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Overview

• Enormous progress in amplitude computations for gauge theories

• Gravity as (Yang-Mills) × (Yang-Mills)

• Classical general relativity from the loop expansion

• Post-Newtonian and Post-Minkowskian expansions in general relativity

• Scattering of black holes – black hole mergers – gravitational waves

• Outlook
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Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

A(1, 2, . . . , n) =
∑

P (2,3,...,n)

Tr(T a1T a2 . . . T an)A(1, 2, . . . , n)

Lots of identities involving A(1, 2, . . . , n)

Examples: simple identities like cyclicity and reflections:

A(1, 2, . . . , n) = A(2, 3, . . . , n, 1)
A(1, 2, . . . , n) = (−1)nA(n, n− 1, . . . , 1)

- plus many more.
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Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

A(1, 2, . . . , n) =
∑

P (2,3,...,n)

Tr(T a1T a2 . . . T an)A(1, 2, . . . , n)

Lots of identities involving A(1, 2, . . . , n)

Examples: simple identities like cyclicity and reflections:

A(1, 2, . . . , n) = A(2, 3, . . . , n, 1)
A(1, 2, . . . , n) = (−1)nA(n, n− 1, . . . , 1)

- plus many more. The basis of operators is only of size (n− 3)!
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String theory gives gravity – gauge theory relations

Some of the most amazing relations between gravity and gauge theory
amplitudes were derived by Kawai, Lewellen and Tye (KLT) from string
theory.

A closed string amplitude factorizes into a product of two open string
amplitudes.

In the field theory limit this translates into relations between gravity
amplitudes and Yang-Mills amplitudes.

These relations have also been proven directly from field theory
[E. Bjerrum-Bohr, PHD, B. Feng, T. Sondergaard]
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KLT-relations: Examples

Let an n-point gravity amplitude be denoted by M(1, 2, . . . , n).

For 4-point amplitudes (let s12 = (p1 + p2)2 etc.):

M(1, 2, 3, 4) = s12A(1, 2, 3, 4)A(3, 4, 2, 1)

For higher n one gets a sum of terms on the right hand side.
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The precise statement

Define

X(n+,n−)
n =

∑

γ,β∈Sn−3

A(1,β2,n−2, n−1, n)S̃[β2,n−2|γ2,n−2]Ã(1, n−1, γ2,n−2, n)

where S̃ is a ’momentum kernel’ depending on external momenta sij.

n+ (n−) denotes the number of positive (negative) helicity legs in A which
is changed to negative (positive) helicity legs in Ã.

• When n+ = n− = 0, X(0,0)
n = M(1, 2, . . . , n).

• When n+ ≠ n−, X
(n+,n−)
n = 0.
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Gravity from Gauge Theory

Pictorially:

It is as if two gluons of helicity +1 generate one graviton of helicity +2.

The momentum kernel in the middle miraculously cancels all unwanted
double poles.
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Examples

Consider a 4-point amplitude with (n+, n−) = (0, 1):

0 = s12A(1
−, 2−, 3+, 4+)Ã(3+, 4+, 2+, 1−).

Actually, this reproduces a well-known ’MHV rule’.
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Examples

A new and non-trivial 5-point example with (n+, n−) = (1, 0):

0 = s12A(1
−, 2−, 3+, 4+, 5+)

[
s13Ã(4+, 5+, 2−, 3−, 1−)

+ (s13 + s23)Ã(4
+, 5+, 3−, 2−, 1−)

]

+ s13A(1
−, 3+, 2−, 4+, 5+)

[
s12Ã(4

+, 5+, 3−, 2−, 1−)

+ (s12 + s23)Ã(4
+, 5+, 2−, 3−, 1−)

]
.

– Typeset by FoilTEX – 16



A physical interpretation

Every time we have
X(n+,n−)

n = 0

we have a new non-linear identity among gauge theory amplitudes.

How can we understand these new identities?

A flipped helicity on an external leg produces (+ 1 - 1 = 0) a scalar leg.
This corresponds to gravity amplitudes with a single scalar: it vanishes.

In this way the gravity – gauge theory relation can be used to deduce
identities in Yang-Mills theory alone!
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Back to gravity

Perturbative gravity amplitudes are not worse, computationally, than Yang-
Mills amplitudes

To calculate tree-level gravity amplitudes we simply ’square’ gauge theory
amplitudes

An analog story holds at loop-level due to the method of unitarity cuts
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Surprise: Classical gravity from the quantum theory
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Surprise: Classical gravity from the quantum theory

The loop expansion in Quantum Field Theory is normally believed to be an
expansion in !

This is not generally true

Gravity is an example where this is not true

Basically, it is because gravity couples to the energy-momentum tensor.
Inverse factors of ! fly around and cancel !’s in numerators
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Think of this: in the Klein-Gordon equation ! follows the mass:

(∂2 +m2/!2)φ(x) = 0

so, for example, contributions proportional to mn can cancel !’s!
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Scattering of black holes
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Scattering of black holes

We consider the scattering of point-like masses at large distances
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Scattering of black holes

We consider the scattering of point-like masses at large distances

This will clearly ignore effects close to the horizon
But essentially all analytical GR approaches do this!

The starting point is then the 2nd quantized field theory based on

S=

∫
d4x

√
−g

[
1

16πG
R+

1

2
gµν∂µφ∂νφ−

m2

2
φ2

]
.

where R is the curvature and we expand the metric gµν = ηµν + κhµν

– Typeset by FoilTEX – 27



At tree-level and in the static limit this trivially gives Newton’s law

V (r) = Gm1m2/r

after a Fourier transform
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Loop level: a basis of integrals

One-loop integrals can conveniently be expanded in a ’basis’:

Boxes, Triangles, Bubbles, and rational terms

Every one-loop amplitude = A·Box+B ·Triangle+C ·Bubble+D ·Rational
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Loop level: a basis of integrals

One-loop integrals can conveniently be expanded in a ’basis’:

Boxes, Triangles, Bubbles, and rational terms

Every one-loop amplitude = A·Box+B ·Triangle+C ·Bubble+D ·Rational

All of classical general relativity is sitting in the Triangles!
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Interlude: Let us understand intuitively why this is so!
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Consider the metric around a black hole

This is the 3-point function of an ”off shell” graviton and two external
scalar legs that are on-shell
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Interlude: Let us understand intuitively why this is so!

Consider the metric around a black hole

This is the 3-point function of an ”off shell” graviton and two external
scalar legs that are on-shell

Now start drawing all possible Feynman diagrams...

Only diagrams of loops that only connect with the external scalar legs can
survive ! → 0
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A few equations explain this

Itriangle =

∫
d4ℓ

(2π)4
1

ℓ2 + iϵ

1

(ℓ+ q)2 + iϵ

1

(ℓ+ p1)2 −m2
1 + iϵ

Where does this integral pick up the classical contribution?

Consider |ℓ⃗| ≪ m1, i.e. (ℓ+ p1)2 −m2
1 = ℓ2 + 2ℓ · p1 ≃ 2m1ℓ0

Perform the ℓ0 integral by closing the contour in upper half-plane:

∫

|ℓ⃗|≪m

d3ℓ⃗

(2π)3
i

4m

1

ℓ⃗2
1

(ℓ⃗+ q)2
= −

i

32m|q⃗|
.
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Scalar Interaction potentials from 1-loop order
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Scalar Interaction potentials from 1-loop order

Now we have the first machinery: how to do the ’PN expansion’
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Scalar Interaction potentials from 1-loop order

Now we have the first machinery: how to do the ’PN expansion’

Tree level:

M1 = −
16πG

q2
(
m2

1m
2
2−2(p1 · p4)2−(p1 · p4)q2

)
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1-loop level:

M2 = −i(8πG)2
(
c(m1,m2)I◃(p1, q)

(q2 − 4m2
1)
2 +

c(m2,m1)I◃(p4,−q)

(q2 − 4m2
2)

2

)

with

c(m1,m2) = (q2)5 + (q2)4
(
6p1 · p4 − 10m2

1

)
+O

(
(q2)3

)

- a pretty complicated expression!
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Now we can calculate the interaction potentials

At leading order in q2,

M2 =
6π2G2

|q⃗|
(m1 +m2)(5(p1 · p4)2 −m2

1m
2
2) +O(|q⃗|)

A few pages later, the effective Hamiltonian:

H =
p⃗21
2m1

+
p⃗24
2m2

−
p⃗41
8m3

1

−
p⃗44
8m3

2

(1)

−
Gm1m2

r
−

G2m1m2(m1 +m2)

2r3

−
Gm1m2

2r

(
3p⃗21
m2

1

+
3p⃗24
m2

2

−
7p⃗1 · p⃗4
m1m2

−
(p⃗1 · r⃗)(p⃗4 · r⃗)

m1m2r

)
,

– Typeset by FoilTEX – 41



The effective equations of motion corresponding to this were first derived
in 1938 by Einstein, Infeld and Hoffmann

So much effort to re-derive a result from 1938?

We now know how to turn the crank, and go to arbitrarily high order!

The expansion never involves acceleration and higher derivatives
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New: The Post-Minkowskian (PM) expansion
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New: The Post-Minkowskian (PM) expansion

What we have just seen is the post-Newtonian (PN) expansion

To solve the 2-body problem consistently need to do a double expansion

From virial theorem:
p2/2m ∼ GMm/r

so we cannot just expand in Newton’s coupling G
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New: The Post-Minkowskian (PM) expansion

What we have just seen is the post-Newtonian (PN) expansion

To solve the 2-body problem consistently need to do a double expansion

From virial theorem:
p2/2m ∼ GMm/r

so we cannot just expand in Newton’s coupling G

The new challenge is to try to do better than that!
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New: The Post-Minkowskian (PM) expansion

We already have the full classical part of the one-loop scattering amplitude
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New: The Post-Minkowskian (PM) expansion

We already have the full classical part of the one-loop scattering amplitude

How do we extract all the classical scattering information from this?

Let us turn to the eikonal limit
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New: The Post-Minkowskian (PM) expansion

Define

M (⃗b) ≡
∫

d2q⃗e−iq⃗·⃗bM(q⃗)

We then find
M (⃗b) = 4p(E1 + E2)(e

iχ(⃗b) − 1)

and χ(⃗b) is the scattering function. For tree-level and 1-loop:

χi(b) =
1

2
√
M̂4 − 4m2

1m
2
2

∫
d2q⃗

(2π)2
e−iq⃗·⃗bMi(q⃗)

where M̂2 ≡ M2 −m2
1 −m2

2 and M2 ≡ s
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New: The Post-Minkowskian (PM) expansion

Now we have the scattering angle!

2 sin(θ/2)=
−2M

√
M̂4 − 4m2

1m
2
2

∂

∂b
(χ1(b) + χ2(b))

Doing the integrals,

2 sin(θ/2) =
4GM

b

(M̂4 − 2m2
1m

2
2

M̂4 − 4m2
1m

2
2

+
3π

16

G(m1 +m2)

b

5M̂4 − 4m2
1m

2
2

M̂4 − 4m2
1m

2
2

)
.
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New: The Post-Minkowskian (PM) expansion

This reproduces an heroic calculation by Westpfahl (1985)
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New: The Post-Minkowskian (PM) expansion

This reproduces an heroic calculation by Westpfahl (1985)

Westpfahl solved explicitly the Einstein equations to order G2

Now we know how to generalize this to arbitrary high order!
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A Post-Minkowskian 2-body interaction potential
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A Post-Minkowskian 2-body interaction potential

Cheung, Rothstein and Solon have proposed a Post-Minkowskian potential

They define an effective theory with a scalar-scalar potential ∼ φφV φφ.
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To fix V they demand that the scattering amplitude matches that of the
full theory to the given order in G
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Our approach
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Our approach

Ĥ =
√
p̂2 +m2

a +
√
p̂2 +m2

b + V̂
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Our approach

Ĥ =
√
p̂2 +m2

a +
√
p̂2 +m2

b + V̂

Ĝ(z) = (z − Ĥ)−1 T̂ (z) = V̂ + V̂ Ĝ(z)T̂

lim
ϵ→0

⟨p|T̂ (Ep + iϵ)|p′⟩ = M(p, p′)

A Lippmann-Schwinger equation:

M(p, p′) = V (p, p′) +

∫
d3k

(2π)3
M(p, k)V (k, p′)

Ep − Ek + iϵ
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Our approach

Now invert:

V (p, p′) = M(p, p′)−
∫

d3k

(2π)3
M(p, k)M(k, p′)

Ep − Ek + iϵ
+ ..

The corrections are Born subtractions
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Our approach

Now invert:

V (p, p′) = M(p, p′)−
∫

d3k

(2π)3
M(p, k)M(k, p′)

Ep − Ek + iϵ
+ ..

The corrections are Born subtractions

It agrees exactly with that of Cheung et al.
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Things move fast

Calculations have very recently been pushed to 2-loop order by Bern et al.

With the formalism established it can be pushed to much higher order.
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Outlook
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Outlook

• Perturbative gravity from QFT has much in store for us

• Gravity = (YM)*S*(YM) greatly simplifies calculations

• It pays to calculate classical GR from quantum loops

• Quantum Field Theory reproduce both PN and PM expansions in GR

• The formalism is ready – now time to compute!
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