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Outline

Investigation of distribution of phase of fermion determinant for RMT model
of Osborn with chemical potential

@ Sign problem at nonzero chemical potential
@ Distribution of periodic phase

© Definition and distribution of extensive phase
© Gaussian Ansatz

@ Cumulant expansion

@ Quasinormal Ansatz )
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RMT with chemical potential
Osborn model:
7 = f d¢1d¢ze—Ntr(¢1¢I+¢z¢;) detM
where ¢1, ¢, are N x N complex random matrices

Dirac matrix
M(m,u) =D+ m+ ul'* J

with

[ 0 i¢y [0 ¢y
D‘(iqﬁ'{ 0) and F“‘(qb;” 0)
—_—

antihermitian hermitian

Jacques Bloch About the phase of the fermion determinant in RMT

2/27



Observables and analytical results

Number density and chiral condensate

_LdlogZ 1 1
2N dm 2N<t M)
1 dlogZ 1 1
T 2N du 2N<tr[M L)

Known analytical results in terms of generalized Laguerre polynomials
(Osborn, Splittorff, Verbaarschot):

m L} Ly(9) v [1 m?2 1(q)}
T 1—p Ly(Q) 1—u? 1—p? Ly(q)
withqz—iv_”jz.
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Computing observables numerically: reweighting

For u # 0: det M is complex = NO importance sampling J

Workaround: Reweighting

<yei9>pq .
()= E with det M = Re!
Pq

Sign Problem
Cost grows exponentially with volume
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Average phase factor and observables

Write partition function as

_ 0
Z= qu <el >pq

Number density and chiral condensate

Ldlog (e"‘))pq

N Ldlog (ei@)pq
M 2N du

nen T ON T dm

, X=X

@ Compute n,, 2, from phase quenched Monte Carlo simulation

Dynamical correction? Use information about phase distribution
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Phase distribution

Phase distribution of fermion determinant in phase quenched ensemble:
(Gocksch, PRL 61 (1988) 2054)

p(6)= Zif d¢1d¢ze_58|detM| 6(0 —argdet M)

pg

Such that

average phase factor

(), = f do p(6)e™

For periodic phase 6 € [—m, 7): strong sign problem — p(6) almost
uniform — not useful
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Distribution of periodic phase for N =8 and m = 0.1
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Extensive phase

Extensive phase for one configuration (¢, ¢5): (Ejirietal)

w
O(u) = |mj dy’
0

dlogdet M (m,u’)
du’

@ avoids branch cut discontinuities

@ requires M ! along u-integration

Rewrite kernel

u
O(u) =1Im J du’ [ (My(m) + p') ']
0

n
= ImJ du’ te[ M(m, /)1, ]
0

4

with I;-Dirac matrix M,(m)

M,(m) =T, (D +m)

v

Jacques Bloch

(similar to Ipsen and Splittorff, 2012)
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Computing the extensive phase

Assume A are eigenvalues of M4(m):

u
N1 _
0(1) = Im JO du ;m M,—;[argmkw arg(%)]

u shifts eigenvalues parallel to real axis — no branch cut discontinuities

A& ------ F---sA+u

2

Note: eigenvalues of M, come in pairs (A, —A*), i.e. mirrored wrt imaginary axis
y
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Distribution of extensive phase for N =8 and m = 0.1

= periodic
= extensive

= periodic
= extensive

= periodic
= extensive

= periodic
= extensive
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How to determine and use phase distribution?

One possibility: LLR approximation (Langfeld, Lucini, Garron)

Accurate piece-wise linear approximation for In p — exponential error

suppression

@ Method very expensive: 6-range subdivided in many intervals; each
interval requires several Markov chains

@ No clear gain: (eie)pq computed by numerical integration of p(6) cos 6
Integral plagued by strong sign problem — needs very precise
knowledge of p(0).

@ Exponential error suppression — relative error on p(6) same for all 6
— problem: absolute error in center of distribution p(8) is too large.

@ Observation: p(8) can still be useful when fitted to smooth function
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Using the phase distribution

Our approach
Avoid expensive LLR framework — determine p(6) directly from phase
qguenched MC simulations (moments and histogram)

@ Gaussian Ansatz
@ Cumulant expansion

@ Quasinormal fit |
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Gaussian Ansatz

Gaussian Ansatz

1 62
p(0) = o exp [_F]

o2 from second moment

(62),,= 0

P

Average phase factor

(eie>pq = exp (_%2) = exp (— <9;)Pq)
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Number density for Gaussian Ansatz

Gaussian Ansatz

. 02)
o
log (el >pq - 2 = |
Number density
1 dlog (eig)pq
n=ng+_-———7F——
2N du

Dynamical correction to particle density

dlog(e),, ~ 1d(6%),

du 2 du
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Dynamical correction for Gaussian Ansatz

Compute derivative using finite differences

d (6%, _ (00 — (OW_Y),

du Al

where (- - -)pqi are phase quenched ensemble averages at yu,. = u %+ %

Reduce statistical error on finite difference by using reweighting

|detD.|
< |de€ftD| Q(Md:)2>

Pq

(9(ui)2)pqi =

|detDy|

|detD| o
— No need for separate Markov chains at p.
— Correlations strongly reduce statistical errors

}—> very effficient
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Number density from Gauss Ansatz

3.0
pa
rew .
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Cumulant expansion

Cumulant expansion

00
log (e Z
with cumulants (distribution even in 6)1
Cy = (6%),,
Cq = (6%),—3(0%);,
Cs=(0%) —15(6%) (6%) +30(62)"

— Easy to implement and efficient, elegant way to compute observables
— BUT, is it any good?
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Cumulant expansion: Dynamical correction

Dynamical correction to particle density

log (eie)pq _ = (_1)11 dC2n
du o (2n)! du

Compute derivative using finite difference with Cs,, ((92>pq ey <92n>pq)

dCZn — C;n B C2_n

du AU
where C;:n = C2n ((Q(Mi)2>pqi’ ccop (Q(Hi)zn)pqi) with Yy = + %

Reduce statistical error on finite difference by using reweighting

|detD,|
(1lel g (1, )

P

(9(“:|:)2k)pqi =

< |detDi| >
|detD| 5

Jacques Bloch About the phase of the fermion determinant in RMT 18/27




Number density from cumulant expansion
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Cumulant expansion on same level as reweighting, but convergence too
slow to determine systematical error or allow extrapolation
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Cumulant expansion: Average phase factor

o Directly compare log (eie)pq from cumulant expansion with subset MC
results. Subsets for Osborn RMT is only method available to compute
(el?) »q Up to machine precision (JB, 2012)

log(e™®)

S00093¢

o

oo .
§ Y
l.o.

log(e™®)

— Gaussian Ansatz: (6%) , grows as expected with volume, but
insufficiently with u! — Gaussian Ansatz does not describe the data

— Cumulant expansion: convergence too slow — method not useful for
treatment of sign problem

Jacques Bloch
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Alternative: quasinormal Ansatz
Assume distribution p(8) of extended phase to be exponential of even
polynomial in @ (motivated by Greensite, Myers, Splittorff, 2013)

Ansatz: simplest extension of Gaussian distribution

62 02 o4
p(9):Nexp|:—ﬁ (1+a4§+a6;+---):|

@ Ansatz also suggested by our RMT simulations: p(8) almost Gaussian
with small nonzero higher order contributions.

@ Parameters: can be fitted to moments (92") or to histogram of p(6)
measured in phase quenched RMT simulations.
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(e'?)  from quasinormal Ansatz

Compare log (') . computed from quartic Ansatz with NLO cumulant
expansion (up to Cy)

& € -3
L, 2
> o =3
° 24
-5
-5
67 —— subsets — subsets
Gaussian 6 Gaussian
710 G ¢ G
¢ fita ¢ fita
-8 -7
0.0 01 0.2 03 0.4 05 0.6 07 00 01 02 03 04 05 06 07 08
H H
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(e'?)  from quasinormal Ansatz

Compare log (e“’)pq computed from hexic Ansatz with NNLO cumulant

expansion (up to Cg)

Jacques Bloch

eee

subsets
Gaussian
Co
fit 4
fit 6

0.1 0.2 0.3 0.4 0.5 0.6 0.7
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[llustration of fit

Example of fitfor N =8, m =0.4,u=0.7
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Note on cumulant expansion

Mathematica computation of cumulants for quasinormal Ansatz with large

sign problem
. =0F
log (e Zan, with gop, = — @ Can
ot o ® g2
KIn
10° L
65\ L]
107! e o
0 10 20 30 40 50
2n
n
Fit: f(2n) = *- — terms of Taylor expansion of —log(1 — ) with k ~ 1

Resummation? Requires knowledge of cumulants to exponential accuracy!

Jacques Bloch

About the phase of the fermion determinant in RMT

24 /27



Staircase moments

Improve accuracy of parameters of p(6) by replacing moments (02" by
staircase moments (62),,_, (independent Markov chains)

) [ dop(6)6>"
(9 >2n—2 = —2_2
[ dop(6)62n
sampling weights sacase moments [ 777
6°p(6) (62)s
2
6p(6) (6%)s
2
0%p(6) (6%)4
2
02p(0) (6%),
2
p(6) 6%

Jacques Bloch About the phase of the fermion determinant in RMT 25/27



Improved accuracy of moments

Moments of p(68) are then given by the recursive formula

— decrease statistical error on moments due to much better overlap when

computing expectation

Moments and relative standard deviation € for a Gaussian distribution:

(62™) = (6°"72) (62) 32

value

improvement using the staircase method

Moment | Value € €sc | (6/€s)?
02 o2 1.41 | 1.41 1.0
04 304 3.27 | 1.63 4.0
0° 150° | 6.72 | 1.75 | 147
o8 10508 | 1352 | 1.83 | 545

(610) | 94501° | 27.06 | 1.89 | 204.8

— Use staircase moments to determine parameters of p(6)

Jacques Bloch
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Conclusions and Outlook

@ Gaussian Ansatz for phase distribution and cumulant expansion
— no reliable access to average phase factor

@ Higher order fit Ansatz gives useful description of the phase distribution

@ Further systematic investigations of statistical error and higher order
effects are necessary

@ Work on thimbles revealed that average phase can be very sensitive to
quartic parameter ay, but this was not encountered in present work

@ Compute number density using fit Ansatz — Requires derivative of
parameters wrt U

@ Investigate usefulness of staircase moments
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