The chiral phase transition in (2+1)-flavor QCD

Frithjof Karsch Bielefeld University

Faculty of Physics

Critical behavior in the limit of vanishing light quark masses

Finite size scaling and chiral limit

The chiral PHASE TRANSITION temperature

The chiral PHASE TRANSITION temperature

R. D. Pisarski, F. Wilczek, Remarks on the chiral phase transition in chromodynamics, Phys. Rev. D 29 (1984) 338(R)

Abstract:

The phase transition restoring chiral symmetry at finite temperatures is considered in a linear σ model. For three or more massless flavors, the perturbative ϵ expansion predicts the phase transition is of first order. At high temperatures, the UA(1) symmetry will also be effectively restored.

- since 35 years it is understood that critical behavior in strong-interaction matter is due to chiral symmetry restoration
- the phase transition temperature in the chiral limit of QCD is one of the fundamental scales in strong-interaction physics
- neither the order of the transition in 2 or (2+1)-flavor QCD nor the value of the transition temperature have been established so far

Phase diagram of QCD with two light flavors of mass m as calculated from random matrix theory

A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007

Phase diagram of QCD with two light flavors of mass m as calculated from random matrix theory

M.A. Stephanov, K. Rajagopal, E.V. Shuryak, PRL 81 (1998)

A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007

Phase diagram of QCD with two light flavors of mass m as calculated from random matrix theory

A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007

Critical behavior in QCD

Critical behavior in QCD

Pseudo-critical temperatures from chiral observables

Phases of strong-interaction matter $T_{pc}(\mu_B) = T_{pc} \left(1 + \kappa_2 \left(\frac{\mu_B}{T_c} \right)^2 + \dots \right)$ 175phase diagram at $T_{pc}[{ m MeV}]$ crossover line: $\mathcal{O}(\mu_B^4)$ physical values of 170 constant: ϵ the quark masses 165..... freeze-out: STAR 160ALICE A. Andronic et al., Nature 561 (2018) 155321 150145 $n_S = 0, \ \frac{n_Q}{n_B} = 0.4$ 140 $\mu_B \,[{\rm MeV}]$ 135501001502002503003504000 $T_{pc} = (156.5 \pm 1.5) \text{ MeV}$ $\kappa_2 = 0.012(4)$ A. Bazavov et al. [HotQCD],

arXiv:1812.08235

Scaling in the thermodynamic (infinite volume) limit – approaching the chiral limit – sor

- order parameter M and it's susceptibility

$$egin{array}{rcl} M &=& h^{1/\delta} f_G(z) + f_{sub}(T,H) \ \chi_M &=& h_0^{-1} h^{1/\delta-1} f_\chi(z) + ilde{f}_{sub}(T,H) \end{array}$$

for ANY fixed z:

$$T_{pc}(H) = T_c^0 \left(1 + rac{z}{z_0} H^{1/eta\delta}
ight) \ + \ {
m sub \ leading}$$

conventional steps to determine T_c^0

- choose a characteristic feature of χ_M \rightarrow the maximum χ_M^{max}
- in the scaling regime this is located at z_p
- using the scaling ansatz for $T_{pc}(H)$ allows to extract T_c^0

A. Lahiri et al, QM 2018, arXiv:1807.05727 H.T. Ding et al, arXiv:1903.04801

Chiral PHASE TRANSITION temperature

$$egin{aligned} rac{H\chi_M}{M} &= rac{f_\chi(z)}{f_G(z)} \ + \ ext{regular} \ &= egin{cases} 1/\delta &, \ z=0 \ &\sim 0.5 \ , \ z=z_p \end{aligned}$$

Finite size scaling functions of the 3-d, O(4) spin model

$$egin{aligned} M &= h^{1/\delta} f_G(z, \pmb{z_L}) + f_{sub}(T, H, L) \ \chi_M &= h_0^{-1} h^{1/\delta - 1} f_\chi(z, \pmb{z_L}) + ilde{f}_{sub}(T, H, L) \ & rac{H\chi_M}{M} = rac{f_\chi(z, \pmb{z_L})}{f_G(z, \pmb{z_L})} + ext{sub leading} \end{aligned}$$

 $\lim_{L \to \infty} \left(\frac{H \chi_M}{M} \right)_{z=0} = \frac{1}{\delta}$

$$egin{aligned} egin{aligned} egi$$

volume dependence controlled by $\ z_L \sim 1/m_\pi^{2
u_c} L \ , \ 2
u_c \simeq 1$

define
$$z_{\delta}(z_L)$$
 as the value z for given z_L at which $\left(\frac{H\chi_M}{M}\right)_{z_{\delta}(z_L)} = \frac{1}{\delta}$

$$T_{\delta}(H,L) = T_c^0 \left(1 + rac{z_{\delta}(z_L)}{z_0} H^{1/eta\delta}
ight) \ + \ {
m sub \ leading}$$

 $z_{\delta}(0)=0$

 $z_\delta \simeq 0 \quad \Rightarrow \quad$ weak H-dependence of T_δ even at finite H and/or L - almost perfect estimator for T_c in the limit $H \to 0$, $L \to \infty$

Chiral extrapolation in the Quark Meson Model

$$\Gamma_{\Lambda_{UV}}[\phi] = \int d^4x \left\{ ar{q}(\partial\!\!\!/ + gm_c)q + gar{q}(\sigma + iec{ au}\cdotec{\pi}\gamma_5)q + rac{1}{2}(\partial_\mu\phi)^2 + U_{\Lambda_{UV}}(\phi)
ight\}$$

 $\Delta T \equiv T_{pc}(m_\pi^{phys}) - T_c(0) \simeq 30 \; {
m MeV}$

$m_{\pi} [{ m MeV}]$	0	45	135	230
$T_{pc}^{(1)}[{ m MeV}]$	100.7	$\simeq 110$	$\simeq 130$	$\simeq 150$
$T_{pc}^{(2)}[{ m MeV}]$	100.7	113	128	

– strong pion mass dependence of $T_{pc}(m_{\pi})$

 $T_{pc}(m_{\pi})$ almost linear in m_{π} , even for $m_{\pi} = m_{\pi}^{phys}$ trivial? put O(4) in, get O(4) out? J. Berges, D.U. Jungnickel, C. Wetterich, Phys. Rev. D59 (1999) 034010

F. Karsch, RMT@ECT* 2019 14

Chiral extrapolation and finite volume effects in the O(4) ϕ^4 model

$$egin{aligned} \mathcal{L} &= rac{1}{2} (\partial_\mu \phi)^2 + rac{1}{2} m^2 \phi^2 + rac{\lambda}{4} \phi^4 \ \phi &= (\phi_1,...,\phi_4) \end{aligned}$$

 $\Delta T \equiv T_{pc}(m_\pi^{phys}) - T_c(0) \simeq 35 \; {
m MeV}$

$L \; [{ m fm}]$	$m_{\pi}^{(0)} = 100{ m MeV}$	$m_{\pi}^{(0)} = 200{ m MeV}$	$m_{\pi}^{(0)} = 300{ m MeV}$
1.5	79.0 MeV	$164.3~{ m MeV}$	$225.7~{\rm MeV}$
2.5	111.3 MeV	$197.1 { m ~MeV}$	$246.6~{\rm MeV}$
3.5	$157.9~{\rm MeV}$	$206.3 { m ~MeV}$	$249.0~{\rm MeV}$
∞	178.1 MeV	$208.3 { m MeV}$	$249.3~{\rm MeV}$

- increasing volume dependence with decreasing pion mass

J. Braun, B. Klein, H.-J. Pirner, A.H. Rezaeian, Phys. Rev. D73 (2006) 074010

Finite size scaling functions of the 3-d, O(4) spin model $V \equiv L^3$

$$M = h^{1/\delta} f_G(z, z_L) + f_{sub}(T, H, L)$$

$$\chi_M = h_0^{-1} h^{1/\delta - 1} f_{\chi}(z, z_L) + \tilde{f}_{sub}(T, H, L)$$

any "characteristic" z becomes a function of z_L :

J. Engels, FK, Phys. Rev. D90 (2014) 014501

 $\equiv (N_{\sigma}a)^3$

Finite size scaling functions of the 3-d, O(4) spin model $V \equiv L^3$

$$M = h^{1/\delta} f_G(z, z_L) + f_{sub}(T, H, L)$$

$$\chi_M = h_0^{-1} h^{1/\delta - 1} f_{\chi}(z, z_L) + \tilde{f}_{sub}(T, H, L)$$

$$rac{H\chi_M}{M} = rac{f_{\chi}(z, z_L)}{f_G(z, z_L)} + ext{sub leading}$$

 $\lim_{L o \infty} \left(rac{H\chi_M}{M}
ight)_{z=0} = rac{1}{\delta}$

 $\equiv (N_{\sigma}a)^3$

Finite size scaling functions of the 3-d, O(4) spin model $V \equiv L^3$

$$M = h^{1/\delta} f_G(z, z_L) + f_{sub}(T, H, L)$$

$$\chi_M = h_0^{-1} h^{1/\delta - 1} f_{\chi}(z, z_L) + \tilde{f}_{sub}(T, H, L)$$

 $\equiv (N_{\sigma}a)^3$

Chiral PHASE TRANSITION in (2+1)-flavor QCD

A. Lahiri et al, QM 2018, arXiv:1807.05727 H.T. Ding et al (HotQCD), arXiv:1903.04801

- physical strange quark mass
- vary light quark mass

 $55~{
m MeV} \le m_\pi \le 160~{
m MeV}$

 use new estimators for pseudo-critical temperatures

 T_{δ}, T_{60}

- control finite volume effects

 $2 \leq m_\pi L \leq 5$

 extrapolate to infinite volume limit and chiral limit

1/aT = 6, 8, 12

	δ	z_p	z_{60}	$f_G(z_p)$	$f_{\chi}(z_p)$	$\mid f_{\chi}(0)/f_{\chi}(z_p)\mid$
$\boxed{\mathbf{Z}(2)}$	4.805	2.00(5)	0.10(1)	0.548(10)	0.3629(1)	0.573(1)
O(2)	4.780	1.58(4)	-0.005(9)	0.550(10)	0.3489(1)	0.600(1)
O(4)	4.824	1.37(3)	-0.013(7)	0.532(10)	0.3430(1)	0.604(1)

Chiral PHASE TRANSITION in (2+1)-flavor QCD

 $egin{aligned} &\langlear\psi\psi
angle_f = rac{T}{V}rac{\partial\ln Z(T,V,m_u,m_d,m_s)}{\partial m_f} \ &\langlear\psi\psi
angle_l = (\langlear\psi\psi
angle_u + \langlear\psi\psi
angle_d)/2 \end{aligned}$

renormalization group invariant order parameter: $M=2\left(m_s\langlear\psi\psi
angle_l-m_l\langlear\psi\psi
angle_s
ight)/f_K^4$

chiral susceptibility: $\chi_M = m_s (\partial_u + \partial_d) M$ lattice sizes: $N_\sigma^3 \times N_\tau$, $4 \le N_\sigma/N_\tau \le 8$

Chiral PHASE TRANSITION in (2+1)-flavor QCD

use two novel observables for the determination of the chiral PHASE TRANSITION TEMPERATURE, which in the infinite volume limit correspond to $z \simeq 0$, i.e. in the scaling regime they have almost no quark mass dependence

H.T. Ding et al, arXiv:1903.04801

Finite size & and quark mass scaling

Finite size & and quark mass scaling

The chiral PHASE TRANSITION temperature

- using extrapolations linear in 1/V and m as well as O(4) scaling ansatz
- extrapolations with and without data from coarsest lattice
- averaging results for T_{δ} and T_{60}

$$T_c = 132^{+3}_{-6} {
m MeV}$$

H.T. Ding et al, arXiv:1903.04801

Crossover, chiral phase transition at $\mu_B = 0$ and the (tri)-critical point at $\mu_B > 0$

Random Matrix Model QCD&RMT NJL A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J., M. Verbaarschot, Phys. Rev. D58 (1998) 096007

M. Stephanov, Phys. Rev. D73 (2006) 094508

M. Buballa, S. Carignano, Phys. Lett. B791 (2019) 361

The chiral PHASE TRANSITION temperature – evidence for a 2nd order transition in the chiral limit–

A. Lahiri et al, QM 2018, arXiv:1807.05727

Crossover transition parameters

PDG: Particle Data Group hadron spectrum

Crossover transition parameters – and chiral limit –

PDG: Particle Data Group hadron spectrum

Transition parameters in the chiral limit

What drives the chiral transition?

- hadron resonance gas in the interval (132-156.5) MeV
- pion mass varies from 0 to its physical values

in the range $\,T\simeq(130-156.5)~{
m MeV}$:

contributions to total energy density and pressure change by a factor 3 but, pion density stays roughly constant

Conclusions

- no evidence for a 1 st order transition in QCD for pion masses $\,m_{\pi} \geq 55~{
 m MeV}$
- the chiral phase transition in QCD is **likely to be 2nd order**
- the chiral phase transition is (20-25) MeV smaller than the pseudo-critical temperature for physical values of the quark masses

$$T = 132^{+3}_{-6} \mathrm{MeV}$$

- the chiral phase transition occurs at a pion density

$$n_\pi \simeq 0.12/{
m fm}^3$$

– a critical endpoint with $T^{CEP} < 140 \; {
m MeV}$ makes it difficult to be

observed in experimental searches at RHIC

Critical behavior and higher order cumulants

200

The Chiral PHASE TRANSITION in (2+1)-flavor QCD

