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Introduction
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Great Ideas in Physics

Spontaneous Symmetry Breaking

Quantum Chaos

Topology

Separation of Scales

Effective Field Theories

Universality

Random Matrix Theory

Monte Carlo Simulations
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Exceptional Phenomena in Physics

Nucleon

Compound Nucleus

Black Holes

Universal Conductance Fluctuations

Bose-Einstein Condensation
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Fundamental Problems in Physics

The Sign Problem

Quantum Gravity

Many-Body Quantum Chaos

Confinement

Decoherence

Emergent Phenomena
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II. QCD Dirac Spectra

Number Variance

Spectral Correlations in QCD

Critical Dimensions
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Correlations of eigenvalues

Pair correlation function of ρ(λ) =
∑

k δ(λ− λk)

ρ2c(λ, λ
′) = 〈ρ(λ)ρ(λ′)〉 − 〈ρ(λ)〉〈ρ(λ′)〉 = 〈ρ(λ)〉δ(λ− λ′)− sin2(πN(λ− λ′)

(πN(λ− λ′))2
,

where we gave the result for the simplest random matrix theory (GUE).

� The level spacing is 1/(πN) . So correlations become universal in

units of the average level spacing.

Agreement with a specific RMT is determined by the non-unitary

symmetries of the system.
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Universality of Spectral Correlations

� Spectral correlations of interacting systems are given by random

matrix theory

� This is the strongest universal property in physics I know of –

much stronger than the universality of critical exponents in second

order phase transitions

� Separation of scales
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Number Variance

Σ2(n) =

∫

∆E

∫

∆E

ρ2c(λ, λ
′)dλdλ′,

∫

∆E

dλ〈ρ(λ)〉 = n.

� The δ function results in a linear term,

Σ2(n) ∼ n .

� The 1/(λ− λ′)2 term gives a logarithmic

term , Σ2(n) ∼ 1
π2 log n .

� For uncorrelated eigenvalues we only

have the delta function so that Σ2(n) = n.

E∆

∆E
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Characterization of Universal Random Matrix
Behavior

� Short range repulsion of the eigenvalues as Sβ .

� Spectral rigidity. The variance of the number of level in an interval

containing n eigenvalues on average behaves as (β/2π2) log n

rather than n when correlations are absent.

� The classical limit of a theory with spectral correlations given by

the Wigner-Dyson ensembles is a chaotic theory

(Bohigas-Giannoni-Schmidt conjecture-1984).

The reverse of the Bohigas-Giannoni-Schmidt conjecture also holds: if

the system is not fully chaotic the level correlations deviate from the

Wigner-Dyson results. Seligman-JV-Zirnbauer-1984
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Spectral Correlations in Lattice QCD

Number variance for a single configuration Halasz-JV-1996.
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Spectral Correlations in Lattice QCD

1000 2000

∆ (n)
 3

n

The ∆3 statistic is obtained by

integrating the number variance

over a smoothening kernel.

∆3(n) =
2

n4

∫

n

0

dr(n3
− 2n2r + r3)Σ2(r).

Ensemble average of number variance for each configuration gives a

very long range of agreement with RMT Guhr-Ma-Meyer-Wilke-1999
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Thouless Energy in QCD

Thouless energy for various lattice volumes. The numerical data are

consistent with a
√
V -scaling.

Berbenni-Bitsch-Göckeler-Guhr-Jackson-Ma-Meyer-Schäfer-Weidenmüller-

Wettig-Wilke-1998
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Source for the Discrepancy

� When the number variance is calculated relative to the

smoothened spectral density for each configuration, the range of

agreement with RMT is very large.

� Early disagreement with RMT is found when calculating the

number variance relative to the ensemble average of the spectral

density.

� The scale of the departure from RMT is physical and is in

agreement with QCD (as calculated from the chiral Lagrangian). It

is given by F 2
π/Σ

√
V .

� The only conclusion can be that the deviation is due to fluctuations

of the smoothened spectral density for each configuration.
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Estimate of the Size of Collective Fluctuations

� The number of random variables for each lattice configuration is of

order Nd .

� Elementary error analysis tell us that the relative inaccuracy in an

observable is of order 1/Nd/2

� For example the width of the spectral fluctuates relative the

ensemble average σ̄ as

δσ

σ̄
∼ 1

Nd/2
.
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Collective Dipole Fluctuations

E

Eρ(   ) 

Because the spectral density is normalized to the total number of

eigenvalues, the spectral density of a single configuration fluctuates by
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Number Variance due to Collective Fluctuations

The average number of levels in an interval is given by

n̄ =

∫

∆E

ρ̄(E)dE

The variance of the actual number of levels is

Σ2(n̄) =

(∫

∆E

δρ(E)

)2

=
n̄2

Nd
.

� The Thouless scale is at nc ∼ V 1/2/ad/2 .

� The estimate obtained from the hooping term is nc ∼ F 2
πV

(d−2)/d .

� Upper Critical Dimension: d = 4 .

� Lower Critical Dimension: d = 2 .

Chaos, Trento 2019 – p. 19/67



Collective Spectral Fluctuations

Guhr-Ma-Meyer-Wilke-1999

Difference of the total number of levels and the ensemble average of

the total number of levels as a function of λ for QCD

� A linear deviation from the average number of levels gives a

quadratic number variance.

� The quadratic term is entirely due to ensemble fluctuations.
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III. Three Dimensional QCD

Number Variance

Conformality

Universality
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Two Dimensional QCD

� Classification is different from 4d. In general, it depends on the

dimensionality subject to Bott periodicity.

� According to the Coleman-Mermin-Wagner theorem, continuous

symmetries cannot be spontaneously broken in two dimensions.

So

ρ(E) ∼ V Eα.

Estimate of exponent

α = 1/(2N2 − 1), N = 1, 2, · · ·

Nersesyan-Tvelik-Wenger-1994
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RMT Behavior and Conformal Spectra

� ρ(E) ∼ V Eα

� N(E) ∼ V Eα+1

Eigenvalues scale with the volume as 1
V 1/(α+1) . Nontrivial microscopic

limit

ρS(x) = lim
V→∞

1

V 1/(α+1)
ρ
( x

V 1(α+1)

)

.
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RMT Behavior in 2d QCD
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Kieburg-JV-Zafeiropoulos-2014
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RMT Universality and Spontaneous Symmetry
Breaking

N = 41

N = 21

0.58 E
1/14

Nc = Fundamental

0.005 0.02 0.1 0.5

0.4

0.5

0.6

ρ(E)

E

Spectral density of Dirac operator for lattice QCD with two colors and

naive fermions. Kieburg-JV-2019
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RMT Universality and Spontaneous Symmetry
Breaking

Z(x, y) =

∫

dHP (H)detn(x̄+ r +H)detn(x̄− r +H).

with x̄ = (x+ y)/2 and r = (x− y)/2 . This partition function has an

U(2n) global symmetry which is spontaneously broken to U(n)×U(n).

The U(2n) symmetry is broken by the ground state (or saddle-point) of

the theory.

The low-energy effective partition function is given by

∫

σ∈U(2n)/U(n)×U(n)

dσe−NrTrσ.

JV-Zirnbauer-1983,JV-Zahed-1993, Nishigaki-1996, Magnea-1999-2000,

Nagao-Nishigaki-2000, Kanazawa-Kiebug-JV-2019
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Universality of Spontaneous Symmetry Breaking

Theorem

The pattern of spontaneous symmetry breaking of a QCD-like theory is

given by the breaking pattern of a random matrix theory with the same

global symmetries in the limit of large matrix size.
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IV. Many-Body Theory and the
Sachdev-Ye-Kitaev Model

N ≪ 2−N

Sigma Model

SYK Model

How to Solve it

Average Spectral Density

Spectral Correlations

Universal Inaccuracy
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Many-Body Theory

N ≪ 2N
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Many-Body Theory

For a system of N particles

� Smallest eigenvalue: ∼ N

� Number of levels: ∼ 2N

� Spacing of the levels: ∼ 2−N
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Smoothness of the spectral density

� The number of parameters of a many-body system is at most of

O(N).

� The spectral density has structure on a scale of E0/N , with E0 a

typical energy, e.g. the ground state energy.

� Yet there are 2N levels.

� This gives an exponential separation of scales, and uninversal

RMT fluctuations can persist for an exponentially large number of

level spacings.
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The Two-Body Random Ensemble aka Complex
SYK

H =
∑

αβγδ

Wαβγδa
†
αa

†
βaγaδ.

French-Wong-1970

Bohigas-Flores-1971

Mon-French-1975

The labels of the fermionic creation and annihilation operators run over

N single particle states. The Hilbert space is given by all many particle

states containing m particles with m = 0, 1, · · · , N .

� Wαβγδ is Gaussian random.

� The Hamiltonian is particle number conserving.

� The matrix elements of the Hamiltonian are strongly correlated.

Brody-et-al-1981, JV-Zirnbauer-1984, Brown-Zelevinsky-Horoi-Frazier-1997,

Izrailev-1990,Kota-2001,Benet-Weidenmüller-2002,Zelevinsky-Volya-2004,

Borgonovi-Izrailev-Santos-Zelevinsky-2016
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σ-Model Formulation of the TBRE

Z(x, y) 〈detn(H + x)detn(H + y)〉

The partition function has a U(2n) symmetry which is spontaneously

broken to U(n)×U(n) by the saddle-point.

The σ-model is much more complicated now

Z =

∫

dσe−
1
2Trσ

2−Tr log(z−vR.σ), σ = σkl
ab.

with z = (x, · · · , x
︸ ︷︷ ︸

n

y, · · · , y
︸ ︷︷ ︸

n

) , k and l are replica indices, and , a and b

are many-body states. Information on the two-body interaction is

contained in R JV-Zirnbauer-1984

Rabcd =
∑

αβ

〈a|a†αa†β |c〉〈b|a†αa
†
β |d〉.
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Universality of correlations in the TBRM

� The saddle point solution is given by σkl
ab = δabδ

klσ̄ . This is the

mean field solution of the GOE or GUE.

� We have again Goldstone modes ∼ δab diagonal in many body

space correspoding to the spontaneous symmetry breaking

U(n)×U(n).

� The lowest order, two-point correlations are trially given by the

universal RMT result. This is the case if we ignore coupling

between massive and massless modes.

� The scaling (x− y)/∆λ is manifest.

� However, we found large corrections due to these coupling terms.

Zirnbauer-JV-1984

.
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The Sachdev-Ye-Kitaev (SYK) Model

The two-body random ensemble from nuclear physics also has merged

into the SYK model, where the fermion creation and annihilation

operators are replaced by Majorana operators (in general q of them.

For q = 4 the model is Mon-French-1975,Sachdev-Ye-1993,Kitaev-2015

H =
∑

α<β<γ<δ

Wαβγδχαχβχγχδ, q = 4.

The Majorana operators satisfy the commutation relations

{χα, χβ} =
1

2
δαβ , χ2k =

1√
2
(ak + a†k), χ2k−1 =

i√
2
(ak − a†k).

The two-body matrix elements are taken to be Gaussian distributed

with variance that is chosen such that the ground state energy scales

with N .
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Mon and French versus Sachdev and Ye
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Solving the SYK Model

� For q = 2 the model can be solved by diagonalizing the two-body matrix elements.

� Moment method. Moments have been calculated to order 1/N4 for arbitrary q.

Mon-French-1975,Garcia-Garcia-Jia-JV-2018,

Jia-JV-2018,Berkooz-Isachenkov-Narovlansky-Torrents-2018

� Formulating the model as a Feynman path integral. This makes it possible to take

the large-N limit. Sachdev-Ye-1993,Kitaev-2015,Maldacena-Stanford-2016,Bagrets-Altland-

kamenev-2016,Arevefa-Khramtsov-Volovich-2018,Wang-Bagrets-Chudnovskiy-Kamenev-2018

� Generating function 〈det(H + z)〉 .

JV-Zirnbauer-1983,Benet-Weidenmüller-2002,Liu-Nowak-Zahed-2016,Altland-Bagrets-2018

� Representing the Majorana fermions as γ-matrices in N dimensions. This allows

numerical diagonalization up to N = 42. Maldacena-Stanford-2015,Garcia-Garcia-JV-

2016,Cotler-et-al-2016,Gur-Ari-Mahajan-Vaezi-2018
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Path Integral Formulation

Z(β, s) =
∑

k,l

e−β(Ek+El)+is(Ek−El) =

∫

dΣdGe−N
∫

β,s
dtdt′L(Σ(t,t′),G(t,t′)).

� The large parameter N appears as a prefactor which allows a

saddle point approximation.

� Level correlations on the scale of the average level spacing follows

from the long time behavior of the partition function.

� This seems not to be a natural formulation for obtaining level

correlation.

� To obtain them we need the partition function at times 2N which

mixes up the large N expansion.
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SYK Model and Quantum Gravity

� The saddle point equations are reparametrization invariant under

Diff (S1 ) but the saddle point solution is only Sl(2,R) invariant. This

gives the Goldstone manifold Diff (S1) /Sl(2,R).

� The action with with this pattern of symmetry breaking is the

Schwarzian Action which is dual to two-dimensional

(Jackiw-Teitelboim) gravity). Maldacena-Stanford-2016,

Bagrets-Altland-Kamenev-2016-2017, Stanford-Witten-2017.

� The low-energy limit of the SYK model thus reduces to the

Schwarzian action.

� The spectral density at low energies is ρ(E) ∼ e
√

c(E−E0) .

� The SYK model is chaotic.

Banerjee-Altman-2017, Krihnan-Sanyal-Subramanian-2017, Caputa-etal-2017,

Stanford-Witten-2017, Bagrets-Altland-Kamenev-2016,

Garcia-Garcia-JV-2016, Ooguri-Vafa-2016, Kitaev-Su-2017,

Jevicki-Yoon-2016, Gross-Rosenhaus-2016,

Chaos, Trento 2019 – p. 39/67



V. Spectral Density

Scaling Limit

Analytical Formula
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Low Temperature Expansion

The partition function is that of a system of N/2 interacting fermions.

The low-temperature expansion is thus given by

βF = βE0 + S +
1

2
cT,

where E0 is the ground state energy, S is the entropy and cT the

specific heat.

� E0 , S and c are extensive.

� After a Laplace transform we obtain

ρ(E) =

∫ r+i∞

r−i∞

dβeβEZ(β) =

∫ r+i∞

r−i∞

dββ−3/2eβEe−βE0+S+ c
2β

= sinh(
√

2c(E − E))).

Bethe formula for the nuclear level density. Bethe-1936, Cardy-1991
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Scaling Limit of the Spectral Density of the SYK
Model

� N ≫ q2 : the eigenvalue density is point-wise a Gaussian.

Mon-French-1971, Garcia-Garcia-JV-2016

� q2 ≫ N : the eigenvalue density is point-wise a semi-circle.

Mon-French-1971, Benet-Weidenmüller-2002, Liu-Nowak-Zahed-2017

� q2/N fixed for N → ∞ : This is a nontrivial scaling limit where the

spectral density converges to the weight function of the Q-Hermite

polynomials. Cotler-etal-2016, Garcia-Garcia-JV-2017.

Garcia-Garcia-JV-2016
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Q-Hermite Approximation

� In evaluating averages in the Q-Hermite approximation, the

crossings of the Wick contractions as treated as independent.

� The spectral density is then determined by a single parameter

η = 2−N/2
(
N
q

)−1 ∑

β TrΓαΓβΓαΓβ =
(
N
q

)−1 ∑N
p=0(−1)p

(
N−q
q−p

)(
q
p

)
,

where Γα =
∏q

k=1 χαk
. Garcia-Garcia-JV-2016

and is given by the weight function of the Q-Hermite polynomials,

ρQH(E) = cN
√

1− (E/E0)2
∏∞

k=1

[

1− 4E2

E2
0

(
1

2+ηk+η−k

)]

with

E0 = 2σ/
√
1− η the ground state energy, and σ the variance of the

spectral density.

Cotler-etal-2016, Garcia-Garcia-JV-2017.
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Comparison with Numerical Results for q = 4
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Comparison of the exact spectral density obtained by numerical

diagonalization and the Q-Hermite result for the spectral density.

Garcia-Garcia-JV-2017
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VI. Spectral Correlations

Maximum Chaos

Universal Correlations

Collective Spectral Modes

Univeral Inaccuracy

Thouless Energy
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Upper Bound for Lyapunov Exponent

Lyapunov exponent λL

∆(t) ∼ ∆(0)eλLt

Energy-time “uncertainty relation”

∆t∆E ≥ ~

2
∆t ∼ 1/λ, ∆E ∼ πkT

So we have the bound

λL ≤ 2πkT

~

Maldacena-Shenker-Stanford-2015

Of the same type as the η/S bound by

Son.

kT

∆(0)

~∆(0)eλ t
∆( )t

Divergence of trajectories in a

stadium at temperature T

Chaos, Trento 2019 – p. 46/67



Correlations of eigenvalues

� Since the SYK model is maximally chaotic, the eigenvalue

correlation should be given by RMT.

� This can be tested by comparing correlation functions.

� We will consider the pair correlation function.
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Spectral Form Factor

Kc(t) =

∫

dxdyeit(x−y)ρ2c(x, y)
e−

x2+y2

2w2

√
πw

,

where we have added a regulator to remove finite size effects

( w . 2N/2 ) .

!"#

!$#
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Number Variance and Spectral Form Factor

0 20 40 60 80 100
 L

0
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2
(L)

N = 22
N = 34
GUE

Number variance versus the

length of the interval.

Garcia-Garcia-JV-

arXiv:1610.02363

Spectral from factor versus time.

Cotler-Gur-Ari-Hanada-Polchinski-

Saad-Shenker-Streicher-Tezuka-

arXiv:1611.04650
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Number Variance and Spectral Form Factor
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Connected part of the spectral

from factor versus time. Note

that the peak for small t is

four orders of magnitude lower

than in the figure on the previous

slide. Garcia-Garcia-Jia-JV-2019
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Form Factor on a Linear Scale

SYK, w = 3000

GOE

N = 3 � � q =4 � 8 � � o � � � � Q H � � � � � �

Ensemble Unfolding
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t
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The spectral form factor of the SYK model on a linear scale.
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Deviations from RMT

Deviations from RMT have two sources:

� Collective fluctuations from one realization to the next.

Flores-Horoi-Muller-Seligman-2000, Altland-Bagrets-2018,

Garcia-Garcia-Jia-JV-2018, Gharibyan-Hanada-Shenker-Tezuka-2018

� For a given realization, at some scale the spectral correlation see

the details of the system. Berry-1984

Our aim is to eliminate the systematics to maximize the range of

agreement with RMT.

In the previous figure, this scale behaves as N2 .
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N Versus 2N/2

� In a many-body system, we have two scales, N and 2N/2 .

N ≪ 2N/2

� RMT universality arises in the microscopic limit were the

correlation are expressed in units of the average level density, i.e.

in the double scaling limit

(x− y)2N/2.

One the questions of interest is what is the scale where spectral

correlations of the SYK model start deviating from the result for the

Wigner-Dyson ensembles.

In the previous figure, this scale behaves as N2 .
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Basic Problem

� The SYK model had
(
N
q

)
independent matrix elements. Naive

error analysis tells us that this results in fluctuations in observables

of order 1/
(
N
q

)1/2
going from one realization to the next.

� For example, the width of the spectrum for a given realization is

given by the square root of the second moment. It varies by a

relative error of 1/
(
N
q

)1/2
going over the ensemble.

� More generally, generic ensemble fluctuations of the level density

are of the same order, and deviations to the number variance

become of order one at
(
N
q

)
level spacings which is an exponential

small fraction of the total number of levels.
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Intrinsic Contribution to the Numbar Variance

Relative inaccuracy in level density of a single configuration

δσ

σ̄
.

This gives an inaccuracy in the level density

δρ(E)

ρ̄(E)
,

and contributes to the number variance of in interval ∆E containing

n =
∫

∆E
dEρ̄(E) on average,

Σ2(n) =

(∫

∆E

dEδρ(E)

)2

= 2

(
N

q

)−1

n2.

The numerical coefficients requires a more precise calculation.

Flores-Horoj-Muller-Seligman-2001,Altland-Bagrets-2017,Saad-Shenker-

Stanforld-2018,Garcia-Garcia-Jia-JV-2018
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Collective Fluctuations of Spectra

Fluctuations of the variance are given by the moment,

〈TrH2TrH2〉 − 〈TrH2〉2
〈TrH2〉2 =

6
(
N
q

) .

� Deviations from RMT are seen at a scale of n ∼ Nq/4 . This scale

is known as the Thouless energy. This agrees with numerical

results for q = 3 and q = 4.

Altland-Bagrets-2017,Garcia-Garcia-Jia-JV-2018
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Comment on σ Model result of Altland and
Bagrets

R2(ω) = RRMT
2 (ω) +

1

2

∆2

π2

∑

k

(
N

k

)
1

(iω − ǫ(k))2

γ2 = J2

(
N

4

)

, ǫ(k) = γ(S−1
k − 1).

We have Sk ∼ 1/N2

R2(ω) = RRMT
2 (ω) + 2−N

∑

k

(
N

k

)
S2
k

(1− iωSk/γ)2

= RRMT
2 (ω) + 2−N

∑

k

(
N

k

)

S2
k

∑

n

(n+ 1)(iωSk/γ)
n

= RRMT
2 (ω) +

1

2

(
N

4

)−1

+
∑

n

an(iω/(γN
2))n.
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Expansion in Q-Hermite Polynomials

ρSYK(E) = ρQH(E)
[∑

akH
Q
k (E/σ)

]

.

Both the ensemble average and the spectral density for a given

configuration can be expanded this way. We have

a0 = 1, a1 = 0,

〈a2〉 = 0, 〈a4〉 = 0, 〈a2k+1〉 = 0

Numerically, the nonzero |ak| < 0.005 and decreasing for larger k for

N = 32 and q = 4 .

Long-wavelength fluctuations are contained in the covariances of the

ak for small k . RMT fluctuations are contained in the coefficients with

k ∼ 2N/2 . The wavelength of mode k is 2N/2/k level spacings.
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Separating out the Secular Behavior

After subtracting the spherical harmonics only a thermal spectrum is

left. If we unfold configuration by configuration only RMT fluctuations

remain.
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Extreme Unfolding

-1. -0.5 0. 0.5 1.
�

100

200

300

ρ(�)

Fit

SYK

N = 32

Five parameter fit to the average spectral density.

� The SYK model actually does not have any structure. So we

should find RMT fluctuations to very large distance if the eliminate

the collective fluctuations. This is achieved by unfolding

configuration by configuration.
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Effect of Local Unfolding
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unfolded, (ensemble – left and local –right) connected two-point

function.

Garcia-Garcia-Jia-JV-2019
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QCD versus SYK
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Number variance for two-color QCD for various volumes

Et-al-Wettig-1998 and the number variance of the SYK model for various

numbers of fermions Garcia-Garcia-Jia-JV-2018. The Thouless energy is

∼
√
V for QCD and ∼ N for the SYK model. See also,

Kanazawa-Wettig-2018.
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VII. Conclusions

� RMT behavior of spectral correlations is one of the strongest

universality phenomena in nature, if not the strongest.
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VII. Conclusions

� RMT behavior of spectral correlations is one of the strongest

universality phenomena in nature, if not the strongest.

� Correlations of the QCD Dirac eigenvalues are given by RMT up to

thousands of level spacings after subtraction of the collective

fluctuations.

� The agreement of correlations of Dirac eigenvalues with RMT is

limited by collective fluctuations. The upper critical dimension is

four.

� RMT fluctuation are likely to be universal in the conformal case as

well. This is the case for 2d QCD.

� N ≪ 2N : Collective fluctuations limit RMT behavior to order N2,

but after subtracting them, RMT behavior is seen to O(2(N/2)

level spacings.
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Physics Goals for the Next 25 Years

� Many-Body Quantum Chaos

� Quantum Gravity

� Confinement

� Sign Problem

� Intelligent Computation

� Emergent Phenomena
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IV. Conclusions

� Spectral correlations of the SYK model are universal. There are

deviations at many level spacings similar to those found in

disordered systems. They become visible at ∼ Nq/2 spacings.
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IV. Conclusions

� Spectral correlations of the SYK model are universal. There are

deviations at many level spacings similar to those found in

disordered systems. They become visible at ∼ Nq/2 spacings.

� Deviations from RMT are due to collective fluctuations of

eigenvalues. There are no deviations when unfolding configuration

by configuration. Two-point spectral correlations are not ergodic.

� These results are consistent with the idea that the SYK model is

maximally chaotic.

� In a sense a black hole is dual to a compound nucleus.
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Scale Fluctuations and Spectral Form Factor

Kc(t) =
∑

k,l

eit(Ek−El) −
∣
∣
∣
∣
∣

∑

k

eitEk

∣
∣
∣
∣
∣

2

A scale transformation Ek → Ek(1 + δ) correspond to

Kc(t) → Kc(t(1 + δ))

Averaging,

〈Kc(t(1 + δ)〉 = Kc(t) +
1

2
K ′′

c (t)〈δ2〉

Only gives contributions at the kink or when Kc(t) deviates from the

random matrix result such that K ′′
c (t) 6= 0 .
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Interpretation

� The mass of the pseudo-Goldstone boson corresponding to z is

given by 2Re(z)Σ/F 2
π .

� Random Matrix behavior is seen for z values where the pion

Compton wavelength is much larger than the size of the box.

Osborn-JV-1998.

� Low modes of Pion ripples on top of the vacuum correspond to

collective fluctuations of the Dirac spectrum.
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