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Jac and me

- in February 1987 | met Jac in Krakéw (Skyrmions and Anomalies
Workshop at the Mogilany Palace)

- from 1987-1989 we were postdocs at NTG Stony Brook

- from 1992-1994 we were again together at NTG Stony Brook

- in 1995 | became aware of the power of freeness for RMT

- since then, we meet each other on various RMT meetings
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Not only BBQ...

1. Flavor Mixing in the Instanton Vacuum M.A. Nowak, J.J.M. Verbaarschot, |. Zahed (SUNY, Stony Brook). Aug
15, 1988. 33 pp. Published in Nucl.Phys. B324 (1989) 1-33

2. Pseudoscalars in the Instanton Liquid Model R. Alkofer, M. A. Nowak (SUNY, Stony Brook), J.J.M.
Verbaarschot (CERN), I. Zahed (SUNY, Stony Brook). Sep 1989. 5 pp. Published in Phys.Lett. B233 (1989)
205-209

3. Instantons and Chiral Dynamics M. A. Nowak (SUNY, Stony Brook), J.J.M. Verbaarschot (CERN), |. Zahed
(SUNY, Stony Brook). Jun 1989. 8 pp. Published in Phys.Lett. B228 (1989) 251-258

4. OZI Rule and Instantons M. A. Nowak (SUNY, Stony Brook), J.J.M. Verbaarschot (CERN), I. Zahed (SUNY,
Stony Brook). May 1989. 5 pp. Published in Phys.Lett. B226 (1989) 382-386

5. Chiral Fermions in the Instanton Vacuum at Finite Temperature M. A. Nowak, J.J.M. Verbaarschot, |. Zahed
(CERN SUNY, Stony Brook). Jan 1989. 12 pp. Published in Nucl.Phys. B325 (1989) 581-592

6. Is the Nucleon Strange? M. A. Nowak (SUNY, Stony Brook), J.J.M. Verbaarschot (CERN), |. Zahed (SUNY,
Stony Brook). Sep 19, 1988. 5 pp. Published in Phys.Lett. B217 (1989) 157-161

7. Chiral symmetry breaking and instantons M. A. Nowak, J.J.M. Verbaarschot, |. Zahed (SUNY, Stony Brook).
1996. 10 pp. Published in In *Columbus 1988, Relativistic nuclear many-body physics* 144-153

8. Finite temperature correlators in the Schwinger model A. Fayyazuddin, T.H. Hansson (Stockholm U.), M. A.
Nowak, J.J.M. Verbaarschot, |. Zahed (SUNY, Stony Brook). Dec 1993. 33 pp. Published in Nucl.Phys. B425
(1994) 553-578
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All the Best to You and Cecile, from Ewa and me...
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@ Why to look at eigenvectors?

Proper objects to look at
@ Main results (FRV)

@ A brief overview on the derivation

Applications

@ Conclusions and perspectives
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Coulomb gas versus Ginibre Ensemble [Grela, Warchot; 2018]
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Allegory of the Cave [Plato, Republic, 380B(]

Plato realizes that the humankind can think, speak etc without (so far as they acknowledge) any awareness of the
realms of the Forms

In the allegory, Plato likens people untutored in the Theory of Forms to prisoners chained in a cave, unable to turn
their heads. All they can see is the wall of the cave. Behind them burns a fire. Between the fire and the prisoners

there is a parapet, along which puppeteers can walk. The puppeteers, who are behind the prisoners, hold up puppets
that cast shadows on the wall of the cave. The prisoners are unable to see these puppets, the real objects, that pass

behind them. What the prisoners see and hear are shadows and echoes cast by objects that they do not see.

MAGIS TENEBRA

E7 SCHLPT CPRAVIT A iz

Plato’s Allegory of the Cave, Jan Saenredam, 1605

Challenge of the main paradigm of the random matrix models....
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Setting the stage: reminder from algebra

A matrix X is non-normal iff XXt # XTX.

If a non-normal matrix can be diagonalized, it possesses two sets of
eigenvectors: right |Ry) (column) and left (Lk| (rows), satisfying
eigenequations

(Li| X = (Lk| A&, X |Rk) = Ak |Rk)

The diagonalization is via similarity transformation X = SAS™!
with S and S~! encoding eigenvectors X = 3", |Rk) Ak (Lk|.
The eigenvectors are not orthogonal (Ri|R;) # dx; but
biorthogonal (Lk|R;) = &4 (& S71S =1).

Resolution of identity 3", |Rx) (Lx| =1 (& SS™1 =1).
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Non-hermitian case - large N - electrostatic analogy

Analytic methods break down, since spectra are complex
p(2) = % (2;0D(z = ).
o Electrostatic potential [Girko;1984],[Brown;1986],[Sommers et
al.;1988]
6(2,2) = lime_o limy oo ( FtrInf|z = X|2 + €2])
e Green's function (electric field)
: . 5 xt
= 0,0 = limc_glimy_ <%tr%>
e Gauss law p(Z T) Zg’€ 0— 71”3822552|e 0

Proof: 6(9)(z) = I|m€_>0 1 ﬁ
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Linearization trick

® ¢(z,2) = limeolimy_ oo <%tr In[|lz — X|> + 62]>
= lim_olimy_ <% In DN> where
Dn(z,Z,e) = det(Z @ 1y — X) with

z e X 0
Z_<ie z) X‘(o XT>

) g Gi7
¢ 2.9 ey} = (82 91)

b A B _ trA trB
r cC D —\ trC trD
2N x2N 2x2

e G11 = g(z, Z) yields spectral function

@ Gi7 - U1 yields elements of a certain eigenvector correlator
[Savin,Sokolov; 1997],[Chalker,Mehlig;1998].
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Loophole in the standard arguments?

@ For non-hermitian matrices X, we have left and right
eigenvectors X = Y, A\k|Rk >< Li| where X|Ryx >= A¢|Ri >
and < Lk|X = < Lk‘

o < Lj|Rix >= dj, but < Lj|L; >3 0 and < R;j|R; ># 0.

o Dy =det(Z — X) =det[S(Z - X)S] =

zly =N —ielfL

ieRTR  z1y — A

@ Spectrum (A) entangled with diagonal part of the overlap of

eigenvectors O; =< Lij|L; >< Rj|R; >.

det

@ Naive limit € — 0 kills the entanglement leading to incomplete
description of the non-hermitian RM
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Cure: Hidden variable

We promote /e to full, complex-valued dynamical variable.
Then, orthogonal direction w unravels the eigenvector correlator
0(z) = # <Zk 016 (z — )\k)>, where
Oj =< Lj|L; >< Rj|R; > and |L; > (|R; >) are left (right)
eigenvectors of X. [Janik, MAN, Noerenberg, Papp, Zahed; 1999]
. z e . z iw
Replacing Z = ( e 3 ) by quaternion Q = w3 )
provides algebraic generalization of free random variables calculus
for nonhermitian RMM. [Janik, MAN, Papp,Wambach, Zahed;
1997], [Feinberg, Zee; 1997],[Jarosz, MAN; 2006], [Belinschi,
Sniady, Speicher; 2015].
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" Quaternionization trick”

e o(z,w) =limy_oo <%tr|n[|z - XP?+ WVT/]>

0:¢  Oiwd
_ 1 1 _ z w
G(z,w) = <btr4(o_2()> = ( Oiwd Oz )
On top of the vector electric field” G(z, w) = 0,¢ we have
second vector, "velocity” field V(z, w) = Oiw¢.

p(z) = 19;G(z,0) = 10,5¢(z,0) gives spectral function

O(z) = 1|Vv(z,0)|? yields Chalker-Mehlig eigenvector
correlator

OiwG(z,w) = 9, V(z, w) so both vector fields are intertwined.
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This construction can be written formally in the resolvent form

={@-x)1"), G2)= %bTrg

z iw X 0
QZ(/W z)’ XZ(O XT>

Moment expansion
G=Q'+(QtxQ ) +(QtxQtxQ ) +
Large N limit: planar diagrams — Schwinger-Dyson equation

a)
.-)-@+o:o+o+o+o@o+o+o+0@o—>—o@o+o+...

~ T30 Lo
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Note that all ingredients are quaternions, i.e.

Raﬁ = C(gl)(;aﬁ + Cé%) Qaﬁ + Z Cc(jj?ﬁ Qa,uQuﬁ +
pe{1,1}
4
+ Z C(g'u)yﬁ Qap,Q/,w Qyﬁ + ...

pre{1,1}

where

) = <Lﬂxalxa2...xw>
c

and we adopt notation when 1 index means hermitian conjugate t,

1 means no conjugation, Q11 = z etc.

Formally, £(Q) = R(G(Q)) equivalent to the 2 by 2 matrix

equation

1
R(G(Q)) + =~7 =@
(SO + 513
in analogy to one-dimensional R(G(z)) +1/G(z) = z.
Note that the R-diagonal case offers a tremendous simplification.
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propagator | {(Xag i Xuwji) o @ Green's | ¢ 1pTig

i okl function o i
o 8 Vghtigf3
horizontal (Q7Y)apdy o vertex Nggx;xjfix;,’, ’/
line i J o
o
- \ 8 8 o
e | 6= (@ 053,) | £-@-4 | amars| () | ([T )
o ¢ J c 0] 08 @8
a Tp Y

Tablica: Diagrammatic representation of the basic expressions in the
moment expansion of the resolvent. The propagator represents the
averages with respect to the Gaussian potential. An exemplary vertex is
drawn for the theory which contains the cubic interaction NgzTrX*XP X7
in the potential. A cumulant (dressed vertex) represents a sum over all
connected diagrams connected to the baseline. Its structure in matrix
indices (Latin letters) is the same as that of the vertex, because the
propagators are the Kronecker deltas in this indices. The dashed line
without arrows represent summation over Latin indices only.
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Stability - temporal changes of networks seen as
perturbations
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Stability - temporal changes of networks seen as
perturbations
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Stability - temporal changes of networks seen as
perturbations

Adjacency matrix: A— A’ = A+ P How does the spectrum
change? In first order perturbation theory

o = M+ (Le|PIRe) + O(]|PI1?)

Upper bound [07] < 1Ll - [1Rel| - 1PI| = 1Pl ALAILe) (RelRe.
Eigenvalue condition number [Wilkinson 1965]
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Transient behavior

Dynamical system x; = fj(X). Linearization around some fixed
point:

d N
d—&y,-(t) = Z J,-k6yk(t)
t 4
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Transient behavior

Dynamical system x; = f;j(X). Linearization around some fixed
point:

5yl Z Jlkéyk
[12%]
3.01
2.5¢

2.0t
1.5¢

00 L L L L L L L t
00 02 04 06 08 10 12 14
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Transient behavior

Dynamical system x; = fj(X). Linearization around some fixed
point:

d N
d—(Sy,-(t) = Z J,-k6yk(t)
t 4

9%
3.0¢

2.0r
1.5¢
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Transient behavior

Dynamical system x; = fj(X). Linearization around some fixed

point:
d N
d—(Sy,-(t) = Z J,-k6yk(t)
t 4
1yl
3.0¢ T
1
2.0t
1.5 -1 10
0 -2
1.0
05 -1 1
0 -2
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Why does it happen?

Formal solution 6y = e*/§yj. Spectral decomposition yields

N
oy (e)|P = > eW Hk)t/<5)/o\Lk> (Rk|R;) (Ljloyo).
j k=1 —

o All eigenmodes are coupled to each other
@ Imaginary part produce oscillations (interference)

@ Amplification by the unrestricted norm of eigenvectors

For normal matrices (eigenvectors are orthogonal) eigenmodes
decouple

16y (8)[* = Ze”ReAk!(L |6yo) .
k=1
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How to address the problem of eigenvectors correctly?

Biorthogonality (Lx|R;) = 0xj, completeness >, |Rx) (L] =1
Invariant under rescaling |Rx) — ck |Rk) and (Lx| — (L] Ck_l
The simplest invariant quantity: matrix of overlaps

0; = (Li|L;) (Rj|R;) Chalker Mehlig [1998]

Weighted density

D(z < Z Ojkd(z — Aj)o(w — )\k)> = 01(2)0(z—w)+0(z, w)

j,k=1

O1(z) = <;/ " Oud®(z - Ak)> (ol _ /v01> ,

Os(z, w) < > 0403 (z = A))6P (w — )\k)>
J#k

Sum rules: 3°; O = 1= [ d*wD(z,w) = p(z).

[Walter,Starr 2015]
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2-point eigenvector functions and Bethe-Salpeter equations

Natural candidate

a1, 2) = 3 Tra=X) (@ XY kZ a - M@~ %)

Same problems = regularization + linearization

— <(Q . X)fl ® (PT . XT)71>

+ proper contraction of indices (like a block-trace) = 4 x 4
matrix. One of its entries is the object of our interest.

Note, some analogy to the freeness of the Il kind for hermitian
ensembles, where G(z1,22) = 75 Tr(z1 — X) 71 Tr(z2 — X)™*
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Moment expansion — planar diagrams
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Overview on the progress

@ Ginibre finite N + large N Chalker, Mehlig ['98,'00]

@ Quantum scattering ensemble Mehlig, Fyodorov, Frahm,
Schomerus, Beenakker (et al.) ['00-'03]

@ O in large N for unitarily invariant matrices MAN et al. ['99]

@ Eigenvector non-orthogonality can be experimentally probed
Fyodorov, Savin ['11], Legrand et al. ['14]

@ Crucial role in diffusion processes on matrices Krakéw group ['14],
Dubach, Burgade ['18], Grela, Warchot ['18]

@ O for biunitarily invariant ensembles (Single ring theorem +)
Belinschi, MAN, Speicher, Tarnowski ['17]

@ Full distribution of O; Bourgade, Dubach ['18], Fyodorov ['17]

@ O, in large N for unitarily invariant matrices; special case biuintarily
invariant ensembles MAN, Tarnowski [JHEP06(2018)152] «
TODAY

@ Extention to multi-point functions and calculation for the Ginibre
Crawford, Rosenthal ['18]

@ Determinantal structure Akemann et al ['19] «— TODAY
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Main results

Complex matrices with unitary invariance P(X) = P(UXUT)

K(QP)=GQ®GT(P)|14+T(Q,P)K( Q,P )
—_— YV ~—— ~—~—

two—point 1—point cumulants quaternions

Traced product of resolvents
[)(21,22): <%Tr(21 —X) ZQ-)(Jr >
(22
di

, 9(21)8
R = e R

Dunford-Taylor integral

<NTrf(X)g(XT)> (27” %% 21)8(22)0(z1, 22)dz1d 2

For transients take f = g = exp(Xt).
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Biunitarily invariant ensembles

pdf invariant under transformation X — UXVT with U, V € U(N).
Symmetry transformations bring to the SVD canonical form — all
observables are determined by the distribution of singular values.
Spectrum is rotationally invariant p(z,z) = p(r = |z|).
F(r)=2m [y p(r)rdr, r?=|z|?

o [Feinberg, Zee '97|, [Guionnet, Krishnapur, Zeitouni, 2011]

Large N: single ring theorem

o Syxi(F(r)—1)= %2 Haagerup, Larsen ['00]

e Exact finite N mapping between jpdfs Kieburg, Kosters ['17]

e Oi(r) = %w Belinschi, Speicher, MAN, Tarnowski

[17]
_ 1 Zi(z — 2)0i(n) + 2(21 — 22)O:(r2)
Oalen22) = 08 0n ™ o RIF () — Fi)]
° h(z1,2) =

Z1Zp— rgut
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@ Ginibre 11 -

- -TAan

OalE ) = 2

@ Truncated unitary. UN + L) — N x N, N, L — oo with
k= f fixed.

1 -1+ 2122(1 + IQ)
2 |z1 — zo|*

Ox(z1,0) =

@ Spherical ensemble (ratio of two Ginibres)
1 -1
7'('2 ’Zl — 22|4

Ox(z21,20) =

@ Product of 2 Ginibres

1 2(la| + |2)(2122 + |2z]) — |21 + 22 — 42122

0a(z1,22) = —

4| z125||z1 — z|*
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@ Ginibre 11 _

— — 212

o e
2(21, 22) 72 |z — 2|

@ Truncated unitary. U(N + L) — TU(N), N, L — oo with
k= f fixed.

1 -1+ 2122(1 + I-i)
2 |21 — z|*

Ox(z1,0) =

@ Spherical ensemble (ratio of two Ginibres)
1 -1
72|z — z|*

Ox(z21,20) =

@ Product of 2 Ginibres

1 2(la| + |2)(2122 + |2z]) — |21 + 22 — 42122

0a(z1,22) = —

4| z125||z1 — z|*
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Towards microscopic universality

Microscopic scaling is not accessible within this framework.
Hermitian models: singularities of two-point Green's functions are
heralds of non-trivial scaling limits.

Sum rule:

NO;(z) + / Oa(z, w)d?w = p(z)

u

Microscopic scaling: w = z +

Np(z2)
d?u -1 P(z,w) P(z,z)
d? O = — ———24 — N?p? ’
YN R T we
Explicit calculations:
lim P(z,w) = Ol(z).
s o(2)
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Applications: Rajan-Abbott model (2006)

@ Network of N neurons represented by weighted adjacency
matrix. Matematically, X = J + M where deterministic
M = |u >< m| represents synaptic activity and random
J = XA. Excitatory and inhibitory neurons, subjected to global
balance < m|u >= fgug + fiju; = 0. Additional local balance
- elements of each row sum to zero, i.e. J|u >= 0, where
|u>=(1,1,...1) 7. Spectra of J and J + M are the identical.

@ E. Gudowska-Nowak, MAN, D. Chialvo, J. Ochab, W.
Tarnowski - hep 1805.03592 (submitted to Neural
Computation). Explicit application of FRV to real neural
systems. Local balance triggers huge instabilities in
eigenvectors, leading to transient behavior. We conjecture,
that this phenomenon is responsible for speeding the dynamics
and synchronization. In real systems, local balance may come
from self-organized criticality.
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Conclusions

Full formalism for calculations of the two-point eigenvector
function in large N limit for complex non-Hermitian matrices
with unitarily invariant pdf.

Challenging applications |

- NI (Natural Intelligence) - brain science (Brain Initiative
(USA), Human Brain Project (EU), ....

- Al (Artificial Intelligence, in particular deep learning)

- NI <> Al mutual feedback - Bio-inspired Artificial Neural
Networks Programme in Krakéw (2019-2022)

Challenging applications Il

"Light in the tunnel for finite density Euclidean lattice?’[Liu,
MAN, Zahed, Nucl. Phys. B (2016)]

Unexplored mathematics of non-normal matrices, ranging from
macroscopic description (FRV) to microscopic universality
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