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The SYK model

The SYK (Sachdev-Ye-Kitaev) model describes a disordered four-body
interaction among N Majoranas in 0 + 1 dimension:

H(Jijkl) =
∑

1≤i<j<k<l≤N
Jijklγiγjγkγl ,

where Jijkl are Gaussian distributed and γi ’s are Dirac matrices.

A schematic diagram with N = 5
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Why SYK model?

High energy side: a highly solvable model for AdS/CFT duality, sheds
light on the black hole information paradox. Dual theory includes a
sector of Jackiw-Teitelboim gravity (stay tuned for Antonio’s talk).

Condensed matter side: a simple model for many-body quantum
chaos and thermalization. (This talk)
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(Single-particle) quantum chaos and random matrix

Single particle chaos: Sinai’s billiard

Classical signature of chaos: nonzero Lyapunov exponent.
Quantum signature of chaos?
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Bohigas-Giannoni-Schmit conjecture

Bohigas-Giannoni-Schmit (BGS) conjecture: the unfolded quantum energy
levels of a classically chaotic system correlate according to random matrix
theory (RMT) predictions (at the distance of a few level spacings).
Sinai billiard example:

energy levels: − ~2
2m∇

2ψ + V (x)ψ = Eiψ.

spectral density: ρ(x) =
∑

i δ(x − Ei ).

average spectral density: 〈ρ(x)〉.
correlation: 〈ρ(x)ρ(y)〉 − 〈ρ(x)〉〈ρ(y)〉.
unfolding : ρ(x)→ ρ(x)

〈ρ(x)〉

unfolded correlation: 〈ρ(x)ρ(y)〉
〈ρ(x)〉〈ρ(y)〉 − 1.

BGS conjecture: 〈ρ(x)ρ(y)〉
〈ρ(x)〉〈ρ(y)〉 − 1 = 〈ρ(x)ρ(y)〉RMT

〈ρ(x)〉RMT 〈ρ(y)〉RMT
− 1
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Random matrix theory

Hermitian matrices randomly distributed according to

P(H)dH = exp (−nTrH2)dH

Real symmetric H: Gaussian Orthogonal Ensemble (GOE)

Quaternionic H: Gaussian Symplectic Ensemble (GSE)

No constraint on H (other than Hermiticity): Gaussian Unitary
Ensemble (GUE)

Yiyang Jia (Stony Brook University) The Thermodynamics and Chaos of the Sachdev-Ye-Kitaev ModelECT* Trento, Aug-2019 6 / 30



Random matrix theory

Spectral form factor: Fourier transform of the unfolded correlation
function 〈ρ(x)ρ(y)〉

〈ρ(x)〉〈ρ(y)〉 − 1.

RMT spectral form factor:

Sinai’s billiard form factor = GOE form factor. (BGS conjecture
satisfied)

Proof of BGS conjecture: semiclassical analysis of long periodic
orbits. (Berry 1985, Müller-Heusler-Braun-Haake-Altland 2004)
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Back to SYK

Goal: understand the SYK model from an RMT perspective.

Need: 〈ρ〉SYK and 〈ρρ〉SYK .

Method: 〈ρ〉SYK – analytic/combinatorial; 〈ρρ〉SYK – numerical.
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The q-body SYK model

For analytic study, it is advantageous to generalize the four-body
interaction to a q-body interaction:

H(Jα) =(
√
−1)q(q−1)/2

∑
1≤i1<i2<···<iq≤N

Ji1i2···iqγi1γi2 · · · γiq

=:
∑
α

JαΓα,

with
α = {i1, i2, . . . , iq}, 1 ≤ i1 < i2 < · · · < iq ≤ N,

and
Γα = (

√
−1)q(q−1)/2γi1γi2 · · · γiq .

Again Jα follows a Gaussian distribution.
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Average spectral density: moment method

Average spectral density:

〈ρ(E )〉 =

〈
2b

N
2 c∑

k=1

δ(E − Ek)

〉
.

Moments:

M2p :=

∫
dE 〈ρ(E )〉E 2p =

〈
TrH(Jα)2p

〉
Odd moments M2p+1 = 0 due to Jα → −Jα symmetry.

The collection of M2p uniquely determines 〈ρ(E )〉.
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Wick contractions and chord diagrams

Since Jα is Gaussian, we can use Wick theorem to compute the
averaging:

M2p =
∑

all Wick contractions with 2p Γ’s .

Each contraction is a trace over a product of 2p Γ’s.

For example, one contraction that contributes to M6 is∑
α1,α2,α3

Tr(Γα1Γα2Γα3Γα2Γα3Γα1),

and it can be represented as

α1 α2 α3 α2 α3 α1

This is called a chord diagram.
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Wick contractions and chord diagrams

The 2p-th moment contains (2p − 1)!! contractions/chord diagrams.

We denote a chord diagram by G , the corresponding contraction
value is denoted by ηG , hence Wick theorem can be restated as

M2p =

(2p−1)!!∑
i=1

ηGi
.

ηG is determined by how the chords intersect each other.
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Q-Hermite approximation

A special role will be played by the following contraction:

η := = (−1)q
(

1− 2q2

N + 2q2(q−1)2
N2 + · · ·

)
When chord intersections do not form close loops, we have the
identity [Garćıa-Garćıa-YJ-Verbaarschot 2018]:

ηG = ηnc ,

where nc is the number of intersections in G . For example:

= η2
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Q-Hermite approximation

When there are close loops,

ηG ≈ ηnc

is still a very good approximation. For example:

≈ η3

[Erdős-Schröder 2014, Cotler et al. 2017, Garćıa-Garćıa-Verbaarschot
2017, Garćıa-Garćıa-YJ-Verbaarschot 2018]

Corrections to this approximation has been studied to 1/N3 order.
[Garćıa-Garćıa-YJ-Verbaarschot 2018, YJ-Verbaarschot 2018]
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Q-Hermite approximation

The approximated moments then are

M2p(η) ≈
(2p−1)!!∑

i=1

ηnci .

This is the generating function for chord intersections and is well
studied in mathematics community [Touchard 1952, Riordan 1975,
Ismail-Stanton-Viennot 1987].

The unique spectral density that corresponds to the approximated
moments is

ρQH(E ) = cN

√
1− (E/E0)2

∞∏
k=1

[
1− 4

E 2

E 2
0

(
1

2 + ηk + η−k

)]
.

ρQH is the weight function that defines the inner product of
Q-Hermite polynomials, hence the name for the approximation used.
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Q-Hermite approximation

Compare ρQH(E ) with numerical data (N = 24, q = 4):

-1.0 -0.5 0.0 0.5 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Orange: histogram of the numerical eigenvalues (8000 realizations);
Blue curve: ρQH(E ) (taking first 10 terms in the infnite product).

We can see ρQH approximates 〈ρ〉SYK quite well.
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Properties of ρQH(E )

ρQH(E ) interpolates between Gaussian distribution and semicircle
distribution:
Large N and fixed q: η → 1, ρQH(E )→ Gaussian.
Large N and q ∼ N: η → 0, ρQH(E )→ semicircle.

Near the ground state E ≈ E0, the Q-Hermite density simplifies
[Cotler et al. 2017, Garćıa-Garćıa-Verbaarschot 2017]:

ρQH(E ) ≈ eS0 sinh(α
√

1− E/E0),

where S0 ∼ N, α ∼ N.
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Properties of ρQH(E )

Both S0 and α are proportional to N ⇒ Level spacings are
exponentially small in N near the ground state: typically not the case
in Fermi liquid models.

S0 is the zero-temperature entropy, α can be interpreted as the pion
decay constant of the low-energy Goldstone theory of the SYK model
(Schwarzian theory). [Maldacena-Stanford 2016]

In the double scaling limit q2/N fixed, N →∞, ρQH becomes the
exact spectral density, and more single-trace observables can be
studied analytically. [Berkooz-Isachenkov-Narovlansky-Torrents 2018]
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Correlations of eigenvalues

We will use ρQH(E ) to unfold SYK eigenvalues since ρQH(E ) is an
accruate approximation to 〈ρ(E )〉SYK . The spectral fluctuations around
ρQH(E ) can be naturally expanded in terms of the Q-Hermite polynomials
Hη
n [Garćıa-Garćıa-YJ-Verbaarschot, in preparation]:

ρ(E )

ρQH(E )
= 1 +

∞∑
k=1

akH
η
2k(E ).

Note the odd polynomials do not appear because ρ(E ) = ρ(−E ).
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Collective fluctuations of the spectra

What do we expect to see? Generically there are both short-range and
long-range fluctuations:

Short-range fluctuations: a few level spacings (∼ e−N), will be
responsible for RMT behaviour (BGS conjecture).

Long-range fluctuations:

Translations forbidden by symmetry ρ(E ) = ρ(−E ).
Scale fluctuations (“breathing” mode): fluctuations of the distribution
width realization by realization, can be estimated by the variance of
variances

〈
(
TrH2

)2〉 − 〈TrH2〉2 =
2(
N
q

) ∼ N−q

Note N−q >> e−N . This is to be contrasted with random matrix models,
where the scale fluctuation and level spacing are both ∼ N−1.
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Scale fluctuations (“breathing” mode): fluctuations of the distribution
width realization by realization, can be estimated by the variance of
variances

〈
(
TrH2

)2〉 − 〈TrH2〉2 =
2(
N
q

) ∼ N−q

Note N−q >> e−N . This is to be contrasted with random matrix models,
where the scale fluctuation and level spacing are both ∼ N−1.
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Spectral form factor of SYK

The eigenvalue statistics will get closer to RMT result if long-range modes
are discarded realization by realization, that is, consider the correlations of

ρ(E )

ρQH(E )
−

M∑
k=0

akH
η
2k(E ).

The SYK form factor converges very well to RMT form factor after
subtracting mere first eight modes! (Recall N−q >> e−N .)
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Spectral form factor of SYK

We can also study the deviation from RMT before substracting long-range
modes:

The early-time form factor is well fitted by Gaussian when there is a finite
regulator w , and tends to a delta function as the regulator is removed
(w →∞).
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Aside: SYK as a enumeration machine

There are (2p − 1)!! chord diagrams with p chords (as in 〈TrH2p〉).

A much more nontrivial enumeration:

(2p−1)!!∑
i=1

(# of chord intersections)i =
1

3

(
p

2

)
(2p − 1)!!

Simple-looking but nontrivial to prove. [Touchard 1952, Riordan
1975, Flajolet-Noy 2000].

Claim: The SYK model provides an alternative proof, and gives
(infinitely) more such identities.

The correct language for generalization is intersection graph.

Yiyang Jia (Stony Brook University) The Thermodynamics and Chaos of the Sachdev-Ye-Kitaev ModelECT* Trento, Aug-2019 23 / 30



Aside: SYK as a enumeration machine

There are (2p − 1)!! chord diagrams with p chords (as in 〈TrH2p〉).

A much more nontrivial enumeration:

(2p−1)!!∑
i=1

(# of chord intersections)i =
1

3

(
p

2

)
(2p − 1)!!

Simple-looking but nontrivial to prove. [Touchard 1952, Riordan
1975, Flajolet-Noy 2000].

Claim: The SYK model provides an alternative proof, and gives
(infinitely) more such identities.

The correct language for generalization is intersection graph.

Yiyang Jia (Stony Brook University) The Thermodynamics and Chaos of the Sachdev-Ye-Kitaev ModelECT* Trento, Aug-2019 23 / 30



Aside: SYK as a enumeration machine

There are (2p − 1)!! chord diagrams with p chords (as in 〈TrH2p〉).

A much more nontrivial enumeration:

(2p−1)!!∑
i=1

(# of chord intersections)i =
1

3

(
p

2

)
(2p − 1)!!

Simple-looking but nontrivial to prove. [Touchard 1952, Riordan
1975, Flajolet-Noy 2000].

Claim: The SYK model provides an alternative proof, and gives
(infinitely) more such identities.

The correct language for generalization is intersection graph.

Yiyang Jia (Stony Brook University) The Thermodynamics and Chaos of the Sachdev-Ye-Kitaev ModelECT* Trento, Aug-2019 23 / 30



Aside: SYK as a enumeration machine

There are (2p − 1)!! chord diagrams with p chords (as in 〈TrH2p〉).

A much more nontrivial enumeration:

(2p−1)!!∑
i=1

(# of chord intersections)i =
1

3

(
p

2

)
(2p − 1)!!

Simple-looking but nontrivial to prove. [Touchard 1952, Riordan
1975, Flajolet-Noy 2000].

Claim: The SYK model provides an alternative proof, and gives
(infinitely) more such identities.

The correct language for generalization is intersection graph.

Yiyang Jia (Stony Brook University) The Thermodynamics and Chaos of the Sachdev-Ye-Kitaev ModelECT* Trento, Aug-2019 23 / 30



Aside: SYK as a enumeration machine

There are (2p − 1)!! chord diagrams with p chords (as in 〈TrH2p〉).

A much more nontrivial enumeration:

(2p−1)!!∑
i=1

(# of chord intersections)i =
1

3

(
p

2

)
(2p − 1)!!

Simple-looking but nontrivial to prove. [Touchard 1952, Riordan
1975, Flajolet-Noy 2000].

Claim: The SYK model provides an alternative proof, and gives
(infinitely) more such identities.

The correct language for generalization is intersection graph.

Yiyang Jia (Stony Brook University) The Thermodynamics and Chaos of the Sachdev-Ye-Kitaev ModelECT* Trento, Aug-2019 23 / 30



Aside: SYK as a enumeration machine

Translate chord diagrams to intersection graphs:
1 Represent each chord by a vertex.
2 Connect two vertices by an edge if the corresponding chords intersect

each other.

α1 α2 α3 α2 α3 α1 α1 α2 α3 α2 α1 α3 α1 α2 α3 α1 α2 α3

α1 α2

α3

α1 α2

α3

α1 α2

α3
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Aside: SYK as a enumeration machine

In terms of intersection graphs, the previous chord intersection
identity can be rewritten as

(2p−1)!!∑
i=1

(# )i =
1

3

(
p

2

)
(2p − 1)!!.

The SYK model generates the following (and infinitely
more)[Garćıa-Garćıa-YJ-Verbaarschot 2018, YJ-Verbaarschot 2018]:

(2p−1)!!∑
i=1

(# )i =
1

3

(
p

2

)
(2p − 1)!!

(2p−1)!!∑
i=1

(
#

)
i

=
1

15

(
p

3

)
(2p − 1)!!

(2p−1)!!∑
i=1

(
5# + # −#

)
i

=
1

15

(
p

4

)
(2p − 1)!!
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Aside: SYK as a enumeration machine

Sketch of the proof:

〈TrH2p〉

Analytics
Wick con-
tractions

∞∑
k=1

fk(p)N−k+1
∞∑
k=1

(2p−1)!!∑
i=1

(
#
k-point
structures

)
i
N−k+1Match

Large N Large N
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Aside: SYK as a enumeration machine

We can apply the same technique to the supersymmetric SYK model (odd
q), and get a graded version of the enumerations:

(2p−1)!!∑
i=1

(−1)(# )i (# )i = −
(
p

2

)
(2p−1)!!∑

i=1

(−1)(# )i
(
#

)
i

= −
(
p

3

)
(2p−1)!!∑

i=1

(−1)(# )i
(

5# + # −#
)
i

= −
(
p

4

)
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Recap and outlook

BGS conjecture relates chaos to random matrix, well understood in
the case of single-particle chaos via long periodic orbits. No such
precise understanding exists for many-body chaos. =⇒ SYK may
help due to its high degree of solvablity.

We have a quite precise understanding of the average spectral density
of SYK, via Q-Hermite density ρQH . It has the distinct feature that
level spacings are exponentially small in N near ground state.

The numerical study of the spectral form factor confirms SYK has
RMT behviour at late time. If the first few long-range fluctuations are
subtracted, it becomes RMT all the way. (needs an explanation)

SYK is a enumeration machine for intersection graphs.
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Recap and outlook

What next?

Toward a many-body BGS:

An analytic understanding of spectral form factor. (〈TrHmTrHn〉?
Sigma model?)
What is the classical limit of SYK?

A long-shot question: in the UV of SYK we have a (intersection
graph, 1/N) expansion, in the IR we have a (Jakiw-Teitelboim)
gravitational (genus, e−N) expansion [Shenker-Stanford-Saad 2019],
how does the UV renormalize to the IR exactly?
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Last but not least

Happy 65, Jac!
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