RMT in Sub Atomic Physics and Beyond

Conference in Honor of

Jac Verbaarschot's 65th Birthday

Correlation Matrices in States of Financial Markets

Where is RMT???

Hirdesh Pharasi, Manan Vyas, José Morales Thomas Guhr and T.H. Seligman

Introduction

- Time series and the scope of time series; multivariate analysis.
- Correlations versus covariance
- The random prior; white noise and Wishart ensembles
- Stationary processes are well worked but unrealistic
- Can we learn something from N time series of length T with k=N/T large; many time series
- Zero subspace and power map
- An ensemble of data with $k \sim 1$ (typically slightly smaller)
- 2-D Ising model; Critical behaviour
- Zero subspace and power map
- SP 500 (New York) and Ni 225 (Tokio)
- Why financial time series; why precisely the stock market?
- Clustering and market states;
- Zero subspace and power map
- RMT clusters
- spectral properties

See Black board for reference

White Noise: Marchenko Pastur density; Q = T/N small

,

Results for Data ensembles

Block correlations ensemble average

Distribucion of eigenvalues for the Data ensemble

Time series in the Ising Model with Metropolis algorithm

Fig. 1: Spectral statistics of C at a high temperature, 2J/T = 0.001, for L = 192. In (a) we compare the spectral density with the Marćenko-Pastur formula. In (b) and (c), we compare the nearest-neighbor spacing distribution, P(S), and the number variance, $\Sigma^2(r)$, with those of RMT. Numerics are shown by open circles and RMT results are shown by solid lines.

The analytic result for the power ζ of a spectral Zipfplot with

power θ in a d-dimensional space of time series leading to the correlation

$$egin{aligned} &C_{ec{n},ec{m}}pproxrac{c}{ec{ec{n}}-ec{m}ec{ec{ heta}}ec{ec{ heta}}}, & ext{for} & 1\llec{ec{n}}-ec{m}ec{ec{ heta}}ec{ec{ heta}}ec{ec{ heta}}. \end{aligned}$$

From Reference: Prosen, T., B. Buča, and T. H. Seligman. "Spectral analysis of finite-time correlation matrices near equilibrium phase transitions." *EPL (Europhysics Letters)* 108.2 (2014): 20006.

Zipfplot or ranking at critical and high temperature for T>>N

Data Matrix method

Eigenvalue density

T<<N

The Zipfplot for the highest eigenvalue at the critical point

Stylized Clusters

The Power Map

is originally a noise reduction technique, and later leads to the so called emerging spectrum.

 $C_{kl}^{(q)} = \operatorname{sign} C_{kl} \left| C_{kl} \right|^q$

Schäfer, Rudi, Nils Fredrik Nilsson, and Thomas Guhr. "Power mapping with dynamical adjustment for improved portfolio optimization." *Quantitative Finance* 10.1 (2010): 107-119.

Typical values of q are 1.5 - 1.8

More recently values of q between 1.001 and 1.2 where used to obtain more information about the zero modes in terms of the *Emerging spectrum*, well separated from the bulk, when T<<N.

Vinayak, Schäfer, Rudi, and Thomas H. Seligman. "Emerging spectra of singular correlation matrices under small power-map deformations." *Physical Review E* 88.3 (2013): 032115.

Clustering techniques and market states

We use a standard k menas code and dimensional scaling to three dimensions,

Transfer Graph SP500

A view of clustering

Stylized clusters

Construct a RMT cluster as a correlated Wishart ensemble with the average matrix for each state and apply the same power map used in the original

Use nI white noise data matrices D and construct the stylized ensemble for the cluster I

```
Cluster I = 1/nI sqrt(\langle SI \rangle)D (sqrt(\langle SI \rangleD)'
```

where nI corresponds to the number nI of frames or correlation matrices SI in the cluster I and D is an nI x T normalized white noise matrix,

The stylized clusters

As the results are quite new, we have having fun but:

No conclusion!

Happy birthday Jac !!!!

Fig. 4 Semi-log plots of the eigenvalue spectra for the correlated Wishart ensemble W with parameters N = 1024 and M = 256 at a constant correlation with U = 0.1, and distortion parameters of: (a) $\varepsilon = 0$, (b) $\varepsilon = 0.1$, (c) $\varepsilon = 0.2$, (d) $\varepsilon = 0.4$, (e) $\varepsilon = 0.6$, and (f) $\varepsilon = 0.8$. For $\varepsilon = 0.1$, the emerging spectrum is well separated from non-zero eigenvalues but with the increase of the distortion parameter ε the emerging spectrum starts moving towards the remaining non-zero eigenvalues spectra, and eventually merges with it at higher values, e.g., $\varepsilon = 0.8$.

Transfer matrix

Upper triangle shifts to higher states: Lower triangle shifts back

	S1	S2	S 3	S4
S 1	0.7444	0.2331	0.0150	0.0075
S2	0.2381	0.6111	0.1429	0.0079
S 3	0.0588	0.3725	0.5098	0.0588
S 4	0	0	0.3571	0.6429

Full power map spectrum for correlated Wishart ensembles with constant correlation 0.1