RMT in Sub-Atomic Physics and Beyond

Universal Broadening of Zero Modes:
 A General Framework and Identification

Adam Mielke
Faculty of Physics
Bielefeld University

Joint work with
Mario Kieburg and Kim Splittorff
[arXiv:1902:01733]

- The Model
- Motivation: Physical Systems
- Intuition
- Set-up
- Decoupling of Spectrum
- Eigenvalue Equation
- Conditions
- Central Limit Theorem for Matrices
- Scaling and Applications
- Conclusions
- The Model
- Motivation: Physical Systems
- Intuition
- Set-up
- Decoupling of Spectrum
- Eigenvalue Equation
- Conditions
- Central Limit Theorem for Matrices
- Scaling and Applications
- Conclusions
- The Model
- Motivation: Physical Systems
- Intuition
- Set-up
- Decoupling of Spectrum
- Eigenvalue Equation
- Conditions
- Central Limit Theorem for Matrices
- Scaling and Applications
- Conclusions
- The Model
- Motivation: Physical Systems
- Intuition
- Set-up
- Decoupling of Spectrum
- Eigenvalue Equation
- Conditions
- Central Limit Theorem for Matrices
- Scaling and Applications
- Conclusions
- The Model
- Motivation: Physical Systems
- Intuition
- Set-up
- Decoupling of Spectrum
- Eigenvalue Equation
- Conditions
- Central Limit Theorem for Matrices
- Scaling and Applications
- Conclusions

The Model

$$
4 \square>4 \text { 岛 }>4 \equiv \stackrel{\equiv}{ }
$$

The Model

The Model

The Model

Motivation: Physical Systems

- Topological modes, but more general framework
- The behaviour was seen before in several specific systems
- Wilson-Dirac Operator in finite-volume lattice-QCD

$$
D=\left(\begin{array}{cc}
0 & W \\
W^{\dagger} & 0
\end{array}\right)+a\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

[Akemann, Damgaard, Splittorff, Verbaarschot [arXiv:1012.0752]]
[Kieburg, Verbaarschot, Zafeiropoulos [arXiv:1307.7251],[arXiv:1505.01784]]

- Coupled Chiral Systems
[Mielke, Splittorff [arXiv:1609.04252]]
- Difficult to distinguish topological and non-topological modes
[Bagrets, Altland [arXiv:1206.0434]]

The Model

Motivation: Physical Systems

- Topological modes, but more general framework
- The behaviour was seen before in several specific systems
- Wilson-Dirac Operator in finite-volume lattice-QCD

$$
D=\left(\begin{array}{cc}
0 & W \\
W^{\dagger} & 0
\end{array}\right)+a\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

[Akemann, Damgaard, Splittorff, Verbaarschot [arXiv:1012.0752]]
[Kieburg, Verbaarschot, Zafeiropoulos [arXiv:1307.7251],[arXiv:1505.01784]]

- Coupled Chiral Systems
[Mielke, Splittorff [arXiv:1609.04252]]
- Difficult to distinguish topological and non-topological modes
[Bagrets, Altland [arXiv:1206.0434]]

The Model

Motivation: Physical Systems

- Topological modes, but more general framework
- The behaviour was seen before in several specific systems
- Wilson-Dirac Operator in finite-volume lattice-QCD

$$
D=\left(\begin{array}{cc}
0 & W \\
W^{\dagger} & 0
\end{array}\right)+a\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

[Akemann, Damgaard, Splittorff, Verbaarschot [arXiv:1012.0752]]
[Kieburg, Verbaarschot, Zafeiropoulos [arXiv:1307.7251],[arXiv:1505.01784]]

- Coupled Chiral Systems
[Mielke, Splittorff [arXiv:1609.04252]]
- Difficult to distinguish topological and non-topological modes
[Bagrets, Altland [arXiv:1206.0434]]

The Model

Motivation: Physical Systems

- Topological modes, but more general framework
- The behaviour was seen before in several specific systems
- Wilson-Dirac Operator in finite-volume lattice-QCD

$$
D=\left(\begin{array}{cc}
0 & W \\
W^{\dagger} & 0
\end{array}\right)+a\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

[Akemann, Damgaard, Splittorff, Verbaarschot [arXiv:1012.0752]]
[Kieburg, Verbaarschot, Zafeiropoulos [arXiv:1307.7251],[arXiv:1505.01784]]

- Coupled Chiral Systems
[Mielke, Splittorff [arXiv:1609.04252]]
- Difficult to distinguish topological and non-topological modes
[Bagrets, Altland [arXiv:1206.0434]]

The Model

Motivation: Physical Systems

- Topological modes, but more general framework
- The behaviour was seen before in several specific systems
- Wilson-Dirac Operator in finite-volume lattice-QCD

$$
D=\left(\begin{array}{cc}
0 & W \\
W^{\dagger} & 0
\end{array}\right)+a\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

[Akemann, Damgaard, Splittorff, Verbaarschot [arXiv:1012.0752]]
[Kieburg, Verbaarschot, Zafeiropoulos [arXiv:1307.7251],[arXiv:1505.01784]]

- Coupled Chiral Systems
[Mielke, Splittorff [arXiv:1609.04252]]
- Difficult to distinguish topological and non-topological modes
[Bagrets, Altland [arXiv:1206.0434]]

The Model
Intuition

The Model

Intuition

Single mode feels full ensemble S.

The Model

Intuition

Single mode feels full ensemble S.
Bulk only perturbed at higher orders.

The Model

Intuition

Single mode feels full ensemble S.
Bulk only perturbed at higher orders.
Breaks down if the perturbation touches the bulk.

The Model

Intuition

Width proportional to α.

Single mode feels full ensemble S.
Bulk only perturbed at higher orders.
Breaks down if the perturbation touches the bulk.

The Model

Set-up

- A and S deterministic.
- Broadening comes from averaging over change of basis.

The Model

Set-up

- A and S deterministic.
- Broadening comes from averaging over change of basis.

The Model

Set-up

- A and S deterministic.
- Broadening comes from averaging over change of basis.

$$
K=\underbrace{A}_{\text {Fixed }}+\alpha \overbrace{U}^{\text {Random }} \underbrace{S}_{\text {Fixed }} \overbrace{U^{\dagger}}^{\text {Random }}
$$

Decoupling of Spectrum

Decoupling of Spectrum

Eigenvalue Equation

- Choice of basis

$$
\begin{aligned}
A & =\left(\begin{array}{c|c}
A^{\prime}=\operatorname{diag}\left(\lambda_{\nu+1}, \ldots, \lambda_{N}\right) & 0_{(N-\nu) \times \nu} \\
\hline 0_{\nu \times(N-\nu)} & 0_{\nu \times \nu}
\end{array}\right) \\
U S U^{\dagger} & =\left(\begin{array}{l|l}
S_{1} & S_{2} \\
\hline S_{2}^{\dagger} & S_{3}
\end{array}\right), S_{3} \text { corresponds to zero modes } \\
U & =\binom{U_{1}}{U_{2}}, U_{1} \text { is }(N-\nu) \times N, U_{2} \text { is } \nu \times N
\end{aligned}
$$

Decoupling of Spectrum

Eigenvalue Equation

- Choice of basis

$$
\begin{aligned}
A & =\left(\begin{array}{c|c}
A^{\prime}=\operatorname{diag}\left(\lambda_{\nu+1}, \ldots, \lambda_{N}\right) & 0_{(N-\nu) \times \nu} \\
\hline 0_{\nu \times(N-\nu)} & 0_{\nu \times \nu}
\end{array}\right) \\
U S U^{\dagger} & =\left(\begin{array}{l|l}
S_{1} & S_{2} \\
\hline S_{2}^{\dagger} & S_{3}
\end{array}\right), S_{3} \text { corresponds to zero modes } \\
U & =\binom{U_{1}}{U_{2}}, U_{1} \text { is }(N-\nu) \times N, U_{2} \text { is } \nu \times N
\end{aligned}
$$

Decoupling of Spectrum

Eigenvalue Equation

- Choice of basis

$$
\begin{aligned}
A & =\left(\begin{array}{c|c}
A^{\prime}=\operatorname{diag}\left(\lambda_{\nu+1}, \ldots, \lambda_{N}\right) & 0_{(N-\nu) \times \nu} \\
\hline 0_{\nu \times(N-\nu)} & 0_{\nu \times \nu}
\end{array}\right) \\
U S U^{\dagger} & =\left(\begin{array}{l|l}
S_{1} & S_{2} \\
\hline S_{2}^{\dagger} & S_{3}
\end{array}\right), S_{3} \text { corresponds to zero modes } \\
U & =\binom{U_{1}}{U_{2}}, U_{1} \text { is }(N-\nu) \times N, U_{2} \text { is } \nu \times N
\end{aligned}
$$

Decoupling of Spectrum

Eigenvalue Equation

$$
\begin{aligned}
\operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right)= & \operatorname{det}\left(\left(\begin{array}{cc}
A^{\prime}-\alpha S_{1} & \alpha S_{2} \\
\alpha S_{2}^{\dagger} & \alpha S_{3}
\end{array}\right)-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}\left(A^{\prime}+\alpha S_{1}-\lambda 1_{N-\nu}\right) \\
& \times \operatorname{det}\left(\alpha S_{3}-\lambda 1_{\nu}-\alpha^{2} S_{2}^{\dagger}\left(A^{\prime}+\alpha S_{1}-\lambda 1_{N-\nu}\right)^{-1} S_{2}\right) \\
\alpha \ll 1 & \operatorname{det}\left(A^{\prime}+\alpha S_{1}-\lambda\right) \operatorname{det}\left(\alpha S_{3}-\lambda 1_{\nu}\right)
\end{aligned}
$$

Former zero modes are determined by S_{3}.

Decoupling of Spectrum

Eigenvalue Equation

$$
\begin{aligned}
\operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right)= & \operatorname{det}\left(\left(\begin{array}{cc}
A^{\prime}-\alpha S_{1} & \alpha S_{2} \\
\alpha S_{2}^{\dagger} & \alpha S_{3}
\end{array}\right)-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}\left(A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu}\right) \\
& \times \operatorname{det}\left(\alpha S_{3}-\lambda \mathbf{1}_{\nu}-\alpha^{2} S_{2}^{\dagger}\left(A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} S_{2}\right) \\
\alpha \leqq 1 & \operatorname{det}\left(A^{\prime}+\alpha S_{1}-\lambda\right) \operatorname{det}\left(\alpha S_{3}-\lambda 1_{\nu}\right)
\end{aligned}
$$

Former zero modes are determined by S_{3}.

Decoupling of Spectrum

Eigenvalue Equation

$$
\begin{aligned}
& \operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right)= \operatorname{det}\left(\left(\begin{array}{cc}
A^{\prime}-\alpha S_{1} & \alpha S_{2} \\
\alpha S_{2}^{\dagger} & \alpha S_{3}
\end{array}\right)-\lambda \mathbf{1}_{N}\right) \\
&= \operatorname{det}\left(A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu}\right) \\
& \times \operatorname{det}\left(\alpha S_{3}-\lambda \mathbf{1}_{\nu}-\alpha^{2} S_{2}^{\dagger}\left(A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} S_{2}\right) \\
& \stackrel{\ll 1}{=} \\
& \operatorname{det}\left(A^{\prime}+\alpha S_{1}-\lambda\right) \operatorname{det}\left(\alpha S_{3}-\lambda \mathbf{1}_{\nu}\right)
\end{aligned}
$$

Former zero modes are determined by S_{3}.

Decoupling of Spectrum

Eigenvalue Equation

$$
\begin{aligned}
& \operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right)= \operatorname{det}\left(\left(\begin{array}{cc}
A^{\prime}-\alpha S_{1} & \alpha S_{2} \\
\alpha S_{2}^{\dagger} & \alpha S_{3}
\end{array}\right)-\lambda \mathbf{1}_{N}\right) \\
&= \operatorname{det}\left(A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu}\right) \\
& \times \operatorname{det}\left(\alpha S_{3}-\lambda \mathbf{1}_{\nu}-\alpha^{2} S_{2}^{\dagger}\left(A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} S_{2}\right) \\
& \stackrel{\ll 1}{=} \\
& \operatorname{det}\left(A^{\prime}+\alpha S_{1}-\lambda\right) \operatorname{det}\left(\alpha S_{3}-\lambda \mathbf{1}_{\nu}\right)
\end{aligned}
$$

Former zero modes are determined by S_{3}.

Decoupling of Spectrum

Conditions

- Perturbation small enough

$$
\alpha=o\left(\frac{1}{\|S\|_{\mathrm{op}}} \sqrt{\frac{N}{\operatorname{Tr}\left(A^{\prime}\right)^{-2}}}\right)
$$

- Centred

$$
\operatorname{Tr} S=0
$$

- Sufficient mixing for limit

$$
\begin{aligned}
\lim _{N \rightarrow \infty} q & =\infty \\
q & =\frac{\sqrt{\operatorname{Tr} S^{2}}}{\|S\|_{\mathrm{op}}} \in[1, \sqrt{N}]
\end{aligned}
$$

Decoupling of Spectrum

Conditions

- Perturbation small enough

$$
\alpha=o\left(\frac{1}{\|S\|_{\mathrm{op}}} \sqrt{\frac{N}{\operatorname{Tr}\left(A^{\prime}\right)^{-2}}}\right)
$$

- Centred

$$
\operatorname{Tr} S=0
$$

- Sufficient mixing for limit

$$
\begin{aligned}
\lim _{N \rightarrow \infty} q & =\infty \\
q & =\frac{\sqrt{\operatorname{Tr} S^{2}}}{\|S\|_{\mathrm{op}}} \in[1, \sqrt{N}]
\end{aligned}
$$

where

Decoupling of Spectrum

Conditions

- Perturbation small enough

$$
\alpha=o\left(\frac{1}{\|S\|_{\mathrm{op}}} \sqrt{\frac{N}{\operatorname{Tr}\left(A^{\prime}\right)^{-2}}}\right)
$$

- Centred

$$
\operatorname{Tr} S=0
$$

- Sufficient mixing for limit

$$
\begin{aligned}
\lim _{N \rightarrow \infty} q & =\infty \\
q & =\frac{\sqrt{\operatorname{Tr} S^{2}}}{\|S\|_{\mathrm{op}}} \in[1, \sqrt{N}]
\end{aligned}
$$

where

Central Limit Theorem for Matrices

Central Limit Theorem for Matrices

- Possible for all Altland-Zirnbauer classes
- Result for non-chiral classes is

$$
\lim _{N \rightarrow \infty} p\left(S_{3}\right) \propto \exp \left[-\frac{\gamma N^{2} \operatorname{Tr} S_{3}^{2}}{2 \alpha^{2} \operatorname{Tr} S^{2}}\right]
$$

Central Limit Theorem for Matrices

- Possible for all Altland-Zirnbauer classes
- Result for non-chiral classes is

$$
\lim _{N \rightarrow \infty} p\left(S_{3}\right) \propto \exp \left[-\frac{\gamma N^{2} \operatorname{Tr} S_{3}^{2}}{2 \alpha^{2} \operatorname{Tr} S^{2}}\right]
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- Consider $S^{\prime}=\kappa S_{3}$, with $\kappa=N / \sqrt{\operatorname{Tr} S^{2}}$

$$
p\left(S^{\prime}\right)=\int_{\mathcal{K}_{\nu}} d \mu\left(U_{2}\right) \delta\left(S^{\prime}-\kappa U_{2} S U_{2}^{\dagger}\right)
$$

- Rewrite Haar-measure

$$
\int_{\mathcal{K}_{\nu}} d \mu\left(U_{2}\right) f\left(U_{2}\right)=\frac{\int_{\mathcal{G}_{\nu}} d U_{2} f\left(U_{2}\right) \delta\left(\mathbf{1}_{\nu}-U_{2} U_{2}^{\dagger}\right)}{\int_{\mathcal{G}_{\nu}} d U_{2} \delta\left(\mathbf{1}_{\nu}-U_{2} U_{2}^{\dagger}\right)} .
$$

- Rewrite δ-function

$$
\delta(X) \propto \lim _{\epsilon \rightarrow 0} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} X H\right]
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- Consider $S^{\prime}=\kappa S_{3}$, with $\kappa=N / \sqrt{\operatorname{Tr} S^{2}}$

$$
p\left(S^{\prime}\right)=\int_{\mathcal{K}_{\nu}} d \mu\left(U_{2}\right) \delta\left(S^{\prime}-\kappa U_{2} S U_{2}^{\dagger}\right)
$$

- Rewrite Haar-measure

$$
\int_{\mathcal{K}_{\nu}} d \mu\left(U_{2}\right) f\left(U_{2}\right)=\frac{\int_{\mathcal{G}_{\nu}} d U_{2} f\left(U_{2}\right) \delta\left(\mathbf{1}_{\nu}-U_{2} U_{2}^{\dagger}\right)}{\int_{\mathcal{G}_{\nu}} d U_{2} \delta\left(\mathbf{1}_{\nu}-U_{2} U_{2}^{\dagger}\right)}
$$

- Rewrite δ-function

$$
\delta(X) \propto \lim _{\epsilon \rightarrow 0} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} X H\right]
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- Consider $S^{\prime}=\kappa S_{3}$, with $\kappa=N / \sqrt{\operatorname{Tr} S^{2}}$

$$
p\left(S^{\prime}\right)=\int_{\mathcal{K}_{\nu}} d \mu\left(U_{2}\right) \delta\left(S^{\prime}-\kappa U_{2} S U_{2}^{\dagger}\right)
$$

- Rewrite Haar-measure

$$
\int_{\mathcal{K}_{\nu}} d \mu\left(U_{2}\right) f\left(U_{2}\right)=\frac{\int_{\mathcal{G}_{\nu}} d U_{2} f\left(U_{2}\right) \delta\left(\mathbf{1}_{\nu}-U_{2} U_{2}^{\dagger}\right)}{\int_{\mathcal{G}_{\nu}} d U_{2} \delta\left(\mathbf{1}_{\nu}-U_{2} U_{2}^{\dagger}\right)}
$$

- Rewrite δ-function

$$
\delta(X) \propto \lim _{\epsilon \rightarrow 0} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} X H\right]
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- Starting point is therefore

$$
\begin{aligned}
p\left(S^{\prime}\right) \propto & \lim _{\epsilon \rightarrow 0} \int_{\mathcal{G}_{\nu}} d U_{2} \int_{\mathcal{P}_{\nu}} d P \int_{\mathcal{H}_{\nu}} d H \exp [-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr}(\overbrace{S^{\prime}-\kappa U_{2} S U_{2}^{\dagger}}^{\text {From spectrum }}) H] \\
& \times \exp [\epsilon \gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)^{2}+\gamma N \operatorname{Tr}(\underbrace{\mathbf{1}_{\nu}-U_{2} U_{2}^{\dagger}}_{\text {From Haar-measure }})\left(\mathbf{1}_{\nu}-i P\right)]
\end{aligned}
$$

- Interchange integrals and perform U_{2}-integral

$$
\begin{aligned}
p\left(S^{\prime}\right) \propto & \lim _{\epsilon \rightarrow 0} \int_{\mathcal{P}_{\nu}} d P \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\gamma N \mathbf{1}_{N} \otimes\left(\mathbf{1}_{\nu}-i P\right)+i \kappa S \otimes H\right] \\
& \times \exp \left[\epsilon \gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)^{2}+\gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)\right]
\end{aligned}
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- Starting point is therefore

$$
\begin{aligned}
p\left(S^{\prime}\right) \propto & \lim _{\epsilon \rightarrow 0} \int_{\mathcal{G}_{\nu}} d U_{2} \int_{\mathcal{P}_{\nu}} d P \int_{\mathcal{H}_{\nu}} d H \exp [-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr}(\overbrace{S^{\prime}-\kappa U_{2} S U_{2}^{\dagger}}^{\text {From spectrum }}) H] \\
& \times \exp [\epsilon \gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)^{2}+\gamma N \operatorname{Tr}(\underbrace{\mathbf{1}_{\nu}-U_{2} U_{2}^{\dagger}}_{\text {From Haar-measure }})\left(\mathbf{1}_{\nu}-i P\right)]
\end{aligned}
$$

- Interchange integrals and perform U_{2}-integral

$$
\begin{aligned}
p\left(S^{\prime}\right) \propto & \lim _{\epsilon \rightarrow 0} \int_{\mathcal{P}_{\nu}} d P \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\gamma N \mathbf{1}_{N} \otimes\left(\mathbf{1}_{\nu}-i P\right)+i \kappa S \otimes H\right] \\
& \times \exp \left[\epsilon \gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)^{2}+\gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)\right]
\end{aligned}
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- Limit $\epsilon \rightarrow 0$ can be taken for P, because determinant ensures convergence

$$
\begin{aligned}
p\left(S^{\prime}\right) \propto & \lim _{\epsilon \rightarrow 0} \int_{\mathcal{P}_{\nu}} d P \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\gamma N \mathbf{1}_{N} \otimes\left(\mathbf{1}_{\nu}-i P\right)+i \kappa S \otimes H\right] \\
& \times \exp \left[\epsilon \gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)^{2}+\gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)\right]
\end{aligned}
$$

- Saddlepoint approximation for $N \rightarrow \infty$ is done on

$$
\begin{aligned}
p\left(S^{\prime}\right) \propto & \lim _{\epsilon \rightarrow 0} \int_{\mathcal{P}_{\nu}} d P \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N_{\nu}}+i \gamma^{-1} S / \sqrt{\operatorname{Tr} S^{2}} \otimes H\left(\mathbf{1}_{\nu}-i P\right)^{-1}\right] \\
& \times \exp [-i \gamma N \operatorname{Tr} P] \operatorname{det}^{-\gamma N}\left[\mathbf{1}_{\nu}-i P\right]
\end{aligned}
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- Limit $\epsilon \rightarrow 0$ can be taken for P, because determinant ensures convergence

$$
\begin{aligned}
p\left(S^{\prime}\right) \propto & \lim _{\epsilon \rightarrow 0} \int_{\mathcal{P}_{\nu}} d P \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\gamma N \mathbf{1}_{N} \otimes\left(\mathbf{1}_{\nu}-i P\right)+i \kappa S \otimes H\right] \\
& \times \exp \left[\epsilon \gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)^{2}+\gamma N \operatorname{Tr}\left(\mathbf{1}_{\nu}-i P\right)\right]
\end{aligned}
$$

- Saddlepoint approximation for $N \rightarrow \infty$ is done on

$$
\begin{aligned}
p\left(S^{\prime}\right) \propto & \lim _{\epsilon \rightarrow 0} \int_{\mathcal{P}_{\nu}} d P \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N \nu}+i \gamma^{-1} S / \sqrt{\operatorname{Tr} S^{2}} \otimes H\left(\mathbf{1}_{\nu}-i P\right)^{-1}\right] \\
& \times \exp [-i \gamma N \operatorname{Tr} P] \operatorname{det}^{-\gamma N}\left[\mathbf{1}_{\nu}-i P\right]
\end{aligned}
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- After rescaling $P \rightarrow P / \sqrt{\gamma N}$ the saddlepoint is

$$
\begin{aligned}
\lim _{N \rightarrow \infty} p\left(S^{\prime}\right) \propto & \lim _{N \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N_{\nu}}+i \gamma^{-1} S / \sqrt{\operatorname{Tr}^{2}} \otimes H\right]
\end{aligned}
$$

- Expanding the determinant
$\ln \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N \nu}+i \frac{S}{\gamma \sqrt{\operatorname{Tr} S^{2}}} \otimes H\right]=\gamma \sum_{j=1}^{\infty} \frac{1}{j} \operatorname{Tr}\left(-i \frac{S}{\gamma \sqrt{\operatorname{Tr} S^{2}}}\right)^{j} \operatorname{Tr} H^{j}$
- Higher orders vanish

$$
\left|\frac{\operatorname{Tr}(S)^{j}}{\left(\operatorname{Tr} S^{2}\right)^{j / 2}}\right| \leq \frac{\|S\|_{\text {op }}^{j-2} \operatorname{Tr} S^{2}}{\left(\operatorname{Tr} S^{2}\right)^{j / 2}}=\frac{1}{q^{j-2}} \xrightarrow{N \rightarrow \infty} 0
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- After rescaling $P \rightarrow P / \sqrt{\gamma N}$ the saddlepoint is

$$
\begin{aligned}
\lim _{N \rightarrow \infty} p\left(S^{\prime}\right) \propto & \lim _{N \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N \nu}+i \gamma^{-1} S / \sqrt{\operatorname{Tr} S^{2}} \otimes H\right]
\end{aligned}
$$

- Expanding the determinant

$$
\ln \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N \nu}+i \frac{S}{\gamma \sqrt{\operatorname{Tr} S^{2}}} \otimes H\right]=\gamma \sum_{j=1}^{\infty} \frac{1}{j} \operatorname{Tr}\left(-i \frac{S}{\gamma \sqrt{\operatorname{Tr} S^{2}}}\right)^{j} \operatorname{Tr} H^{j}
$$

- Higher orders vanish

$$
\left|\frac{\operatorname{Tr}(S)^{j}}{\left(\operatorname{Tr} S^{2}\right)^{j / 2}}\right| \leq \frac{\|S\|_{\text {op }}^{j-2} \operatorname{Tr} S^{2}}{\left(\operatorname{Tr} S^{2}\right)^{j / 2}}=\frac{1}{q^{j-2}}{ }^{N \rightarrow \infty} 0
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- After rescaling $P \rightarrow P / \sqrt{\gamma N}$ the saddlepoint is

$$
\begin{aligned}
\lim _{N \rightarrow \infty} p\left(S^{\prime}\right) \propto & \lim _{N \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N_{\nu}}+i \gamma^{-1} S / \sqrt{\operatorname{Tr} S^{2}} \otimes H\right]
\end{aligned}
$$

- Expanding the determinant

$$
\ln \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N \nu}+i \frac{S}{\gamma \sqrt{\operatorname{Tr} S^{2}}} \otimes H\right]=\gamma \sum_{j=1}^{\infty} \frac{1}{j} \operatorname{Tr}\left(-i \frac{S}{\gamma \sqrt{\operatorname{Tr} S^{2}}}\right)^{j} \operatorname{Tr} \boldsymbol{H}^{j}
$$

- Higher orders vanish

$$
\left|\frac{\operatorname{Tr}(S)^{j}}{\left(\operatorname{Tr} S^{2}\right)^{j / 2}}\right| \leq \frac{\|S\|_{\mathrm{op}}^{j-2} \operatorname{Tr} S^{2}}{\left(\operatorname{Tr} S^{2}\right)^{j / 2}}=\frac{1}{q^{j-2}}{ }^{N \rightarrow \infty} 0
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- After rescaling $P \rightarrow P / \sqrt{\gamma N}$ the saddlepoint is

$$
\begin{aligned}
\lim _{N \rightarrow \infty} p\left(S^{\prime}\right) \propto & \lim _{N \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\epsilon \operatorname{Tr} H^{2}+i \operatorname{Tr} S^{\prime} H\right] \\
& \times \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N_{\nu}}+i \gamma^{-1} S / \sqrt{\operatorname{Tr} S^{2}} \otimes H\right]
\end{aligned}
$$

- Expanding the determinant

$$
\ln \operatorname{det}^{-\gamma}\left[\mathbf{1}_{N \nu}+i \frac{S}{\gamma \sqrt{\operatorname{Tr} S^{2}}} \otimes H\right]=\gamma \sum_{j=1}^{\infty} \frac{1}{j} \operatorname{Tr}\left(-i \frac{S}{\gamma \sqrt{\operatorname{Tr} S^{2}}}\right)^{j} \operatorname{Tr} \boldsymbol{H}^{j}
$$

- Higher orders vanish

$$
\left|\frac{\operatorname{Tr}(S)^{j}}{\left(\operatorname{Tr} S^{2}\right)^{j / 2}}\right| \leq \frac{\|S\|_{\mathrm{op}}^{j-2} \operatorname{Tr} S^{2}}{\left(\operatorname{Tr} S^{2}\right)^{j / 2}}=\frac{1}{q^{j-2}} \xrightarrow{N \rightarrow \infty} 0
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- The result is

$$
\lim _{N \rightarrow \infty} p\left(S^{\prime}\right)=\frac{\int_{\mathcal{H}_{\nu}} d H \exp \left[-\operatorname{Tr} H^{2} /(2 \gamma)+i \operatorname{Tr} S^{\prime} H\right]}{\int_{\mathcal{H}_{\nu}} d \bar{S} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\operatorname{Tr} H^{2}-\operatorname{Tr} \bar{S}^{2} / 4\right]}=\frac{\exp \left[-\gamma \operatorname{Tr} S^{\prime 2} / 2\right]}{\int_{\mathcal{H}_{\nu}} d \bar{S} \exp \left[-\gamma \operatorname{Tr} \bar{S}^{2} / 2\right]}
$$

- The entries of S_{3} follows a Gaussian with standard deviation

$$
\sigma=\alpha \sqrt{\operatorname{Tr} S^{2} /\left(\gamma N^{2}\right)}
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- The result is

$$
\lim _{N \rightarrow \infty} p\left(S^{\prime}\right)=\frac{\int_{\mathcal{H}_{\nu}} d H \exp \left[-\operatorname{Tr} H^{2} /(2 \gamma)+i \operatorname{Tr} S^{\prime} H\right]}{\int_{\mathcal{H}_{\nu}} d \bar{S} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\operatorname{Tr} H^{2}-\operatorname{Tr} \bar{S}^{2} / 4\right]}=\frac{\exp \left[-\gamma \operatorname{Tr} S^{\prime 2} / 2\right]}{\int_{\mathcal{H}_{\nu}} d \bar{S} \exp \left[-\gamma \operatorname{Tr} \bar{S}^{2} / 2\right]}
$$

- The entries of S_{3} follows a Gaussian with standard deviation

$$
\sigma=\alpha \sqrt{\operatorname{Tr} S^{2} /\left(\gamma N^{2}\right)}
$$

Central Limit Theorem for Matrices

Non-chiral Classes

- The result is

$$
\lim _{N \rightarrow \infty} p\left(S^{\prime}\right)=\frac{\int_{\mathcal{H}_{\nu}} d H \exp \left[-\operatorname{Tr} H^{2} /(2 \gamma)+i \operatorname{Tr} S^{\prime} H\right]}{\int_{\mathcal{H}_{\nu}} d \bar{S} \int_{\mathcal{H}_{\nu}} d H \exp \left[-\operatorname{Tr} H^{2}-\operatorname{Tr} \bar{S}^{2} / 4\right]}=\frac{\exp \left[-\gamma \operatorname{Tr} S^{\prime 2} / 2\right]}{\int_{\mathcal{H}_{\nu}} d \bar{S} \exp \left[-\gamma \operatorname{Tr} \bar{S}^{2} / 2\right]}
$$

- The entries of S_{3} follows a Gaussian with standard deviation

$$
\sigma=\alpha \sqrt{\operatorname{Tr} S^{2} /\left(\gamma N^{2}\right)}
$$

Central Limit Theorem for Matrices

Non-chiral Classes

$$
K=\left(\begin{array}{cc}
0 & M \\
M^{\dagger} & 0
\end{array}\right)+\alpha U S U^{\dagger}
$$

Scaling and Application

$$
4 \square>4 \text { 司 }>4 \text { 三 }>4 \text { 三 }
$$

Scaling and Application

- Assume $\operatorname{Tr} S^{2} \sim N$ and α fixed, the broadened modes scale as \sqrt{N}
- From field theory $N \sim V$
- Keeping the scale $\alpha \sim \frac{\sqrt{\operatorname{Tr}\left(A^{\prime}\right)^{-2}} \mid S \|_{\text {op }}}{\sqrt{N}}, \frac{\sigma_{0}}{\mu_{1}}$ can identify former zero modes

Scaling and Application

- Assume $\operatorname{Tr} S^{2} \sim N$ and α fixed, the broadened modes scale as \sqrt{N}
- From field theory $N \sim V$
- Keeping the scale $\alpha \sim \frac{\sqrt{\operatorname{Tr}\left(A^{\prime}\right)^{-2}} \mid S \|_{\text {op }}}{\sqrt{N}}, \frac{\sigma_{0}}{\mu_{1}}$ can identify former zero modes

Scaling and Application

- Assume $\operatorname{Tr} S^{2} \sim N$ and α fixed, the broadened modes scale as \sqrt{N}
- From field theory $N \sim V$
- Keeping the scale $\alpha \sim \frac{\sqrt{\operatorname{Tr}\left(A^{\prime}\right)^{-2}}\|S\|_{\text {op }}}{\sqrt{N}}, \frac{\sigma_{0}}{\mu_{1}}$ can identify former zero modes

Scaling and Application

$$
K=\left(\begin{array}{cc}
i M & 0 \\
0 & -i M
\end{array}\right)+\alpha O\left(\begin{array}{cc}
0 & i W \\
-i W^{T} & 0
\end{array}\right) O^{T}
$$

$K=K^{\dagger}=-K^{T}$

Scaling and Application

Conclusion

Conclusion

- In perturbed systems with zero modes, the spectrum of the zero modes decouples from the bulk
- The former zero modes spread out as a Gaussian ensemble for all Altland-Zirnbauer classes
- The scaling of the zero mode width compared to the bulk modes can identify systems with former zero modes

Conclusion

- In perturbed systems with zero modes, the spectrum of the zero modes decouples from the bulk
- The former zero modes spread out as a Gaussian ensemble for all Altland-Zirnbauer classes
- The scaling of the zero mode width compared to the bulk modes can identify systems with former zero modes

Conclusion

- In perturbed systems with zero modes, the spectrum of the zero modes decouples from the bulk
- The former zero modes spread out as a Gaussian ensemble for all Altland-Zirnbauer classes
- The scaling of the zero mode width compared to the bulk modes can identify systems with former zero modes

Thank you for your time!

Extra Slides

Eigenvalue Equation

$$
\begin{aligned}
0= & \operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}\left(\begin{array}{l|l}
A^{\prime}+\alpha S_{1}-\lambda 1_{N-\nu} & \alpha S_{2} \\
\hline \alpha S_{2}^{\dagger} & \alpha S_{3}-\lambda 1_{\nu}
\end{array}\right) \\
= & \operatorname{det}\left(A^{\prime}-\lambda 1_{N-\nu}\right) \operatorname{det}\left(\begin{array}{c}
1_{N-\nu}+\alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} S_{1} \\
\hline \alpha S_{2}^{\dagger}
\end{array} \alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} S_{2}\right. \\
\hline= & \operatorname{det}\left(A^{\prime}-\lambda 1_{N-\nu}\right) \operatorname{det}\left(\mathbb{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right) \\
& \times \operatorname{det}\left[\alpha U_{2} S U_{2}^{\dagger}-\lambda 1_{\nu}-\alpha U_{2} S U_{1}^{\dagger}\left(1_{N-\nu}+\alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1}\right. \\
& \left.\times \alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S U_{2}^{\dagger}\right]
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

$$
\begin{aligned}
0= & \operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}\left(\begin{array}{c|c}
A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu} & \alpha S_{2} \\
\hline \alpha S_{2}^{\dagger} & \alpha S_{3}-\lambda \mathbf{1}_{\nu}
\end{array}\right) \\
= & \operatorname{det}\left(A^{\prime}-\lambda 1_{N-\nu}\right) \operatorname{det}\left(\begin{array}{c}
1_{N-\nu}+\alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} S_{1} \\
\hline \alpha S_{2}^{\dagger}
\end{array} \alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} S_{2}\right. \\
\hline= & \operatorname{det}\left(A^{\prime}-\lambda \mathbb{1}_{N-\nu}\right) \operatorname{det}\left(1_{N-\nu}+\alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right) \\
& \times \operatorname{det}\left[\alpha U_{2} S U_{2}^{\dagger}-\lambda 1_{\nu}-\alpha U_{2} S U_{1}^{\dagger}\left(1_{N-\nu}+\alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1}\right. \\
& \left.\times \alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S U_{2}^{\dagger}\right]
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

$$
\begin{aligned}
0= & \operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}\left(\begin{array}{c|c}
A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu} & \alpha S_{2} \\
\hline \alpha S_{2}^{\dagger} & \alpha S_{3}-\lambda \mathbf{1}_{\nu}
\end{array}\right) \\
= & \operatorname{det}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right) \operatorname{det}\left(\begin{array}{c}
\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} S_{1} \\
\hline \alpha S_{2}^{\dagger}
\end{array} \alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} S_{2}\right. \\
\hline= & \operatorname{det}\left(A^{\prime}-\lambda 1_{N-\nu}\right) \operatorname{det}\left(1_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right) \\
& \times \operatorname{det}\left[\alpha U_{2} S U_{2}^{\dagger}-\lambda 1_{\nu}-\alpha U_{2} S U_{1}^{\dagger}\left(1_{N-\nu}+\alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1}\right. \\
& \left.\times \alpha\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S U_{2}^{\dagger}\right]
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

$$
\begin{aligned}
0= & \operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}\left(\begin{array}{c|c}
A^{\prime}+\alpha S_{1}-\lambda \mathbf{1}_{N-\nu} & \alpha S_{2} \\
\hline \alpha S_{2}^{\dagger} & \alpha S_{3}-\lambda \mathbf{1}_{\nu}
\end{array}\right) \\
= & \operatorname{det}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right) \operatorname{det}\left(\begin{array}{c}
\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} S_{1} \\
\hline \alpha S_{2}^{\dagger}
\end{array} \alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} S_{2}\right. \\
\hline= & \operatorname{det}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right) \operatorname{det}\left(\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right) \\
& \times \operatorname{det}\left[\alpha \mathbf{1}_{\nu} S U_{2}^{\dagger}-\lambda \mathbf{1}_{\nu}-\alpha U_{2} S U_{1}^{\dagger}\left(\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1}\right. \\
& \left.\times \alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{2}^{\dagger}\right]
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

- Write as Neumann sum

$$
\begin{aligned}
& \left(\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1} \\
= & \sum_{j=0}^{\infty}(-\alpha)^{j}\left[\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right]^{j} .
\end{aligned}
$$

- Insert this

$$
\begin{aligned}
& \alpha U_{2} S\left(\mathbf{1}_{N-\nu}-\alpha U_{1}\left(\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1}\right. \\
& \left.\times\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S\right) U_{2}^{\dagger} \\
= & \alpha U_{2} S\left(\mathbf{1}_{N-\nu}+\sum_{j=1}^{\infty}(-\alpha)^{j}\left[U_{1}^{\dagger}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S\right]^{j}\right) U_{2}^{\dagger} \\
= & \alpha U_{2} S\left[\mathbf{1}_{N-\nu}+\alpha U_{1}^{\dagger}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S\right]^{-1} U_{2}^{\dagger} .
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

- Write as Neumann sum

$$
\begin{aligned}
& \left(\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1} \\
= & \sum_{j=0}^{\infty}(-\alpha)^{j}\left[\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right]^{j} .
\end{aligned}
$$

- Insert this

$$
\begin{aligned}
& \alpha U_{2} S\left(\mathbf{1}_{N-\nu}-\alpha U_{1}\left(\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1}\right. \\
& \left.\times\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S\right) U_{2}^{\dagger} \\
= & \alpha U_{2} S\left(\mathbf{1}_{N-\nu}+\sum_{j=1}^{\infty}(-\alpha)^{j}\left[U_{1}^{\dagger}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S\right]^{j}\right) U_{2}^{\dagger} \\
= & \alpha U_{2} S\left[1_{N-\nu}+\alpha U_{1}^{\dagger}\left(A^{\prime}-\lambda 1_{N-\nu}\right)^{-1} U_{1} S\right]^{-1} U_{2}^{\dagger}
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

- Write as Neumann sum

$$
\begin{aligned}
& \left(\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1} \\
= & \sum_{j=0}^{\infty}(-\alpha)^{j}\left[\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right]^{j}
\end{aligned}
$$

- Insert this

$$
\begin{aligned}
& \alpha U_{2} S\left(\mathbf{1}_{N-\nu}-\alpha U_{1}\left(\mathbf{1}_{N-\nu}+\alpha\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S U_{1}^{\dagger}\right)^{-1}\right. \\
& \left.\times\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S\right) U_{2}^{\dagger} \\
= & \alpha U_{2} S\left(\mathbf{1}_{N-\nu}+\sum_{j=1}^{\infty}(-\alpha)^{j}\left[U_{1}^{\dagger}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S\right]^{j}\right) U_{2}^{\dagger} \\
= & \alpha U_{2} S\left[\mathbf{1}_{N-\nu}+\alpha U_{1}^{\dagger}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1} S\right]^{-1} U_{2}^{\dagger}
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

$$
\begin{aligned}
& \operatorname{det}\left(K^{(N)}-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right) \operatorname{det}\left(\mathbf{1}_{N}+\alpha S^{(N)} U_{1}^{\dagger}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1}\right) \\
& \times \operatorname{det}\left(\alpha U_{2}\left[\mathbf{1}_{N}+\alpha S^{(N)} U_{1}^{\dagger}\left(A^{\prime}-\lambda \mathbf{1}_{N-\nu}\right)^{-1} U_{1}\right]^{-1} S^{(N)} U_{2}^{\dagger}-\lambda \mathbf{1}_{\nu}\right)
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

$$
\begin{aligned}
& \operatorname{det}\left(K^{(N)}-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}(\underbrace{A^{\prime}-\lambda \mathbf{1}_{N-\nu}}_{\approx A^{\prime}}) \operatorname{det}(\mathbf{1}_{N}+\alpha S^{(N)} U_{1}^{\dagger}(\underbrace{A^{\prime}-\lambda \mathbf{1}_{N-\nu}}_{\approx A^{\prime}})^{-1} U_{1}) \\
& \times \operatorname{det}(\alpha U_{2}[\mathbf{1}_{N}+\alpha S^{(N)} U_{1}^{\dagger}(\underbrace{A^{\prime}-\lambda \mathbf{1}_{N-\nu}}_{\approx A^{\prime}})^{-1} U_{1}]^{-1} S^{(N)} U_{2}^{\dagger}-\lambda \mathbf{1}_{\nu})
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

$$
\begin{aligned}
& \operatorname{det}\left(K^{(N)}-\lambda \mathbf{1}_{N}\right) \\
= & \operatorname{det}(\underbrace{A^{\prime}-\lambda \mathbf{1}_{N-\nu}}_{\approx A^{\prime}}) \operatorname{det}(\mathbf{1}_{N}+\underbrace{\alpha S^{(N)} U_{1}^{\dagger}(\underbrace{A^{\prime}-\lambda \mathbf{1}_{N-\nu}}_{\approx A^{\prime}})^{-1} U_{1}}_{\ll 1}) \\
& \times \operatorname{det}(\alpha U_{2}[\mathbf{1}_{N}+\underbrace{\alpha S^{(N)} U_{1}^{\dagger}(\underbrace{A^{\prime}-\lambda \mathbf{1}_{N-\nu}}_{\approx A^{\prime}})^{-1} U_{1}]^{-1} S^{(N)} U_{2}^{\dagger}-\lambda \mathbf{1}_{\nu})}_{\ll \mathbf{1}}
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

- Consider the squared norm of $\alpha U_{1}^{\dagger}\left(A^{\prime}\right)^{-1} U_{1} S|\chi\rangle$

$$
\begin{aligned}
\int_{\mathcal{K}} d \mu(U) \alpha^{2}\langle\chi| S U_{1}^{\dagger}\left(A^{\prime}\right)^{-2} U_{1} S|\chi\rangle & =\frac{\alpha^{2} \operatorname{Tr}\left(A^{\prime}\right)^{-2}}{N}\langle\chi| S^{2}|\chi\rangle \\
& \leq \frac{\alpha^{2} \operatorname{Tr}\left(A^{\prime}\right)^{-2}| | S \|_{\text {op }}^{2}}{N} \stackrel{\text { Condition on } \alpha}{\ll} 1
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

- Consider the squared norm of $\alpha U_{1}^{\dagger}\left(A^{\prime}\right)^{-1} U_{1} S|\chi\rangle$

$$
\begin{aligned}
\int_{\mathcal{K}} d \mu(U) \alpha^{2}\langle\chi| S U_{1}^{\dagger}\left(A^{\prime}\right)^{-2} U_{1} S|\chi\rangle & =\frac{\alpha^{2} \operatorname{Tr}\left(A^{\prime}\right)^{-2}}{N}\langle\chi| S^{2}|\chi\rangle \\
& \leq \frac{\alpha^{2} \operatorname{Tr}\left(A^{\prime}\right)^{-2}| | S \|_{\text {op }}^{2}}{N}
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

- Consider the squared norm of $\alpha U_{1}^{\dagger}\left(A^{\prime}\right)^{-1} U_{1} S|\chi\rangle$

$$
\begin{aligned}
\int_{\mathcal{K}} d \mu(U) \alpha^{2}\langle\chi| S U_{1}^{\dagger}\left(A^{\prime}\right)^{-2} U_{1} S|\chi\rangle & =\frac{\alpha^{2} \operatorname{Tr}\left(A^{\prime}\right)^{-2}}{N}\langle\chi| S^{2}|\chi\rangle \\
& \leq \frac{\alpha^{2} \operatorname{Tr}\left(A^{\prime}\right)^{-2}| | S \|_{\mathrm{op}}^{2}}{N}
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

- Consider the squared norm of $\alpha U_{1}^{\dagger}\left(A^{\prime}\right)^{-1} U_{1} S|\chi\rangle$

$$
\begin{aligned}
\int_{\mathcal{K}} d \mu(U) \alpha^{2}\langle\chi| S U_{1}^{\dagger}\left(A^{\prime}\right)^{-2} U_{1} S|\chi\rangle & =\frac{\alpha^{2} \operatorname{Tr}\left(A^{\prime}\right)^{-2}}{N}\langle\chi| S^{2}|\chi\rangle \\
& \leq \frac{\alpha^{2} \operatorname{Tr}\left(A^{\prime}\right)^{-2}\|S\|_{\text {op }}^{2}}{N} \stackrel{\text { Condition on } \alpha}{\ll} 1
\end{aligned}
$$

Extra Slides

Eigenvalue Equation

$$
\operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right) \quad \lambda \text { former zero mode } \underset{\sim}{\operatorname{det}}\left(A^{\prime}\right) \operatorname{det}\left(\alpha U_{2} S U_{2}^{\dagger}-\lambda \mathbf{1}_{\nu}\right)
$$

Former zero modes are determined by S_{3}.

Extra Slides

Eigenvalue Equation

$$
\operatorname{det}\left(K-\lambda \mathbf{1}_{N}\right) \quad \lambda \text { former zero mode } \underset{\sim}{\cot }\left(A^{\prime}\right) \operatorname{det}\left(\alpha U_{2} S U_{2}^{\dagger}-\lambda \mathbf{1}_{\nu}\right)
$$

Former zero modes are determined by S_{3}.

