General Relativity without RMT

Talk by P.H. Damgaard at Jac Verbaarschot 65-year Birthday Celebration
ECT* Trento
August 2019

With E. Bjerrum-Bohr, A. Cristofoli, G. Festuccia, L. Planté, and P. Vanhove

Nuclear Physics B362 (1991) 33-53
North-Holland

STREAMLINES AND CONFORMAL INVARIANCE IN YANG-MILLS THEORIES

J.J.M. VERBAARSCHOT*

Department of Physics, SUNY, Stony Brook, NY 11794, USA

Received 5 March 1991

Overview

Overview

- Enormous progress in amplitude computations for gauge theories

Overview

- Enormous progress in amplitude computations for gauge theories
- Gravity as (Yang-Mills) \times (Yang-Mills)

Overview

- Enormous progress in amplitude computations for gauge theories
- Gravity as (Yang-Mills) \times (Yang-Mills)
- Classical general relativity from the loop expansion

Overview

- Enormous progress in amplitude computations for gauge theories
- Gravity as (Yang-Mills) \times (Yang-Mills)
- Classical general relativity from the loop expansion
- Post-Newtonian and Post-Minkowskian expansions in general relativity

Overview

- Enormous progress in amplitude computations for gauge theories
- Gravity as (Yang-Mills) \times (Yang-Mills)
- Classical general relativity from the loop expansion
- Post-Newtonian and Post-Minkowskian expansions in general relativity
- Scattering of black holes - black hole mergers - gravitational waves

Overview

- Enormous progress in amplitude computations for gauge theories
- Gravity as (Yang-Mills) \times (Yang-Mills)
- Classical general relativity from the loop expansion
- Post-Newtonian and Post-Minkowskian expansions in general relativity
- Scattering of black holes - black hole mergers - gravitational waves
- Outlook

Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

$$
\mathcal{A}(1,2, \ldots, n)=\sum_{P(2,3, \ldots, n)} \operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} \ldots T^{a_{n}}\right) A(1,2, \ldots, n)
$$

Lots of identities involving $A(1,2, \ldots, n)$
Examples: simple identities like cyclicity and reflections:

$$
\begin{aligned}
& A(1,2, \ldots, n)=A(2,3, \ldots, n, 1) \\
& A(1,2, \ldots, n)=(-1)^{n} A(n, n-1, \ldots, 1)
\end{aligned}
$$

- plus many more.

Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

$$
\mathcal{A}(1,2, \ldots, n)=\sum_{P(2,3, \ldots, n)} \operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} \ldots T^{a_{n}}\right) A(1,2, \ldots, n)
$$

Lots of identities involving $A(1,2, \ldots, n)$
Examples: simple identities like cyclicity and reflections:

$$
\begin{aligned}
& A(1,2, \ldots, n)=A(2,3, \ldots, n, 1) \\
& A(1,2, \ldots, n)=(-1)^{n} A(n, n-1, \ldots, 1)
\end{aligned}
$$

- plus many more. The basis of operators is only of size $(n-3)$!

String theory gives gravity - gauge theory relations

Some of the most amazing relations between gravity and gauge theory amplitudes were derived by Kawai, Lewellen and Tye (KLT) from string theory.

A closed string amplitude factorizes into a product of two open string amplitudes.

In the field theory limit this translates into relations between gravity amplitudes and Yang-Mills amplitudes.

These relations have also been proven directly from field theory [E. Bjerrum-Bohr, PHD, B. Feng, T. Sondergaard]

KLT-relations: Examples

Let an n-point gravity amplitude be denoted by $M(1,2, \ldots, n)$.

For 4-point amplitudes (let $s_{12}=\left(p_{1}+p_{2}\right)^{2}$ etc.):

$$
M(1,2,3,4)=s_{12} A(1,2,3,4) A(3,4,2,1)
$$

For higher n one gets a sum of terms on the right hand side.

The precise statement

Define

$$
X_{n}^{\left(n_{+}, n_{-}\right)}=\sum_{\gamma, \beta \in S_{n-3}} A\left(1, \beta_{2, n-2}, n-1, n\right) \widetilde{\mathcal{S}}\left[\beta_{2, n-2} \mid \gamma_{2, n-2}\right] \widetilde{A}\left(1, n-1, \gamma_{2, n-2}, n\right)
$$

where $\widetilde{\mathcal{S}}$ is a 'momentum kernel' depending on external momenta $s_{i j}$. $n_{+}\left(n_{-}\right)$denotes the number of positive (negative) helicity legs in A which is changed to negative (positive) helicity legs in \widetilde{A}.

- When $n_{+}=n_{-}=0, X_{n}^{(0,0)}=M(1,2, \ldots, n)$.
- When $n_{+} \neq n_{-}, \quad X_{n}^{\left(n_{+}, n_{-}\right)}=0$.

Gravity from Gauge Theory

Pictorially:

It is as if two gluons of helicity +1 generate one graviton of helicity +2 .

The momentum kernel in the middle miraculously cancels all unwanted double poles.

Examples

Consider a 4-point amplitude with $\left(n_{+}, n_{-}\right)=(0,1)$:

$$
0=s_{12} A\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right) \widetilde{A}\left(3^{+}, 4^{+}, 2^{+}, 1^{-}\right)
$$

Actually, this reproduces a well-known 'MHV rule'.

Examples

A new and non-trivial 5 -point example with $\left(n_{+}, n_{-}\right)=(1,0)$:

$$
\begin{aligned}
0= & s_{12} A\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}\right)\left[s_{13} \widetilde{A}\left(4^{+}, 5^{+}, 2^{-}, 3^{-}, 1^{-}\right)\right. \\
& \left.+\left(s_{13}+s_{23}\right) \widetilde{A}\left(4^{+}, 5^{+}, 3^{-}, 2^{-}, 1^{-}\right)\right] \\
& +s_{13} A\left(1^{-}, 3^{+}, 2^{-}, 4^{+}, 5^{+}\right)\left[s_{12} \widetilde{A}\left(4^{+}, 5^{+}, 3^{-}, 2^{-}, 1^{-}\right)\right. \\
& \left.+\left(s_{12}+s_{23}\right) \widetilde{A}\left(4^{+}, 5^{+}, 2^{-}, 3^{-}, 1^{-}\right)\right] .
\end{aligned}
$$

A physical interpretation

Every time we have

$$
X_{n}^{\left(n_{+}, n_{-}\right)}=0
$$

we have a new non-linear identity among gauge theory amplitudes.

How can we understand these new identities?

A flipped helicity on an external leg produces $(+1-1=0)$ a scalar leg. This corresponds to gravity amplitudes with a single scalar: it vanishes.

In this way the gravity - gauge theory relation can be used to deduce identities in Yang-Mills theory alone!

Back to gravity

Perturbative gravity amplitudes are not worse, computationally, than YangMills amplitudes

To calculate tree-level gravity amplitudes we simply 'square' gauge theory amplitudes

An analog story holds at loop-level due to the method of unitarity cuts

Surprise: Classical gravity from the quantum theory

Surprise: Classical gravity from the quantum theory

The loop expansion in Quantum Field Theory is normally believed to be an expansion in \hbar

Surprise: Classical gravity from the quantum theory

The loop expansion in Quantum Field Theory is normally believed to be an expansion in \hbar

This is not generally true

Surprise: Classical gravity from the quantum theory

The loop expansion in Quantum Field Theory is normally believed to be an expansion in \hbar

This is not generally true

Gravity is an example where this is not true
Basically, it is because gravity couples to the energy-momentum tensor. Inverse factors of \hbar fly around and cancel \hbar 's in numerators

Think of this: in the Klein-Gordon equation \hbar follows the mass:

$$
\left(\partial^{2}+m^{2} / \hbar^{2}\right) \phi(x)=0
$$

so, for example, contributions proportional to m^{n} can cancel \hbar 's!

Scattering of black holes

Scattering of black holes

We consider the scattering of point-like masses at large distances

Scattering of black holes

We consider the scattering of point-like masses at large distances

This will clearly ignore effects close to the horizon But essentially all analytical GR approaches do this!

Scattering of black holes

We consider the scattering of point-like masses at large distances

This will clearly ignore effects close to the horizon But essentially all analytical GR approaches do this!

The starting point is then the 2 nd quantized field theory based on

$$
\mathcal{S}=\int d^{4} x \sqrt{-g}\left[\frac{1}{16 \pi G} R+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{m^{2}}{2} \phi^{2}\right] .
$$

where R is the curvature and we expand the metric $g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}$

At tree-level and in the static limit this trivially gives Newton's law

$$
V(r)=G m_{1} m_{2} / r
$$

after a Fourier transform

Loop level: a basis of integrals

One-loop integrals can conveniently be expanded in a 'basis':
Boxes, Triangles, Bubbles, and rational terms
Every one-loop amplitude $=A \cdot$ Box $+B \cdot$ Triangle $+C \cdot$ Bubble $+D \cdot$ Rational

Loop level: a basis of integrals

One-loop integrals can conveniently be expanded in a 'basis':
Boxes, Triangles, Bubbles, and rational terms
Every one-loop amplitude $=A \cdot$ Box $+B \cdot$ Triangle $+C \cdot$ Bubble $+D \cdot$ Rational

All of classical general relativity is sitting in the Triangles!

Interlude: Let us understand intuitively why this is so!

Interlude: Let us understand intuitively why this is so!

Consider the metric around a black hole

This is the 3-point function of an "off shell" graviton and two external scalar legs that are on-shell

Interlude: Let us understand intuitively why this is so!

Consider the metric around a black hole

This is the 3-point function of an "off shell" graviton and two external scalar legs that are on-shell

Now start drawing all possible Feynman diagrams...

Interlude: Let us understand intuitively why this is so!

Consider the metric around a black hole

This is the 3-point function of an "off shell" graviton and two external scalar legs that are on-shell

Now start drawing all possible Feynman diagrams...

Only diagrams of loops that only connect with the external scalar legs can survive $\hbar \rightarrow 0$

A few equations explain this

$$
I_{\text {triangle }}=\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{1}{\ell^{2}+i \epsilon} \frac{1}{(\ell+q)^{2}+i \epsilon} \frac{1}{\left(\ell+p_{1}\right)^{2}-m_{1}^{2}+i \epsilon}
$$

Where does this integral pick up the classical contribution?

Consider $|\vec{\ell}| \ll m_{1}$, i.e. $\left(\ell+p_{1}\right)^{2}-m_{1}^{2}=\ell^{2}+2 \ell \cdot p_{1} \simeq 2 m_{1} \ell_{0}$

Perform the ℓ_{0} integral by closing the contour in upper half-plane:

$$
\int_{|\vec{\ell}| \ll m} \frac{d^{3} \vec{\ell}}{(2 \pi)^{3}} \frac{i}{4 m} \frac{1}{\vec{\ell}^{2}} \frac{1}{(\vec{\ell}+q)^{2}}=-\frac{i}{32 m|\vec{q}|} .
$$

Scalar Interaction potentials from 1-loop order

Scalar Interaction potentials from 1-loop order

Now we have the first machinery: how to do the 'PN expansion'

Scalar Interaction potentials from 1-loop order

Now we have the first machinery: how to do the 'PN expansion'

Tree level:

$$
M_{1}=-\frac{16 \pi G}{q^{2}}\left(m_{1}^{2} m_{2}^{2}-2\left(p_{1} \cdot p_{4}\right)^{2}-\left(p_{1} \cdot p_{4}\right) q^{2}\right)
$$

1-loop level:

$$
M_{2}=-i(8 \pi G)^{2}\left(\frac{c\left(m_{1}, m_{2}\right) I_{\triangleright}\left(p_{1}, q\right)}{\left(q^{2}-4 m_{1}^{2}\right)^{2}}+\frac{c\left(m_{2}, m_{1}\right) I_{\triangleright}\left(p_{4},-q\right)}{\left(q^{2}-4 m_{2}^{2}\right)^{2}}\right)
$$

with

$$
c\left(m_{1}, m_{2}\right)=\left(q^{2}\right)^{5}+\left(q^{2}\right)^{4}\left(6 p_{1} \cdot p_{4}-10 m_{1}^{2}\right)+\mathcal{O}\left(\left(q^{2}\right)^{3}\right)
$$

- a pretty complicated expression!

Now we can calculate the interaction potentials

At leading order in q^{2},

$$
M_{2}=\frac{6 \pi^{2} G^{2}}{|\vec{q}|}\left(m_{1}+m_{2}\right)\left(5\left(p_{1} \cdot p_{4}\right)^{2}-m_{1}^{2} m_{2}^{2}\right)+O(|\vec{q}|)
$$

A few pages later, the effective Hamiltonian:

$$
\begin{align*}
H & =\frac{\vec{p}_{1}^{2}}{2 m_{1}}+\frac{\vec{p}_{4}^{2}}{2 m_{2}}-\frac{\vec{p}_{1}^{4}}{8 m_{1}^{3}}-\frac{\vec{p}_{4}^{4}}{8 m_{2}^{3}} \tag{1}\\
& -\frac{G m_{1} m_{2}}{r}-\frac{G^{2} m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2 r^{3}} \\
& -\frac{G m_{1} m_{2}}{2 r}\left(\frac{3 \vec{p}_{1}^{2}}{m_{1}^{2}}+\frac{3 \vec{p}_{4}^{2}}{m_{2}^{2}}-\frac{7 \vec{p}_{1} \cdot \vec{p}_{4}}{m_{1} m_{2}}-\frac{\left(\vec{p}_{1} \cdot \vec{r}\right)\left(\vec{p}_{4} \cdot \vec{r}\right)}{m_{1} m_{2} r}\right),
\end{align*}
$$

The effective equations of motion corresponding to this were first derived in 1938 by Einstein, Infeld and Hoffmann

So much effort to re-derive a result from 1938?

We now know how to turn the crank, and go to arbitrarily high order!

The expansion never involves acceleration and higher derivatives

New: The Post-Minkowskian (PM) expansion

New: The Post-Minkowskian (PM) expansion

What we have just seen is the post-Newtonian (PN) expansion

To solve the 2-body problem consistently need to do a double expansion

From virial theorem:

$$
p^{2} / 2 m \sim G M m / r
$$

so we cannot just expand in Newton's coupling G

New: The Post-Minkowskian (PM) expansion

What we have just seen is the post-Newtonian (PN) expansion

To solve the 2-body problem consistently need to do a double expansion

From virial theorem:

$$
p^{2} / 2 m \sim G M m / r
$$

so we cannot just expand in Newton's coupling G

The new challenge is to try to do better than that!

New: The Post-Minkowskian (PM) expansion

We already have the full classical part of the one-loop scattering amplitude

New: The Post-Minkowskian (PM) expansion

We already have the full classical part of the one-loop scattering amplitude

How do we extract all the classical scattering information from this?

New: The Post-Minkowskian (PM) expansion

We already have the full classical part of the one-loop scattering amplitude

How do we extract all the classical scattering information from this?

Let us turn to the eikonal limit

New: The Post-Minkowskian (PM) expansion

Define

$$
M(\vec{b}) \equiv \int d^{2} \vec{q} e^{-i \vec{q} \cdot \vec{b}} M(\vec{q})
$$

We then find

$$
M(\vec{b})=4 p\left(E_{1}+E_{2}\right)\left(e^{i \chi(\vec{b})}-1\right)
$$

and $\chi(\vec{b})$ is the scattering function. For tree-level and 1-loop:

$$
\chi_{i}(b)=\frac{1}{2 \sqrt{\hat{M}^{4}-4 m_{1}^{2} m_{2}^{2}}} \int \frac{d^{2} \vec{q}}{(2 \pi)^{2}} e^{-i \vec{q} \cdot \vec{b}} \mathcal{M}_{i}(\vec{q})
$$

where $\hat{M}^{2} \equiv M^{2}-m_{1}^{2}-m_{2}^{2}$ and $M^{2} \equiv s$

New: The Post-Minkowskian (PM) expansion

Now we have the scattering angle!

$$
2 \sin (\theta / 2)=\frac{-2 M}{\sqrt{\hat{M}^{4}-4 m_{1}^{2} m_{2}^{2}}} \frac{\partial}{\partial b}\left(\chi_{1}(b)+\chi_{2}(b)\right)
$$

Doing the integrals,

$$
2 \sin (\theta / 2)=\frac{4 G M}{b}\left(\frac{\hat{M}^{4}-2 m_{1}^{2} m_{2}^{2}}{\hat{M}^{4}-4 m_{1}^{2} m_{2}^{2}}+\frac{3 \pi}{16} \frac{G\left(m_{1}+m_{2}\right)}{b} \frac{5 \hat{M}^{4}-4 m_{1}^{2} m_{2}^{2}}{\hat{M}^{4}-4 m_{1}^{2} m_{2}^{2}}\right)
$$

New: The Post-Minkowskian (PM) expansion

This reproduces an heroic calculation by Westpfahl (1985)

New: The Post-Minkowskian (PM) expansion

This reproduces an heroic calculation by Westpfahl (1985)

Westpfahl solved explicitly the Einstein equations to order G^{2}

New: The Post-Minkowskian (PM) expansion

This reproduces an heroic calculation by Westpfahl (1985)

Westpfahl solved explicitly the Einstein equations to order G^{2}

Now we know how to generalize this to arbitrary high order!

A Post-Minkowskian 2-body interaction potential

A Post-Minkowskian 2-body interaction potential

Cheung, Rothstein and Solon have proposed a Post-Minkowskian potential

They define an effective theory with a scalar-scalar potential $\sim \phi \phi V \phi \phi$.

To fix V they demand that the scattering amplitude matches that of the full theory to the given order in G

Our approach

Our approach

$$
\hat{\mathcal{H}}=\sqrt{\hat{p}^{2}+m_{a}^{2}}+\sqrt{\hat{p}^{2}+m_{b}^{2}}+\hat{V}
$$

Our approach

$$
\begin{gathered}
\hat{\mathcal{H}}=\sqrt{\hat{p}^{2}+m_{a}^{2}}+\sqrt{\hat{p}^{2}+m_{b}^{2}}+\hat{V} \\
\hat{G}(z)=(z-\hat{\mathcal{H}})^{-1} \quad \hat{T}(z)=\hat{V}+\hat{V} \hat{G}(z) \hat{T} \\
\lim _{\epsilon \rightarrow 0}\langle p| \hat{T}\left(E_{p}+i \epsilon\right)\left|p^{\prime}\right\rangle=\mathcal{M}\left(p, p^{\prime}\right)
\end{gathered}
$$

A Lippmann-Schwinger equation:

$$
\mathcal{M}\left(p, p^{\prime}\right)=V\left(p, p^{\prime}\right)+\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\mathcal{M}(p, k) V\left(k, p^{\prime}\right)}{E_{p}-E_{k}+i \epsilon}
$$

Our approach

Now invert:

$$
V\left(p, p^{\prime}\right)=\mathcal{M}\left(p, p^{\prime}\right)-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\mathcal{M}(p, k) \mathcal{M}\left(k, p^{\prime}\right)}{E_{p}-E_{k}+i \epsilon}+. .
$$

The corrections are Born subtractions

Our approach

Now invert:

$$
V\left(p, p^{\prime}\right)=\mathcal{M}\left(p, p^{\prime}\right)-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\mathcal{M}(p, k) \mathcal{M}\left(k, p^{\prime}\right)}{E_{p}-E_{k}+i \epsilon}+. .
$$

The corrections are Born subtractions

It agrees exactly with that of Cheung et al.

Things move fast

Calculations have very recently been pushed to 2-loop order by Bern et al.

With the formalism established it can be pushed to much higher order.

Outlook

Outlook

- Perturbative gravity from QFT has much in store for us

Outlook

- Perturbative gravity from QFT has much in store for us
- Gravity $=(\mathrm{YM})^{*} S^{*}(\mathrm{YM})$ greatly simplifies calculations

Outlook

- Perturbative gravity from QFT has much in store for us
- Gravity $=(\mathrm{YM})^{*} S^{*}(\mathrm{YM})$ greatly simplifies calculations
- It pays to calculate classical GR from quantum loops

Outlook

- Perturbative gravity from QFT has much in store for us
- Gravity $=(\mathrm{YM})^{*} S^{*}(\mathrm{YM})$ greatly simplifies calculations
- It pays to calculate classical GR from quantum loops
- Quantum Field Theory reproduce both PN and PM expansions in GR

Outlook

- Perturbative gravity from QFT has much in store for us
- Gravity $=(\mathrm{YM})^{*} S^{*}(\mathrm{YM})$ greatly simplifies calculations
- It pays to calculate classical GR from quantum loops
- Quantum Field Theory reproduce both PN and PM expansions in GR
- The formalism is ready - now time to compute!

