
Numerical tests of RMT in lattice QCD

Urs M. Heller

American Physical Society & BNL

ECT* workshop “RMT in Sub-Atomic Physics and Beyond.”
In honor of Jac Verbaarschot’s 65th birthday.

Trento, Italy

Aug 5–9, 2019

Urs M. Heller (APS) RMT in High Energy Physics and Beyond Aug 5–9, 2019 1 / 35



Introduction

First tests with staggered fermions

First tests with overlap fermions

Including staggered lattice effects

Including lattice effects for Wilson fermions

Conclusions

Urs M. Heller (APS) RMT in High Energy Physics and Beyond Aug 5–9, 2019 2 / 35



Collaborations

Part of this research was done in collaboration with

◮ P.H. Damgaard and A. Krasnitz, Phys. Lett. B445 (1999) 366
[arXiv:hep-lat/9810060]

◮ R.G. Edwards, J. Kiskis and R. Narayanan, Phys. Rev. Lett. 82, 4188
(1999) [arXiv:hep-th/9902117]

◮ R.G. Edwards and R. Narayanan, Phys. Rev. D60, 077502 (1999)
[arXiv:hep-lat/9902021]

◮ P.H. Damgaard, R. Niclasen and K. Rummukainen, Phys. Rev. D61,
014501 (1999) [arXiv:hep-lat/9907019]

◮ P.H. Damgaard, R. Niclasen and K. Rummukainen, Phys. Lett. B495
(2000) 263 [arXiv:hep-lat/0007041]

◮ P.H. Damgaard and K. Splittorff, Phys. Rev. D85, 014505 (2012)
[arXiv:1110.2851]

◮ P.H. Damgaard and K. Splittorff, Phys. Rev. D86, 094502 (2012)
[arXiv:1206.4786]

See also: UMH, PoS Lattice 2011 (2011) 103 [arXiv:arXiv:1112.1914]

Urs M. Heller (APS) RMT in High Energy Physics and Beyond Aug 5–9, 2019 3 / 35



Introduction
Random matrix theory was introduced for the description of low energy
properties of QCD, in particular for the finite volume Dirac operator
spectrum, by Jac and collaborators:

E.V. Shuriak and J.J.M. Verbaarschot, Nucl. Phys. A560 (1993) 306
[arXiv:hep-th/9212088];
J.J.M. Verbaarschot and E. Zahed, Phys. Rev. Lett. 70, 3852 (1994)
[arXiv:hep-th/9303012];
J.J.M. Verbaarschot, Phys. Lett. B329 (1994) 350 [arXiv:hep-th/9402008];
Nucl. Phys. B426 (1994) 559 [arXiv:hep-th/9401092]; Phys. Rev. Lett. 72,
2531 (1994) [arXiv:hep-th/9401059].

Gauge theories with various gauge groups and fermions in different
representation fall into three different universality classes of spontaneous
chiral symmetry breaking and corresponding classes of RMT ensembles.

◮ Pseudo-real rep.: enhanced to SU(2Nf ) → Sp(2Nf ); chOE
◮ Complex rep.: SU(Nf )× SU(Nf ) → SU(Nf ); chUE
◮ Real rep.: enhanced to SU(2Nf ) → SO(2Nf ); chSE

See also P.H. Damgaard, UMH, R. Niclasen and B. Svetitsky,
Nucl. Phys. B633 (2002) 97 [arXiv:hep-lat/0110028]
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Microscopic spectral density

The rescaled, with the condensate Σ = πρ(0), microscopic spectral density,

ρs(ζ) =
1

V
ρ

(

ζ

VΣ

)

; ζ = λVΣ ,

is universal. For the chiral unitary ensemble it is given by,

ρs(ζ) = πρ(0)
ζ

2

[

JNf +ν(ζ)
2 − JNf +ν+1(ζ)JNf +ν−1(ζ)

]

.

Here ν is the fixed index, or the fixed topological charge, of the sector
considered, V the finite volume, and Nf the number of dynamical fermion
flavors.

G. Akemann, P.H. Damgaard, U. Magnea and S.M. Nishigaki,
Nucl. Phys. B487 (1997) 721 [arXiv:hep-th/9609174];
P.H. Damgaard and S. Nishigaki, Nucl. Phys. B518 (1998) 495
[arXiv:hep-th/9711023];
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Smallest eigenvalue distributions
Also universal, with known analytic expressions, are the distributions of the
lowest rescaled eigenvalue. For the Nf = 0 unitary ensemble one finds, e.g.,

Pmin(ζ) =

{

ζ
2 e

−ζ2/4 if ν = 0 ,
ζ
2 I2(ζ)e

−ζ2/4 if ν = 1 .

P.J. Forrester, Nucl. Phys. B402 (1993) 709;
S.M. Nishigaki, P.H. Damgaard and T. Wettig, Phys. Rev. D58, 087704
(1998) [arXiv:hep-th/9803007].

Further, it can be shown that the eigenvalue distributions can be obtained
directly from the finite volume partition function of QCD, that is from the
zero-momentum part of the chiral Langrangian, without resorting to RMT.

P.H. Damgaard, Phys. Lett. B424 (1998) 322 [arXiv:hep-th//9711047];
G. Akemann and P.H. Damgaard, Nucl. Phys. B528 (1998) 411
[arXiv:hep-th/9801133]; Phys. Lett. B432 (1998) 390
[arXiv:hep-th/9802174];
J. Osborn, D. Toublan and J.J.M. Verbaarschot, Nucl. Phys. B540 (1999)
317 [arXiv:hep-th/9806110].
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First tests with staggered fermions

The first numerical tests for 4d QCD-like theories were performed with
staggered fermions for gauge group SU(2), both in the quenched
approximation, Nf = 0, and with dynamical fermions.

For staggered fermions, with the Dirac matrices replaced by real-valued
phases, however, the chiral symmetry breaking patterns, and thus RMT
ensembles, are changed compared to continuum fermions.

◮ Pseudo-real rep.: chSE

◮ Complex rep.: chUE

◮ Real rep.: chOE

chSE and chOE are interchanged!

Examples for gauge group and fermion representation for each of the three
cases are:

◮ Pseudo-real rep.: SU(2) fundamental representation

◮ Complex rep.: SU(3) fundamental representation

◮ Real rep.: SU(N) adjoint representation
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Staggered fermions: SU(2) fundamental

The quenched microsopic spectral density and distribution of the smallest
eigenvalue, compared with chSE predictions:

M.E. Berbenni-Bitsch, S. Meyer, A. Schäfer, J.J.M. Verbaarschott and
T. Wettig, Phys. Rev. Lett. 80, 1146 (1998) [arXiv:hep-lat/9704018];
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Staggered fermions: SU(2) fundamental
The distribution of the smallest eigenvalue and microsopic spectral density
for a dynamical ensemble with one staggered flavor. µ = mVΣ is the
rescaled mass of the dynamical fermions. Because of a global charge
conjugation symmetry, the comparison is to RMT with Nf = 2.

M.E. Berbenni-Bitsch, S. Meyer and T. Wettig, Phys. Rev. D58, 071502
(1998) [arXiv:hep-lat/9804030].
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Staggered fermions: SU(3) fundamental

For SU(3) fermions in the fund. rep., chUE, we (PHD, UMH, AK) find:

Urs M. Heller (APS) RMT in High Energy Physics and Beyond Aug 5–9, 2019 10 / 35



Staggered fermions: SU(2) and SU(3) adjoint

For SU(N), N = 2, 3, fermions in the adjoint rep., chOE, we (RGE, UMH,
RN) find:
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Staggered fermions: SU(2) and SU(3) adjoint
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Staggered fermions: SU(3) fund, 10 evs

Integral expressions have been derived for k-th eigenvalue distributions.

P.H. Damgaard and S.M. Nishigaki, Phys.Rev. D63, 045012 (2001)
[arXiv:hep-th/0006111].

We (PHD, UMH, RN, KR) compared with quenched staggered results:
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Staggered fermions: one flavor dynamical

We (PHD, UMH, RN, KR) also compared with Nf = 1, i.e., one staggered
dynamical flavor, results. µ = mVΣ is again the rescaled mass of the
dynamical fermions.
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Staggered fermions: one flavor dynamical

We also checked the mass dependence of the RMT prediction, here for the
miscroscopic spectral density.
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Staggered fermions and topology

At the strong couplings and hence large lattice spacings used so far, the
staggered lattice effects are so large that the eigenvalues do not come in
quadruplets, for the Nt = 4 continuum fermions, but are equally spaced.

Even at a smaller lattice spacing, a ≈ 0.09 fm, only highly improved
staggered fermions start showing the quarduplet structure.
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Staggered fermions and topology

And only with highly improved staggered fermions do the “almost”
zeromodes in topologically nontrivial sectors start to emerge.

For the large lattice spacing used to compare with RMT predictions, we
(PHD, UMH, RN, KR) found the the staggered results agree with the ν = 0
RMT predictions, used for all previous comparions, regardless of the
topological charge sector, determined with cooling and a gauge field
definition of the topological charge.
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Staggered fermions: insensitive to topology
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Staggered fermions: insensitive to topology
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First tests with overlap fermions

The tests with staggered fermions presented so far have two drawbacks:

◮ Two of the universality classes, chOE and chSE, are interchanged with
respect to continuum fermions.

◮ At the (large) lattice spacing used, staggered fermions are insensitive to
the topological charge and so only ν = 0 predictions have been tested.

Overlap fermions overcome both these drawbacks. They have the same chiral
symmetries as continuum fermions and they are sensitive to topology, having
exact zeromodes in topologically nontrivial sectors.

R. Narayanan and H. Neuberger, Nucl. Phys. B443 (1995) 305
[arXiv:hep-th/9411108];
H. Neuberger, Phys. Lett. B417 (1998) 141 [arXiv:hep-lat/9707022].

We (RGE, UMH, JK, RN) considered an example from each of the three
RMT universality classes both in the sector with ν = 0 and ν = 1, where we,
of course, also found an exact zeromode.
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First tests with overlap fermions
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Including staggered lattice effects

At low energy, the leading fermion discretization effects can be included in
χPT by considering a modified chiral Langrangian

L =
f 2

8
Tr

(

∂µU∂µU
†
)

−
1

2
mΣTr

(

U + U†
)

+ a2V .

V describes the taste breaking terms

V = −
1

2
C4Tr

(

ξµ5Uξ5µU
† + h.c .

)

+ . . . ,

where we only displayed the numerically dominant term (for pseudoscalar
mass splittings) explicitly. Here ξµ = γ∗µ are taste matrices.

In the ǫ-regime of χPT the zero momentum modes dominate and the first
term in L can be neglected. The ǫ-regime can equivalently be discribed by
chiral RMT, with the Dirac operator represented as

D = D0 ⊗ I4 + aT ,
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Including staggered lattice effects

D0 =

(

0 iW

iW † 0

)

with W a random (N + ν)× N complex matrix.

T denotes taste-breaking terms with the dominant one taking the form

TC4
=

(

Aµ 0
0 Bµ

)

⊗ ξµ5

with Aµ and Bµ Gaussian random Hermitian matrices of size
(N + ν)× (N + ν) and N × N, respectively, with width proportinal to C4.

The dimensionless combination a2C4V controls the strength of the taste
breaking in staggered RMT. For weak taste breaking, a2C4V ≪ 1, the
quartets of eigenvalues are split at leading order into pairs, which are slightly
split at second order. The splittings are

∆λ2
λ

∝ a
√

C4V ,
∆λ1
λ

∼
∆λ3
λ

∝ a2C4V .

For more details, see
J. Osborn, Phys. Rev. D83, 034505 (2011) [arXiv:1012.4837].
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Including staggered lattice effects

We compare distributions of eigenvalues from ∼ 1200 Q = 0, a = 0.093 fm,
and L = 1.5 fm configurations with MC generated staggered RMT ν = 0
eigenvalue distributions.

Qualitatively, the distributions look quite similar.
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Including staggered lattice effects

The same for ∼ 2000 |Q| = 1 configurations and ν = 1 staggered RMT MC
generated eigenvalue distributions.

The slightly lower peak for the “would-be zeromodes” on the right indicates
that the value of a2C4V used is a little too large.
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Including lattice effects for Wilson fermions

In the ǫ-regime, and with the power counting m ∼ a2, the zero momentum
part of the Wilson chiral Lagrangian is

L = −
1

2
mΣTr

(

U + U†
)

+ a2W8Tr
(

U2 + U†2
)

+a2W6

[

Tr
(

U + U†
)]2

+ a2W7

[

Tr
(

U − U†
)]2

.

The two-trace terms of the second line are suppressed at large Nc .

The Dirac operator for the chiral RMT including the one-trace term is

DW =

(

ãA iW

iW † ãB

)

with W a random (N + ν)× N complex matrix, and A and B random
Hermitian matrices of size (N + ν)× (N + ν) and N × N, respectively.
HW = γ5 (DW + m̃) is the RMT equivalent of Hermitian Wilson Dirac
operator HW = γ5 (DW +m) with

m̂ = mΣV = 2m̃N and â2 = â8 = a2W8V =
1

2
ã2N

held fixed. The rescaling is with ΣV for QCD or 2N in RMT.
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Including lattice effects for Wilson fermions

G. Akemann, P.H. Damgaard, K. Splittorff, J.J.M. Verbaarschot,
Phys. Rev. D83 085014 (2011) [arXiv:1012.0752]
have worked out the eigenvalue distribution of the Hermitian Wilson Dirac
operator in Wilson χPT and
G. Akemann and T. Nagao, JHEP 10 (2011) 060 [arXiv:1108.3035]
reproduced the results directly from Wilson RMT.

The two-trace terms can be incorporated via two Gaussian integrations

Zν(m̂, ẑ ; â6, â7, â8) =

1

16πâ6â7

∫ ∞

−∞

dy6dy7e
−

y26

16â2
6

−
y27

16â2
7 Zν(m̂− y6, ẑ− y7; 0, 0, â8) ,

where Zν(m̂, ẑ ; 0, 0, â8) is the fixed-index partition function including the
one-trace O(a2) term and with a ψ̄γ5ψ term represented in the chiral
Langrangian as ∆L = − 1

2zΣTr
(

U − U†
)

and ẑ = zΣV .
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Including lattice effects for Wilson fermions

For our (PHD, UMH, KS) test in the quenched case, we generated three
ensembles using the Iwasaki gauge action, which suppresses dislocations, and
gives a fairly unique index (topol. charge Q).

βIw r0/a a [fm] size L [fm] cfgs ν = 0, 1, -1
2.635 5.37 0.093 164 1.5 6500 1246, 1088, 1045
2.635 5.37 0.093 204 1.9 3000 379, 319, 322
2.79 6.70 0.075 204 1.5 6000 1172, 990, 988

I first show results from the comparison of the lowest (in magnitude) 20
eigenvalues of the Hermitian Wilson Dirac operator, with 1 HYP smearing,
for bare mass am0 = −0.216 on the the 164 ensemble with a = 0.093 fm,
L = 1.5 fm) with Wilson RMT.

The strategy was to find values for the Wilson RMT parameters â and m̂,
and the eigenvalue rescalig factor ΣV so that Wilson RMT “fits” the
measured (histogrammed) distribution “well” (by eye) for Q = 0. Using the
same parameter values, Wilson RMT then predicts the |Q| = 1 distribution
that can be compared with the measured one.
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Including lattice effects for Wilson fermions

Testing Wilson RMT for for Q = 0 (left) to determine Wilson RMT
paramenters and for |Q| = 1 (right) which follows as a prediction.
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Wilson RMT describes the data quite well!
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Including lattice effects for Wilson fermions

Using volume scaling, âB = âA
√

VB/VA and m̂B = m̂A(VB/VA) we get
predictions for both the Q = 0 and |Q| = 1 sectors on the larger volume at
otherwise the same parameters.
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Again Wilson RMT describes the data quite well!
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Including lattice effects for Wilson fermions

Next, on the fines lattice ensemble, we tested the mass dependence of Wilson
RMT predictions. We first considered bare mass am0 = −0.184 and
determined the Wilson RMT in the Q = 0 sector (left) and used them for
predicitions in the |Q| = 1 sector (right).
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Again Wilson RMT describes the data quite well!
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Including lattice effects for Wilson fermions

Next, we considered bare mass am0 = −0.178 and compared with Wilson
RMT with the mass parameter rescaled by ∆m̂ = ∆m0ΣV .
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For both Q = 0 and |Q| = 1 Wilson RMT predicts the data quite well!
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Including lattice effects for clover fermions

On the same configurations, we also considered clover improved fermions,
again with 1 HYP smearing and clover coefficient set to 1. We show
examples from the coarser lattice for Q = 0 (left) and |Q| = 1 (right).
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Wilson RMT describes the data quite well, with lattice effects about a factor
3-4 reduced from Wilson fermions. This leads, in particular, to the higher
peak from the “zero modes” for |Q| = 1.

We can describe the data equally well with either â8 or â6 nonzero.
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Including lattice effects for clover fermions
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The |Q| = 2 sector, however, stongly favors â6 6= 0. â8 6= 0 would lead to
level repulsion among the two “zero modes” that we do not observe.
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Conclusions

I have reviewed numerical tests of RMT predictions in (lattice) QCD.

◮ We have completed the test for all RMT ensembles with staggered
fermions, chUE, SU(3) fund., and chOE, SU(N) adjoint; chSE, SU(2)
fund., had been done before.

◮ The drawbacks of staggered fermions are
◮ chOE and chSE are interchanged compared to continuum fermions;
◮ At the large lattice spacings used, staggered fermions are insensitive to

topology, so only the ν = 0 predictions could be tested.

◮ Overlap fermions overcome both these drawbacks and we performed test
for all three RMT ensembles in topological sectors with ν = 0 and ν 6= 0.

◮ Finally we performed tests of extensions of RMT to include lattice
artefacts both for staggered and Wilson fermions.

All these tests were sucessful!

Happy birthday, Jac!
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