴C 3α dynamics with nn: some differences

2α bonded by nn
 new configurations
 because of nn

monopole excitations in ¹⁴C,¹²C 3α dynamics with and w/o nn: differences

¹⁴C(α,α')

\blacksquare E_{α}=140 MeV and 400 MeV

¹⁴C(0⁺₃) can be observed by (α , α ')

Summary

- (s)AMD+GCM was applied to monopole&dipole excitations in ¹²C, ¹⁶O, and ¹⁰Be
- Various LE modes: cluster, vib, vortical modes
- alpha inelastic scattering
- cluster states in ¹⁴C: Triangle vib., linear-chain 3a

Various modes arises in monopole & dipole excitations Physics behind: small amplitude modes & large amplitude cluster dynamics in nuclear phenomena

References

- (p,p') arXiv:1908.03
- (a,a') off 160 Phys.Rev. C99 (2019) no.6, 064608
- (a,a') off 12C Phys.Rev. C99 (2019) no.6, 064601
- monpole&dipole in 160
 Phys.Rev. C89 (2014) 024302, Phys.Rev. C100 (2019)
 014301
- monpole&dipole in 12C

Phys.Rev. C97 (2018) no.1, 014303, Phys.Rev. C93 (2016) no.5, 054307

EB(IS0,IS1) in ¹⁶O

sAMD+GCM

(a,a') exp: Lui et al. PRC64(2001)

IS-LED in ¹²C, ¹⁶O

3% of EWSR

 $12^{12}C(1_{1}^{-})$ $16O(1_{2}^{-})$ Developed
Clustering: 3α , $12C+\alpha$

TD dominant LED !

 $^{12}C(1_{2}^{-})$ $^{16}O(1_{1}^{-})$ 1p1h

5% of EWSR

Effective nuclear interactions

$$H^{\text{eff}} = \sum_{i=1}^{k} t_i + \sum_{i < j} v_{ij}^{\text{eff}} + \sum_{i < j < k} v_{ijk}^{\text{eff}} \qquad i, j, k = 1 \cdots A$$

Central force: MV1 force two-range Gaussian 2-body + zero-range 3-body forces

Is force: term of G3RS force two-range Gaussian 2-body (³O) Coulomb force: 7-range Gaussians

Matter properties of MV1 force (case-1 with m=0.62, b=h=0) ρ_0 =0.192 fm⁻², E₀/A=17.9 MeV, K=245 MeV, m*=0.59m

	α	¹² C	¹⁶ O	² C+ α thres.
Cal. (MeV)	27.8	87.6	123.5	8.2
Exp. (MeV)	28.3	92.2	127.6	7.16

Effective interactions

 Central force : MV1 parameterization two-range Gaussian 2-body+zero-range 3-body

similar to Gogny central force in a sense

- LS force : two-range Gaussian 2-body from G3RS
- Coulomb force is also added.
- > Matter properties:

 ρ_0 =0.192 fm⁻², E₀/A=17.9 MeV, K=245 MeV, m*=0.59m

➢ B.E. of nuclei:

	α	¹² C	¹⁶ O	² C+ α thres.
Cal. (MeV)	27.8	87.6	123.5	8.2
Exp. (MeV)	28.3	92.2	127.6	7.16