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1. Purpose 

Bohigas, Giannoni and Schmit conjecture: Spectral fluctuation properties of  

Hamiltonian systems that are chaotic in the classical limit coincide with those 

of random-matrix ensemble in same symmetry class. Central element in 

understanding quantum chaos. 
O. Bohigas, M. J. Giannoni, C, Schmit, Phys. Rev. Lett. 52 (1984) 1. 

 

Substantial numerical evidence. Two analytical approaches to proof: Partial 

summation of Gutzwiller’s semiclassical expansion of level density for general 

systems, and study of chaotic quantum graphs. 
M. Sieber and K. Richter, Phys. Scr. T90 (2001) 128. 

S. Müller, S. Heusler, A. Altland, P. Braun, F. Haake, New Journal of Physics 11 (2009) 103025 

A. V. Andreev, O. Agam, B. D. Simons, B. L. Altshuler, Phys. Rev. Lett. 76 (1996) 3947 and Nucl. Phys. B 482 (1996) 536. 

M. R. Zirnbauer, J. Math. Phys. 38 (1997) 2007, arXiv:cond.mat/9701024. 

S. Gnutzmann, A. Altland, Phys. Rev. Lett. 93 (2004) 014104,  Phys. Rev. E 72 (2005) 056215. 

Z. Pluhar, H. A. Weidenmüller, Phys. Rev. Lett. 110 (2013) 034101, Phys. Rev. E 88 (2013) 022902, 

        Phys. Rev. Lett. 112 (2014)  144102, J. Math. Phys.: Math. Theor. 48 (2015) 275102. 

In chaotic quantum graphs supersymmetry leads to variables defined in coset 

space. The problem is known but all treatments so far separate universal mode 

and massive modes as though they were defined in ordinary vector space. 
A. Altland, S. Gnutzmann, F. Haake, T. Micklitz, Rep. Prog. Phys. 78 (2015) 086001. 

 

Present treatment takes full account of coset space structure for the case of the 

two-point function.  Can we prove the conjecture? 
 



2. Approach 
 

Define two-point function as derivative of a generating function. Use 

supersymmetry to average that function over phases. Yields effective action 

in coset space. That is used to identify universal mode and massive modes. 

Express effective action in terms of these variables. Gaussian approximation 

for massive modes is starting point for perturbative expansion. 

 

Every term in the expansion so generated, combined with source terms for 

massive modes, has form of Gaussian superintegral. Must show that every 

such term vanishes in limit of large graph size.  

 

Can be shown on average over all graphs. For a proof use strict upper bounds. 

These cannot be shown to vanish for infinite graph size. Discuss reasons and 

consequences. 



3. Chaotic Quantum Graphs. Supersymmetry 
T. Kottos and U. Smilansky, Ann. Phys. 274 (1999) 76. 

 
Quantum Graph: V vertices connected by B bonds. Connected and simple. Directed 

bonds with direction d labeled (b d). Schrödinger wave carries same wave number k 

on all bonds and a phase        that breaks T-invariance. Hermitean boundary conditions 

on all vertices. Incoming and outgoing waves on bonds connected to same vertex α 

related by unitary matrix      . Totality of all these defines unitary bond scattering matrix                            

               . Amplitude propagation on graph defined by matrix  

 

                                                                                        

 

where         is first Pauli spin matrix in directional space.  All bond lengths 

incommensurate. 



  

Unitary symmetry realized by averaging separately and independently over 

phases       . Consider only two-point function: Product of retarded and 

advanced Green functions. Using supersymmetry this is written as derivative 

of generating function. Average calculated using color-flavor transformation 

(exact). Yields supermatrices             and            , both of dimension 2 where 

s = (B, F). Related by symmetry. M. R. Zirnbauer, J. Math. Phys. 38 (1997) 2007 

Perron-Frobenius operator is                                        

 

                                                                              

That operator governs relaxation of classical system towards equilibrium 

(equal occupation probability for all bonds).  Matrix      is bistochastic, one 

eigenvalue is +1. All remaining eigenvalues obey               . We assume that                                    

                           , even in the limit               : Spectrum has a finite gap of size    

   . Classical relaxation is exponentially fast. Proof of universality for weaker 

condition as used by some authors seemingly not applicable to all orders of 

perturbation expansion. To keep gap from closing as B increases, connectivity 

of graph must increase. 



Averaged two-point function is integral over all              and              .  Integrand carries in 

exponent minus the effective action (supertrace implies summation over (b d)) 

 

 

 

The factors         carry the difference in wave numbers in the advanced and the retarded 

Green functions and are irrelevant for what follows. Will be suppressed.  So action is 

 

 

 

 

Exponential is multiplied by the “source terms”  

 

 

 

 

 

 

 

Here        is the third Pauli spin matrix in superspace and breaks supersymmetry.    

Entire information on graph dynamics located in matrix     .   



4. Coset Space 
Suppress indices (b, d) and rewrite action identically as  

                         

                                                        

where                                   

 

is Efetov’s Q-matrix and where in retarded-advanced notation 

 

                                                       ,                                      , 

 

                                                                                                         . 

                                                                                                                                                                                                                   

The matrix Q remains unchanged if we replace                provided that                  .  

Therefore, Q and     are defined in a coset space G/K with fundamental form  

                                              .  We read    as gauge transformation. With 

 

                          we have  

                                                                                                                             

 

as gauge-invariant coordinates of Q.  



Universal Mode: Consider group element       that in directed-bond space is 

multiple of unit matrix. Associated Q-matrix is                      . The gauge-invariant 

coordinates   

 

define the universal mode. Define massive modes                 by expanding                   

                 around            , respecting coset structure.  Write                   as 

coordinates of                , replace                 by gauge-invariant variables                , 

find                                                    ,                                                    . Expand 

in powers of                .  

 

Mathematically, linearization in                 means that we consider the vector 

bundle of tangent vector spaces over          . For the 2 B variables  

the approximation is that all 2 B tangent vector spaces together form a linear 

space. Justified if massive modes provide small corrections. Requirements: Size 

of gap, the variables            must cluster closely about the universal mode.  

 

To retain the correct number of independent variables we impose the constraints 

                                        . 

5. Universal Mode and Massive Modes 



6. Effective Action 
 

An invariance property of the action allows us to show that under 

the transformation                          the action takes the form 

 

 

where last term has standard form and where  

 

                                                                                                      

For the source terms define                                         . The contribution due to the 

massive modes is  

 

 

 

 

 

 

Clear separation of contributions due to universal mode and due to massive modes. 

To show that all integrals vanish for                 . 

 

 



7. Gaussian Approximation 
Expand            in powers of           and keep only terms of second order. Gives 

 

 

Expand Perron-Frobenius operator       in terms of its eigenvalues     and left 

and right eigenfunctions         and         with                        . Define new variables 

                                                                                        . 

Then 

 

defines Gaussian superintegrals. Leading eigenvalue             does not  

contribute. Expand                                   in Taylor series. Resulting Gaussian 

integrals exist because of cutoff in spectrum of      . General integral is 

 

 

 

where                                                 and where      procects onto subspace 

spanned by eigenvectors with index i > 1. Matrix elements          measure the 

size of the fluctuations of massive modes           . Must be sufficiently small for 

perturbative approach to work.   



Expansion of                                   in Taylor series and multiplication with 

source terms for massive modes yields the general term (without numerical 

factors) 

 

 

 

 

Evaluated with integral formula on previous page.  

 

Constraints due to supersymmetry: A nonzero result for the supertraces is 

obtained only if supersymmetry is broken by the factors        in both the 

retarded and the advanced sector for every factor     and for every factor 

in every supertrace. Develop algorithm to identify surviving terms. 

 

Have to show that surviving terms vanish for                .  



8. Order-of-Magnitude Estimates 
 

We need to estimate the dependence of the general term on the dimension (2 B) 

of directed bond space for large B and to show that it vanishes for                . 

Do that first using mean values based on completeness: 

 

 

 

Unitarity of      implies                            . Every unrestricted summation over 

directed bond space is of order (2 B). 

 

In that way we show that all terms due to integration over massive modes 

vanish on average for               . But that captures only qualitative aspects of the 

problem. 

 

Question: How big are the fluctuations?  



 

 

 

 

 

 

9. Bounds 
 

Strict upper bounds for matrix elements are 

 

                      ,                                   . 

 

Here     is the size of the gap and       is independent of      for                .  

Take account of structure of matrix     . For completely connected graph 

 

                             

where     is independent of      for sufficiently smooth boundary conditions 

at the vertices. Range of summation indices           is               .  

 

Cannot show that general term vanishes for               . Reason: In 

supertraces containing matrices     , fluctuations of matrix elements             

         about their mean values are too large.  

Decomposition of variables             into universal mode and (weakly 

fluctuating) massive modes is questionable.        



10. More Stringent Bounds 
 

Focus attention on supertraces that contain matrices     and that cause the 

difficulty. Use Cauchy-Schwarz inequality 

 

 

 

The difficulty persists: Cannot show that some of the terms permitted by 

supersymmetry vanish for                 . Example:  

 

 

Graphical representation for n = 3 on next slide. As n increases, upper bound 

approaches unity from below. Useless. 

 

Cannot think of more stringent bounds. 





11. Discussion and Conclusions 
Study of two-point function of chaotic connected simple quantum graphs. 

 

Unitary symmetry, incommensurate bond lengths, spectrum of Frobenius-Perron 

operator has finite gap. 

 

Phase average of generating function done using supersymmetry and color-flavor 

transformation.  

 

Effective action defined in coset space. Separate universal mode and massive modes. 

Linearize the latter. 

 

Expand effective action up to second order to generate Gaussian superintegrals over 

massive modes. Taylor-expand remaining terms. 

 

Averages based on mean values show that every term in the series so generated 

vanishes for               . But proof of universality requires strict upper bounds. 

 



Bounds on matrix elements           fail to yield expected result. 

 

Same difficulty using Cauchy-Schwarz inequality. 

 

Possibly have failed to find sufficiently strict upper bounds. 

 

But analysis of general term suggests that fluctuations of massive modes 

(measured in terms of fluctuations of matrix elements        ) are too large. 

 

Hence our evidence suggests the following conclusion: 

For the terms relevant for the perturbation expansion, the variables 

do not cluster sufficiently closely together. It is not possible to introduce 

the universal mode and the massive modes in such a way that the latter 

possess sufficiently small fluctuations. 

 

We do not believe that the BGS conjecture for quantum graphs can be proved 

perturbatively.     


