Universality in the ϵ -expansion

Alessandro Codello

ECT* Trento 20 September 2019

Universality in the ϵ -expansion

- The primary goal of RG analysis is the study of universality classes (UC) in arbitrary dimension
- IR: classify phase transition and dictate the structure of phase diagrams
- UV: needed to construct continuum limits, asymptotic freedom and safety
- Universal quantitative properties: CFT data
- In general a universality class (UC) is characterized by an upper critical dimension d_c where
 it is described by mean field theory (MFT) and close to which we can perform the
 ε-expansion
- Most UCs have fractional d_c and appear for the first time at a loop order $L_{\rm LO}$ generally bigger than one... many UCs have been missed!
- ullet Lesson from Non-Perturbative RG (NPRG): **be functional!** Smart way to access **CFT data in the** ϵ -expansion
- Multicomponent world still mostly uncharted!

Functional Perturbative RG (FPRG)

Action for a general single component scalar theory in d-dimensions

$$S = \int \mathrm{d}^d x \left\{ \frac{1}{2} (\partial \phi)^2 + V(\phi) \right\}$$

• Effective action in the loop expansion $(G_{xy} \equiv (S^{(2)})_{xy}^{-1})$

$$\Gamma = S + \frac{1}{2} \operatorname{Tr} \log S^{(2)} + \frac{1}{8} S^{(4)}_{xyzw} G_{xy} G_{zw} - \frac{1}{12} S^{(3)}_{xyz} S^{(3)}_{abc} G_{xa} G_{yb} G_{zc} + \cdots$$

ullet We will use dimensional regularization $\overline{\mathrm{MS}}$ scheme in

$$d = d_c - \epsilon$$

In single scalar perturbation theory d_c labels universality classes

• Beta functionals β_V, β_Z describing the RG flow of the potential V and of the wave function renormalization functional Z can be computed from the $\frac{1}{\epsilon}$ -poles of the effective action

$$\Gamma_{\mathrm{div}} \sim -\frac{1}{\epsilon} \int \mathrm{d}^{d_c} x \left\{ \beta_V(\phi) + \beta_Z(\phi) \frac{1}{2} (\partial \phi)^2 + \cdots \right\}$$

Which are the possible d_c ?

L = 1					
2	L = 2	L = 3	L = 4	<i>L</i> = 5	L=6
4	3	813	<u>5</u> 2	<u>12</u> 5	7/3
6	4	10 3	3	<u>14</u> 5	8 3
	5	4	$\frac{7}{2}$	<u>16</u> 5	3
	6	14 3	4	18 5	10 3
		16 3	<u>9</u>	4	11 3
		6	5	<u>22</u> 5	4
			<u>11</u>	22 5 24 5	<u>13</u> 3
			6	<u>26</u> 5	14 3
				<u>28</u> 5	5
				6	16 3
					17 3
					6

 d_c where $\frac{1}{\epsilon}$ -poles are present at a given loop order L

Landau-Ginzburg lagrangians

Only integer Landau-Ginzburg lagrangians are allowed: even and odd models

Multicritical models

Landau-Ginzburg for multicritical models

$$S[\phi] = \int \mathrm{d}^d x \Big\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{g}{m!} \phi^m \Big\}$$

for m a natural number m > 3

- Even models m=2n: they are the so-called <u>unitary</u> multicritical models which are protected by a \mathbb{Z}_2 parity $(\phi \to -\phi)$ and include both the Ising (m=4) and Tricritical (m=6) universality classes as the first special cases
- Odd models m=2n+1: represents a sequence of multicritical non-unitary theories which are protected by a generalization of parity $\mathcal{PT}:S[\phi]\to S[-\phi]^*$ and include the Lee-Yang universality class (m=3) as first example
- Even models are known to interpolate in d=2 with the unitary minimal CFTs $\mathcal{M}(p,p+1)$ for p=1+m/2, which arise from the representations of the infinite dimensional Virasoro algebra
- Similarly, there are speculations (Zambelli+Zanusso) pointing at the fact that the non-unitary models might interpolate with the sequence of minimal non-unitary multicritical theories $\mathcal{M}(2,m+2)$ studied in (Belavin+Belavin+Litvinov+Pugai+Zamolodchikov). This is established for the Lee-Yang case m=3 (Cardy)

Minimal models and their range of existence

Allowed $2 \le d_c \le 6$ with integer LG Lagrangian with $L_{\rm LO} \le 6$: unitary and non-unitary minimal models

- A UC is generally present in all dimensions $2 \le d \le d_c$ and in particular for all integer dimensions it the range (caveat: if it does not become first order...)
- The only non-trivial UCs in d=3 are $d_c=6,4,\frac{10}{3}$ while the only non-trivial in d=4 is $d_c=6$
- Universal quantities U(d) are such in all the range $2 \le d \le d_c$. U(2) is known from CFT, $U(d_c)$ from MFT (i.e. Gaussian), $U'(d_c)$ and in some cases $U''(d_c)$ from ϵ -expansion. General form of U(d) demands non-perturbative methods

Beta functionals: functional form of β_V

- We can determine the functional form of the beta functional β_V given d_c
- We first determine the *vertex set* at the given loop order (i.e. the set of possible vertices of a diagram contributing a $\frac{1}{\epsilon}$ -pole). The *L*-loop contribution to the functional β_V is a monomial built out of the possible vertices in the vertex set of order *L*
- For example, the two loop vertex set is $\{(V^{(3)})^2\}$ while at three loop it is $\{(V^{(3)})^4,(V^{(3)})^2V^{(4)},(V^{(4)})^2\}$
- At a given loop order the full vertex set is

$$\{(V^{(3)})^{2(L-1)},...,(V^{(L+1)})^2\}$$

since a given graph must satisfy

$$V - P + L = 1 \Rightarrow V = P - (L - 1)$$

due to the fact that they are all closed vacuum diagrams, and topology demands them to have Euler character one

- ullet We thus need to consider the partitions of 2P of length V for $P_{\min}=L+1 \leq P \leq P_{\max}=3(L-1)$
- It's easy in this way to construct the L = 4 vertex set

$$\left\{ (V^{(3)})^6, (V^{(3)})^4 V^{(4)}, (V^{(3)})^2 (V^{(4)})^2, (V^{(3)})^3 (V^{(5)}), (V^{(4)})^3, V^{(3)} V^{(4)} V^{(5)}, (V^{(3)})^2 (V^{(6)}), (V^{(5)})^2 \right\}$$

as one can also check explicitly from the knowledge of four loop diagrams

Beta functionals: functional form of β_V

• Once the vertex set is known we can determine which monomials (with additional $(V^{(2)})^k$ insertions) contribute to β_V for given d_c and L since the dimension of a vertex is

$$[V^{(n)}] = [V][\phi]^{-n} = d - n\left(\frac{d}{2} - 1\right) = d\left(1 - \frac{n}{2}\right) + n$$

and each monomial must match the dimension of eta_V which is obviously d_c

• Clearly at one loop the beta functional can only be of the form $(V^{(2)})^{\frac{d_c}{2}}$ and can be present only when d_c is even. At two loop it must be of the form $(V^{(2)})^k(V^{(3)})^2$ with k integer solution of

$$2\left[d_c\left(1-\frac{3}{2}\right)+3\right]+2k=d_c$$

At three loop the vertex set contains three elements. One consider the following relations

$$(V^{(2)})^{k}(V^{(3)})^{4} \qquad 2k+4\left[d_{c}\left(1-\frac{3}{2}\right)+3\right]=d_{c}$$

$$(V^{(2)})^{k}(V^{(3)})^{2}V^{(4)} \qquad 2k+2\left[d_{c}\left(1-\frac{3}{2}\right)+3\right]+\left[d_{c}\left(1-\frac{4}{2}\right)+4\right]=d_{c}$$

$$(V^{(2)})^{k}(V^{(4)})^{2} \qquad 2k+2\left[d_{c}\left(1-\frac{4}{2}\right)+4\right]=d_{c}$$

and looks for solutions with $k \in \mathbb{N}$

Beta functionals: functional form of β_V

• Ising
$$(d_c = 4)$$

$$\beta_V = \underbrace{a(V^{(2)})^2}_{L=1} + \underbrace{bV^{(2)}(V^{(3)})^2}_{L=2} + \underbrace{c_1(V^{(3)})^4 + c_2V^{(2)}(V^{(3)})^2V^{(4)} + c_3(V^{(2)})^2(V^{(4)})^2}_{L=3} + \dots$$

• Lee-Yang
$$(d_c = 6)$$

$$\beta_V = \underbrace{a(V^{(2)})^3}_{L=1} + \underbrace{b(V^{(2)})^3(V^{(3)})^2}_{L=2} + \underbrace{c_1(V^{(2)})^3(V^{(3)})^4 + c_2(V^{(2)})^4(V^{(3)})^2V^{(4)} + c_3(V^{(2)})^5(V^{(4)})^2}_{L=3} + \dots$$

• Tricritical
$$(d_c = 3)$$

$$\beta_V = \underbrace{a(V^{(3)})^2}_{I=2} + \underbrace{b_1 V^{(3)} V^{(4)} V^{(5)} + b_2 (V^{(4)})^3 + b_3 V^{(2)} (V^{(5)})^2}_{I=4} + \dots$$

• Similar expression can be easily derived for any d_c and for any order N^kLO

Beta functionals: determining the LO and NLO coefficients

- The LO and NLO order contributions are scheme independent. To see this we just take $V(\phi) = \frac{g}{m!} \phi^m$ so that the beta functionals are projected to the beta functions of the respective critical coupling which we already know has LO and NLO universal beta function coefficients.
- These coefficients are the universal ϵ -expansion data of the theory
- Example: computing Ising LO and NLO universal coefficients

$$\beta_V = a(V'')^2 + bV''(V''')^2$$

Even if they can be easily determined by matching with standard perturbative RG here we re-compute them in a different way offered by the functional constraint which does not involve the critical Ising coupling $\frac{\lambda_4}{4l}\varphi^4$

- ① The LO contribution can be extracted from the free theory alone $V=\frac{\lambda_2}{2}\varphi^2$ if we look at the flow of the vacuum energy since $\beta_0=a\lambda_2^2$. This is trivial since the one loop contribution to the vacuum energy is just one half the number of degrees of freedom $a=\frac{1}{2}\frac{1}{(4\pi)^2}$
- ② The NLO coefficient can be determined considering $V=\frac{1}{2}\lambda_2\varphi^2+\frac{1}{3!}\lambda_3\varphi^3$ from $\beta_0=a\lambda_2^2+b\lambda_2\lambda_3^2$ which comes from the sunset diagram

$$\mathrm{sunset} = -\frac{1}{12} \frac{\lambda_3^2}{(4\pi)^d} \mathrm{Vol} \int_0^\infty \frac{ds_1 ds_2 ds_3}{\left(s_1 s_2 + s_1 s_3 + s_2 s_3\right)^{\frac{d}{2}}} e^{-\lambda_2 (s_1 + s_2 + s_3)} \rightarrow \frac{1}{4\varepsilon} \frac{\lambda_2 \lambda_3^2}{(4\pi)^4} \mathrm{Vol}$$

This corresponds to a two loop vacuum renormalization $\beta_0^{II}=-\frac{1}{2}\frac{\lambda_2\lambda_3^2}{(4\pi)^4}$ and thus $b=-\frac{1}{2}\frac{1}{(4\pi)^4}$

Universality Classes

$(4\pi)^{\frac{d_c}{2}L}\beta_V$	d _c	L=1	L = 2	L = 3
Sine-Gordon	2	$-V^{(2)}$	0	0
Tetracritical	8 3	0	0	$\frac{1}{8}\Gamma(\frac{1}{3})^3(V^{(4)})^2$
Tricritical	3	0	$\frac{1}{3}\Gamma(\frac{1}{2})^2(V^{(3)})^2$	0
Tri-Lee-Yang	10 3	0	0	$\frac{\frac{\Gamma(\frac{1}{2})^4\Gamma(\frac{2}{3})}{\Gamma(\frac{4}{3})^2} \left[\frac{1}{9} V^{(2)} (V^{(4)})^2 - \frac{1}{2} (V^{(3)})^2 V^{(4)}\right]}{V^{(4)}}$
Ising	4	$\frac{1}{2}(V^{(2)})^2$	$-\frac{1}{2}V^{(2)}(V^{(3)})^2$	$\frac{1}{16} (V^{(2)})^2 (V^{(4)})^2 + \frac{7}{4} V^{(2)} (V^{(3)})^2 V^{(4)} - \frac{1 - 4\zeta_3}{8} (V^{(3)})^4$
Lee-Yang	6	$-\frac{1}{6}(V^{(2)})^3$	$-\frac{23}{144}(V^{(2)})^3(V^{(3)})^2$	$-rac{1595+432\zeta_3}{5184}ig(V^{(2)}ig)^3ig(V^{(3)}ig)^4$

Universality Classes

$(4\pi)^{\frac{d_{\mathcal{C}}}{2}} \stackrel{L}{\downarrow} \beta_{\mathcal{Z}}$	d _c	L = 1	L = 2	L = 3	L = 4	L = 5
Sine-Gordon	2	0	0	0	0	0
Tetracritical	8 3	0	0	0	0	$-\frac{\Gamma(\frac{1}{3})^6}{1120}(V^{(8)})^4$
Tricritical	3	0	0	0	$-\frac{\Gamma(\frac{1}{2})^4}{45}(V^{(6)})^4$	0
Tri-Lee-Yang	10 3	0	0	$-\frac{3}{40}\Gamma(\frac{2}{3})^3(V^{(5)})^4$	0	0
Ising	4	0	$-\frac{1}{6}(V^{(4)})^2$	0	$\frac{1}{8}(V^{(4)})^4$	
Lee-Yang	6	$-\frac{1}{6}(V^{(3)})^2$	$-\frac{13}{216}(V^{(3)})^4$	$-\frac{5195-2592\zeta_3}{31104}(V^{(3)})^6$		

Beta functions from the beta functionals

Ising dimensionful beta functionals

$$\beta_V = \frac{1}{(4\pi)^2} \frac{1}{2} (V^{(2)})^2 - \frac{1}{(4\pi)^4} \frac{1}{2} V^{(2)} (V^{(3)})^2 + \cdots$$

$$\beta_Z = -\frac{1}{(4\pi)^4} \frac{1}{6} (V^{(4)})^2 + \cdots$$

• Dimensionless variables: $v(\varphi) \equiv (4\pi)^2 \mu^{-(4-\epsilon)} V(\varphi \mu^{(2-\epsilon+\eta)/2})$ and $z(\varphi) = \mu^{\eta} Z(\varphi \mu^{(2-\epsilon+\eta)/2})$

$$\begin{split} \beta_v &= -4v + \varphi v' + \epsilon \left(v - \frac{1}{2}\varphi v'\right) + \frac{1}{2}\eta \varphi v' + \frac{1}{2}(v'')^2 - \frac{1}{2}v''(v''')^2 \\ \beta_z &= \eta z + \varphi z' - \frac{\epsilon}{2}\varphi z' + \frac{1}{2}\eta \varphi z' - \frac{1}{\epsilon}(v^{(4)})^2 \end{split}$$

Note: this is the step where we introduce $\epsilon!$

Expand the potential in Taylor series (Z₂ even and odd operators)

$$v(\varphi) = \sum_{n=1}^{\infty} \frac{\lambda_n}{n!} \varphi^n$$

then the beta functional β_V becomes generating function of beta functions

The anomalous dimension obtains from the normalization z(0)=1 and is $\eta=rac{\lambda_4^2}{6}$.

Beta functions

• Beta function system

$$\begin{array}{lll} \beta_{1} & = & -\left(3-\frac{\epsilon}{2}\right)\lambda_{1}+\lambda_{2}\lambda_{3}-\frac{1}{2}\lambda_{3}^{3}-\lambda_{2}\lambda_{3}\lambda_{4}+\frac{1}{12}\lambda_{1}\lambda_{4}^{2} \\ \beta_{2} & = & -2\lambda_{2}+\lambda_{4}\lambda_{2}+\lambda_{3}^{2}-\frac{5}{2}\lambda_{3}^{2}\lambda_{4}-\frac{5}{6}\lambda_{2}\lambda_{4}^{2}-\lambda_{2}\lambda_{3}\lambda_{5} \\ \beta_{3} & = & -\left(1+\frac{\epsilon}{2}\right)\lambda_{3}+3\lambda_{4}\lambda_{3}-\frac{23}{4}\lambda_{3}\lambda_{4}^{2}+\lambda_{2}\lambda_{5}-\frac{7}{2}\lambda_{3}^{2}\lambda_{5}-3\lambda_{2}\lambda_{4}\lambda_{5}-\lambda_{2}\lambda_{3}\lambda_{6} \\ \beta_{4} & = & -\epsilon\lambda_{4}+3\lambda_{4}^{2}-\frac{17}{3}\lambda_{4}^{3}+4\lambda_{3}\lambda_{5}-3\lambda_{2}\lambda_{5}^{2}+\lambda_{2}\lambda_{6}-\frac{9}{2}\lambda_{3}^{2}\lambda_{6}-22\lambda_{3}\lambda_{4}\lambda_{5} \\ & & -4\lambda_{2}\lambda_{4}\lambda_{6}-\lambda_{2}\lambda_{3}\lambda_{7} \\ \beta_{5} & = & \dots \end{array}$$

- $\frac{1}{4!}\lambda_4\phi^4$ two loop beta function recovered
- In dimensional regularization the fixed point is very simple:

$$\beta_i = 0 \qquad \Rightarrow \qquad \lambda_i^* = \left(\frac{\epsilon}{3} + \frac{17\epsilon^2}{81}\right) \delta_{i,4}$$

Beta functions

• Expand around the fixed point: $\lambda_i = \lambda_i^* + \delta \lambda_i$ with $\Lambda_i \equiv i! \, \delta \lambda_i$

$$\begin{array}{lcl} \partial_t \Lambda_1 & = & -\left(3-\frac{\epsilon}{2}-\frac{\epsilon^2}{108}\right)\Lambda_1+12\left(1-\frac{\epsilon}{3}\right)\Lambda_2\Lambda_3+\frac{4}{3}\epsilon\,\Lambda_1\Lambda_4+\dots\\ \\ \partial_t \Lambda_2 & = & -\left(2-\frac{\epsilon}{3}-\frac{19\epsilon^2}{162}\right)\Lambda_2+24\left(1-\frac{5}{9}\epsilon\right)\Lambda_2\Lambda_4+18\left(1-\frac{5}{6}\epsilon\right)\Lambda_3^2+\dots\\ \\ \partial_t \Lambda_3 & = & -\left(1-\frac{\epsilon}{2}+\frac{\epsilon^2}{108}\right)\Lambda_3+72\left(1-\frac{23}{18}\epsilon\right)\Lambda_3\Lambda_4+\dots\\ \\ \partial_t \Lambda_4 & = & -\left(-\epsilon+\frac{17\epsilon^2}{27}\right)\Lambda_4+72\left(1-\frac{17}{9}\epsilon\right)\Lambda_4^2+\dots \end{array}$$

- CFT data encoded in the beta functions:
 - **Q** RG eigenvalues θ_i Related to the scaling dimension $\Delta_i=d-\theta_i$ of the composite operators ϕ^i
 - **@** Gaussian OPE coefficients Obtainable from Wick's theorem at $d=d_c$
 - **3** RG OPE coefficients c^a_{bc} Note: $O(\epsilon^2)$ terms receive contributions from NNLO and are omitted

CFT data in the ϵ -expansion

General form of beta functions around a FP in CFT perturbation theory

$$\partial_t \Lambda^a = -(d - \Delta_a) \Lambda^a + \sum_{b,c} C^a{}_{bc} \Lambda^b \Lambda^c + O(\Lambda^3)$$

transforms under a change of variables $\tilde{\Lambda}_i = \Lambda_i + \cdots$ as:

1 The spectrum is universal

$$\tilde{\Delta}_a = \Delta_a$$

and up to $O(\epsilon^2)$ is scheme independent

2 The c^{i}_{jk} are not universal away from d_{c}

$$\tilde{c}^{c}_{ab} = c^{c}_{ab} + \frac{1}{2} \left(\theta_{c} - \theta_{a} - \theta_{b} \right) \frac{\partial^{2} \Lambda_{c}}{\partial \tilde{\Lambda}_{p} \partial \tilde{\Lambda}_{q}} \frac{\partial \tilde{\Lambda}_{p}}{\partial \Lambda_{a}} \frac{\partial \tilde{\Lambda}_{q}}{\partial \Lambda_{b}}$$

but are scheme independent up to order $O(\epsilon)$

LO and NLO beta functionals are scheme independent (i.e. a, b, c are scheme independent)

$$\beta_V = a(V^{(2)})^2 + bV^{(2)}(V^{(3)})^2 + \cdots \qquad \beta_Z = c(V^{(4)})^2 + \cdots$$

- $\Rightarrow \theta_i$ are scheme independent up to order $O(\epsilon^2)$
- $\Rightarrow c^i{}_{jk}$ are scheme independent up to order $O(\epsilon)$ (since NLO terms enter at order $O(\epsilon^2)$)
- Question: How do we compute the non-perturbative C^{i}_{jk} with the RG? (Pagani+Sonoda)

SDE+CFT

- FPRG gives a coherent description of multicritical models in the ϵ -expansion (Codello+Safari+Vacca+Zanusso)[arXiv:1705.05558]
- ullet RG OPE coefficients are scheme independent at order $O(\epsilon)$...
- ... can we compare with other analytical approaches?
- \Rightarrow use SDE+CFT to study multicritical models (Codello+Safari+Vacca+Zanusso)[arXiv:1703.04830;1809.05071] We generalize the arguments made for Tricritical (m=3) in (Nii)(Hasegawa+Nakayama), for Ising (m=4) in (Rychkov+Tan)(Nakayama)(Nii) and for Lee-Yang (m=6) in (Basu+Krishnan)(Nii), and assume that for each value of m the multicritical models at the critical point are CFTs for any dimension 2 < d < d.
- SDE+CFT is an elegant method for the computation of CFT data at LO in the ϵ -expansion
- ullet The key idea is that all the CFT data must interpolate with that of the Gaussian theory in the limit $\epsilon o 0$.
- Achieve consistency between conformal symmetry and the equations of motion through the use of Schwinger-Dyson equations

RG OPE ∩ CFT OPE

Ising

Relevant:

$$c^{1}_{23} = 6 - 2\epsilon$$
 $c^{2}_{33} = 18 - 15\epsilon$

Marginal:

$$c^1_{14} = \frac{2}{3}\epsilon$$

• Tricritical

Relevant:

$$c^{1}_{25} = 6\epsilon \qquad c^{1}_{34} = 24 - \frac{72}{5}\epsilon \qquad c^{2}_{35} = 60 - 90\epsilon$$

$$c^{2}_{44} = 96 - \frac{18}{5}(32 + 3\pi^{2})\epsilon \qquad c^{3}_{45} = 240 - 6(98 + 9\pi^{2})\epsilon \qquad c^{4}_{55} = 600 - 15(167 + 18\pi^{2})\epsilon$$

Marginal:

$$c^{1}_{16} = \frac{6}{5}\epsilon \qquad c^{2}_{26} = \frac{192}{5}\epsilon$$

Tetracritical

Relevant:

$$c^{1}_{27} = \frac{36}{5}\epsilon$$
 $c^{1}_{36} = \frac{972}{35}\epsilon$ $c^{1}_{45} = 120 - \frac{432}{7}\epsilon$ \cdots

Marginal:

$$c^{1}_{18} = \frac{72}{35}\epsilon$$
 $c^{2}_{28} = \frac{432}{7}\epsilon$ $c^{3}_{38} = \frac{60696}{35}\epsilon$

OPE coefficients computed with RG and SDE+CFT agree in all cases considered!

Lee-Yang
$$[d_c=6 \; ; \; L_{
m LO}=1]$$

- ullet Only non-trivial single scalar UC in d=4... but is non-unitary $\lambda_3^*\sim \sqrt{-\epsilon}$
- Beta functionals (LO+NLO)

$$\beta_V = -\frac{1}{6} \frac{(V^{(2)})^3}{(4\pi)^3} - \frac{23}{144} \frac{(V^{(2)})^3 (V^{(3)})^2}{(4\pi)^6} \qquad \qquad \beta_Z = -\frac{1}{6} \frac{(V^{(3)})^2}{(4\pi)^3} - \frac{13}{216} \frac{(V^{(3)})^4}{(4\pi)^6}$$

Spectrum (LO+NLO)

$$\gamma_i = \frac{1}{18}i(6i - 7)\epsilon - \frac{1}{2916}i(414i^2 - 1371i + 1043)\epsilon^2 - \left(\frac{\epsilon}{3} + \frac{47}{486}\epsilon^2\right)\delta_{i,3}$$

RG OPE coefficients

$$c^{k}_{ij} = \sqrt{\frac{2}{3}}\sqrt{-\epsilon}\,i(i-1)j(j-1)\delta_{i+j,k+3} + \sqrt{-6\epsilon}\,\delta_{i,3}\delta_{j,3}\delta_{k,3} + \sqrt{\frac{2}{3}}\sqrt{-\epsilon}\,\left(i\delta_{j,3}\delta_{i,k} + j\delta_{i,3}\delta_{j,k}\right)$$

• First two scheme independent RG OPE coefficients agree with SDE+CFT

$$c^{1}_{22} = -4\sqrt{\frac{2}{3}}\sqrt{-\epsilon}$$
 $c^{1}_{13} = \sqrt{\frac{2}{3}}\sqrt{-\epsilon}$

Tri-Lee-Yang
$$[d_c = \frac{10}{3} ; L_{\rm LO} = 3]$$

- New UC never considered in perturbation theory!
- ullet Together with Ising and Lee-Yang only non-trivial UC in d=3
- Only requires $\epsilon = \frac{1}{3}$ to reach the nearest physical dimensions. Example of well behaved ϵ -expansion?
- Beta functionals (LO)

$$\beta_{V} = \frac{1}{(4\pi)^{5}} \frac{\Gamma(\frac{1}{2})^{4}\Gamma(\frac{2}{3})}{\Gamma(\frac{4}{3})^{2}} \left\{ \frac{1}{9} V^{(2)} (V^{(4)})^{2} - \frac{1}{2} (V^{(3)})^{2} V^{(4)} \right\}$$

$$\beta_{Z} = -\frac{1}{(4\pi)^{5}} \frac{3\Gamma(\frac{2}{3})^{3}}{40} (V^{(5)})^{2}$$

Spectrum (LO)

$$\gamma_i = \frac{\epsilon}{153} \left(\frac{52}{5} i - \frac{139}{12} i^2 - \frac{1}{2} i^3 + \frac{19}{12} i^4 - \delta_{i,5} \right) \qquad \qquad \frac{\gamma_2}{\gamma_1} = 42 + O(\epsilon)$$

ullet CFT data at LO agrees with SDE+CFT (these ratios do not depend on $g(\epsilon)$)

$$\frac{c^{1}_{15}}{\sqrt{\gamma_{1}}} = 4\sqrt{15} + O(\epsilon) \qquad \frac{c^{1}_{24}}{\sqrt{\gamma_{1}}} = 32\sqrt{15} + O(\epsilon) \qquad \frac{c^{1}_{33}}{\sqrt{\gamma_{1}}} = -108\sqrt{15} + O(\epsilon)$$

• For more details and numerical estimates (Codello+Safari+Vacca+Zanusso)[arXiv:1706.06887]

Sine-Gordon
$$[d_c=2 \; ; \; L_{
m LO}=1]$$

ullet $d_c=2$ corresponds to the Sine-Gordon universality class. To all orders the beta functionals are

$$\beta_V = -\frac{1}{4\pi}V^{"} \qquad \qquad \beta_Z = 0$$

• Flow of the dimensionless potential in d=2 is

$$\beta_{v} = -2v(\varphi) - \frac{1}{4\pi}v''(\varphi)$$

- Because the field is canonically dimensionless in d=2 fluctuations do not generate a nonzero anomalous dimension
- Interestingly, the fixed point solution of the Sine-Gordon UC can be obtained by direct integration. Using $v''(0) = \sigma$ as boundary condition we obtain

$$v(\varphi) = -\frac{\sigma}{8\pi}\cos(\sqrt{8\pi}\varphi)$$

in which we can recognize the well-known Coleman phase $\sqrt{8\pi}$

Relation with Non-Perturbative RG (NPRG)

• Exact RG flow equation for the generator of the irreducible 1PI diagrams (Wetterich) (Morris) (Polchinski)

$$\partial_t \Gamma_\mu = \frac{1}{2} {
m Tr} \left(\Gamma_\mu^{(2)} + R_\mu \right) \partial_t R_\mu$$

We can compute the flow of the effective potential (LPA)

$$eta_V = \partial_t V = c_d rac{\mu^{d+2}}{\mu^2 + V''}$$
 $c_d = rac{1}{(4\pi)^{d/2} \Gamma(d/2 + 1)}$

• Let us expand β_V in powers of V''

$$\beta_V = c_d \left\{ \mu^d - \mu^{d-2} V'' + \mu^{d-4} (V'')^2 - \mu^{d-6} (V'')^3 + \dots \right\}.$$

ullet Terms independent of μ correspond to the $rac{1}{\epsilon}$ poles of dimensional regularization

$$\beta_V = -c_2 V'' = -\frac{1}{4\pi} V''$$

$$\beta_V = c_4 (V'')^2 = \frac{1}{2(4\pi)^2} (V'')^2$$

$$\beta_V = -c_6 (V'')^3 = -\frac{1}{6(4\pi)^3} (V'')^3$$

$$d = 6$$

We see Ising, Lee-Yang and Sine-Gordon but what about all other with $L_{
m LO} \geq 2$?

Multicritical models in the LPA

Scaling solutions are given by the ODE

$$0 = -dv + \left(\frac{d}{2} - 1 + \frac{\eta}{2}\right) \varphi v' + c_d \frac{1 - \frac{\eta}{d+2}}{1 + v''}$$

with initial condition v'(0)=0 and $v''(0)=\sigma$ that encode the \mathbb{Z}_2 symmetry

Spike plot (Morris) (Codello)

Spike plot for unitary models in $2 \leq d < \infty$: Ising, Tricritical, Tetracritical, ...

ullet SineGordon: when d=2 and $\eta=0$ scaling solutions are periodic functions with Coleman phase $\sqrt{8\pi}$

Multicritical models in the LPA

d=2 unitary models are seen using $O(\partial^2)$ derivative expansion (Morris) (Defenu+Codello)[arXiv:1711.01809]

Lee-Yang and Blume Capel in the LPA

- \mathcal{PT} symmetry $v(\varphi) o v(-\varphi)^*$
- Scaling solutions for complex potential $v(\varphi) = ih(\varphi)$

$$0=-dh+\left(rac{d}{2}-1+rac{\eta}{2}
ight)arphi h'+c_dh''rac{1-rac{\eta}{d+2}}{1+(h'')^2}$$

with initial conditions h(0) = 0 and h'''(0) = g

Spike plot (Zambelli+Zanusso)

Spike plot for non-unitary models in d=5,4,3

• We see all UCs: the LPA really captures information from every loop order!

Multicomponent world

- Multicomponent world (Osborn+Stergiou)
 - "hardly a terra incognita, nevertheless there is as yet no mappa mundi"
- FPRG is the most agile tool for charting of this vast landscape of theories
- N component scalar order parameter

$$S = \int d^{d}x \left\{ \frac{1}{2} \partial \phi_{i} \cdot \partial \phi_{i} + V(\phi_{1}, ..., \phi_{N}) \right\}$$

- The magic of the functional constraint: (almost) no new computation needed!
- The universal LO and NLO coefficients are the N=1 in $d_c=4,3,\frac{8}{3},...$ (unitary family)

$$(V^{(2)})^2 o V_{ij} V_{ij}$$
 $V^{(2)} (V^{(3)})^2 o V_{ij} V_{iab} V_{jab}$

• The universal LO coefficients are the N=1 in $d_c=6,\frac{10}{3},...$ (non-unitary family). For the NLO coefficients we have only a constraint

$$(V^{(2)})^3(V^{(3)})^2 \to \alpha V_{ik} V_{kl} V_{lj} V_{iab} V_{jab} + \beta V_{ik} V_{kj} V_{lm} V_{ija} V_{lmb} + \gamma V_{ia} V_{jb} V_{kc} V_{abc} V_{ijk}$$

with $\alpha + \beta + \gamma = 1$

RG information and group information factorize at LO (and at NLO for unitary family)!

O(N)
$$[d_c = 4 ; L_{LO} = 1]$$

ullet Maximal symmetry of kinetic term and one invariant $ho=rac{1}{2}arphi_iarphi_i$

$$S = \int d^d x \left\{ \frac{1}{2} \partial \phi_i \cdot \partial \phi_i + U(\rho) \right\}$$

• LO and NLO beta functional in $d_c = 4$ are

$$\beta_V = \frac{1}{2} \frac{1}{(4\pi)^2} V_{ij} V_{ij} - \frac{1}{2} \frac{1}{(4\pi)^2} V_{ij} V_{iab} V_{jab}$$

- The only invariant is $\rho = \frac{1}{2}\varphi_i\varphi_i$ and the potential is a function of it $U(\rho) \equiv V(\varphi_i)$
- The LO and NLO beta functional is

$$\beta_U = (N-1) \left\{ \frac{1}{2} (U')^2 - 3\rho (U'')^2 \left(U' + \frac{2}{3} \rho U'' \right) \right\}$$

$$+ \frac{1}{2} \left(U' + 2\rho U'' \right)^2 - 9\rho \left(U' + 2\rho U'' \right) \left(U'' + \frac{2}{3} \rho U''' \right)^2$$

with $\eta = \frac{1}{6N} V_{ijkl} V_{ijkl} = 3N(N+2)(U'')^2 + ...$

- Reproduces all O(N) universal beta functions and critical exponents at LO and NLO
- LO β_U agrees with expansion of O(N) LPA

Tricritical-O(N)
$$[d_c=3\;;\;L_{
m LO}=2]$$

• General beta functional in $d_c = 3$ at LO is

$$\beta_V = \frac{1}{3} \frac{1}{(4\pi)^3} V_{ijk} V_{ijk} + \dots$$

The Triciritcal-O(N) LO beta functional turns out to be

$$\beta_U = 2(N-1)\rho(U'')^2 + 6\rho\left(U'' + \frac{2}{3}\rho U'''\right)^2 + \dots$$

- \bullet O(N) LPA is able to "see" all multicritical scaling solutions (Codello+D'Odorico+Defenu)
- Non trivial large N limit (Osborn+Stergiou) (Delamotte+Shunsuke) (Katsis+Tetradis)
- For a way to construct $d_c = 6 \ O(N)$ models see (Klebanov+Giombi) (Percacci+Vacca)
- Higher multicritical O(N) models $d_c=\frac{8}{3},...$ are all analyzable by FPRG and NPRG (Codello+Delamotte+Defenu+Shunsuke in preparation)

Potts
$$_{N+1}$$
 $[d_c=6 ; L_{
m LO}=1]$

• Permutation group S_{N+1} (symmetry of hyper-tetrahedron) in $d_c=6$

$$S = \int \mathrm{d}^d x \left\{ \frac{1}{2} \partial \phi_i \cdot \partial \phi_i + \textit{U}(\rho, \tau, \sigma, ...) \right\}$$

- ullet Random Cluster Model: Potts $_1 = ext{Percolation}$ and Potts $_0 = ext{SpanningForest}$
- Number of invariants = $N \Rightarrow$ functional analysis possible only at fixed N
- General LO beta functional in $d_c = 6$

$$\beta_V = -\frac{1}{3} \frac{1}{(4\pi)^3} V_{ij} V_{jk} V_{ki} + \dots$$
 $\beta_{Z_{ij}} = -\frac{1}{6} \frac{1}{(4\pi)^3} V_{iab} V_{jab} + \dots$

• N = 2 LO beta functional (Potts₃) is $(\rho=\phi_1^2+\phi_2^2,\, au=\frac{3}{\sqrt{2}}\phi_2(\phi_2^2-3\phi_1^2))$

$$\beta_{U} = 9 \left(3U_{\tau\tau} \left(2 \left(\rho^{3} - 6\tau^{2} \right) U_{\rho\rho} - 3\rho\tau U_{\tau} \right) - 6 \left(\rho^{3} - 6\tau^{2} \right) U_{\rho\tau}^{2} \right. \\ \left. + U_{\rho} \left(3\rho^{2} U_{\tau\tau} + 8\rho U_{\rho\rho} + 24\tau U_{\rho\tau} \right) - 12U_{\tau} \left(\rho^{2} U_{\rho\tau} + 2\tau U_{\rho\rho} \right) - 6\rho U_{\tau}^{2} + 4U_{\rho}^{2} \right) \\ \left. - \frac{3}{\tau} \left(3\rho^{2} U_{\tau\tau} + 8 \left(\rho U_{\rho\rho} + U_{\rho} + 3\tau U_{\rho\tau} \right) \right)^{2} \right.$$

- ullet Reproduces all Potts $_{N+1}$ universal beta functions and critical exponents at LO and NLO
- \bullet LO β_U agrees with expansion of LPA analysis (Ben Ali Zinati+Codello)[arXiv:1707.03410]

Multiciritical Potts models $[d_c = \frac{10}{3} ; L_{LO} = 3]$

ullet Permutation group S_{N+1} in $d_c=rac{10}{3}$ (Codello+Safari+Vacca+Zanusso in preparation)

$$S = \int \mathrm{d}^d x \left\{ \frac{1}{2} \partial \phi_i \cdot \partial \phi_i + \frac{1}{5!} \left(\lambda_{5,1} \delta_{(i_1 i_2} Q^{(3)}_{i_3 i_4 i_5}) + \lambda_{5,2} Q^{(5)}_{i_1 i_2 i_3 i_4 i_5} \right) \phi_{i_1} \dots \phi_{i_5} \right\}$$

arbitrary N invariants $Q_{i_1\cdots i_k}^{(k)}=\sum_{lpha} \mathsf{e}_{i_1}^{lpha}\cdots \mathsf{e}_{i_k}^{lpha}$

General LO beta functionals are

$$\beta_{V} = \frac{1}{3} V_{ijkl} V_{ijkm} V_{lm} - \frac{3}{2} V_{ijk} V_{ilm} V_{jklm}$$

$$\beta_{Z_{ij}} = -\frac{1}{30} V_{iklmn} V_{jklmn}$$

Universal beta functions

$$\begin{array}{lll} \beta_{5,1} & = & -\frac{3\epsilon}{2}\lambda_{5,1} - \frac{3}{200}(17N^2 + 833N - 3510)\lambda_{5,1}^3 + \frac{10}{3}(2N^2 + 25N - 25)\lambda_{5,2}^3 \\ & & -\frac{1}{5}(97N^2 - 532N + 432)\lambda_{5,1}^2\lambda_{5,2} - \frac{1}{4}(25N^3 - 181N^2 + 277N - 673)\lambda_{5,1}\lambda_{5,2}^2 \\ \beta_{5,2} & = & -\frac{3\epsilon}{2}\lambda_{5,2} - \frac{3}{25}(5N + 144)\lambda_{5,1}^3 - \frac{1}{12}(459N^3 - 919N^2 + 1459N - 919)\lambda_{5,2}^3 \\ & & -\frac{1}{40}(25N^2 + 3533N - 4038)\lambda_{5,1}^2\lambda_{5,2} - \frac{1}{2}(217N^2 - 373N + 300)\lambda_{5,1}\lambda_{5,2}^2 \end{array}$$

Multiciritical Potts models: preliminary results

- ullet No real fixed point in the $N\geq 2$. Consistent with the annihilation scenario
- ullet Multicritical fixed points for N=1 (multicritical Percolation) and N=0 (multicritical SpanningForest)
- ullet N=1 is probably related to CorrelatedPercolation (percolation of Ising model clusters)
- NPRG analysis is work in progress

Platonic Field Theory

	Polytope	Schläfli	\mathcal{G}
N=2	n-Polygon	{n}	\mathbb{D}_n
N=3	Tetrahedron Octahedron Cube Icosahedron Dodecahedron	{3,4} {4,3} {3,5}	$S_4 \times \mathbb{Z}_2$ $S_4 \times \mathbb{Z}_2$ $S_4 \times \mathbb{Z}_2$ $A_5 \times \mathbb{Z}_2$ $A_5 \times \mathbb{Z}_2$
N=4	5-cell 16-cell 8-cell 24-cell 120-cell 600-cell		S_5 $(\mathbb{Z}_2)^4 \rtimes S_4$ $(\mathbb{Z}_2)^4 \rtimes S_4$ F_4 H_4 H_4

Platonic solids and their symmetry groups

- Explore scalar QFTs with the internal symmetries of Polygons (N = 2), Platonic solids (N = 3) and Hyper-Platonic solids (N = 4) (Ben Ali Zinati+Codello+Gori)[arXiv:1902.05328]
- New UC in d=3 with good critical exponents: Pentagon. Simulation is progress!
- Many PFTs with $d_c < 3$ can lead to new (non-rational) CFTs in d = 2

Platonic Field Theory

	Polytope		d _c	Fixed Points
	\wedge	Triangle	6	Potta ₃
	\sim	Square	4	2×Ising, 0(2)
N=2	\sim	Pentagon	10/3	Pentagon
		Hexagon	3	Tri-0(2)
	\sim	Heptagon	14/5	Heptagon
	\sim	Octagon	8/3	Tetra-0(2)
	Ť			
	\oplus	Tetrahedron	6	No real FP
	\vee		4	3×Ising, D(3), Cubic ₃
N=3		Octahedron	4 3	3×Ising, O(3), Cubic ₃ 3×Tri-Ising, Tri-O(3), φ ⁶ -Cubic ₃
	~		3	Tri-0(3)
	₩)	Icosahedron	8/3 5/2	Tetra-0(3) Penta-0(3), $Ico_{1 \le i \le 2}$
			6	No real FP
		5-cell	4 10/3	U(4), Quartic-Potts No real FP
			4	4×Ising, 0(4)
		16-cell	3	4×Tri-Ising, Tri-U(4), φ ⁶ -Cubic ₄
N=4	_		8/3	$4 \times \text{Tetra-Ising, Tetra-O(4)}, \phi^8 \cdot \text{Cubic}_4$
	400		3 8/3	Tri-0(4) Tetra-0(4)
	((())	24-cell	5/2	Penta-0(4), 24-cell ₁
			12/5	Hexa-0(4), 24 -cell _{1$\le i \le 2$}
			12/5	Hexa-0(4)
	(600-cell	20/9	Deca-0(4)
	_			
			15/7	Triaconta-U(4)

	Universality Class	d.	η	v
	Ising	4	11e2	$\frac{1}{2} + \frac{1}{12}\epsilon + \frac{7}{162}\epsilon^2$
N = 1	Tri-Ising	3	1 c ²	$\frac{1}{2} + \frac{1}{125}e^2$
	Tetra-Ising	8 3	9 85750 € ²	$\frac{1}{2} + \frac{27}{68600}e^2$
	Potts ₃	6	13c	$\frac{1}{2} - \frac{5}{12}e$
	0(2)	4	$\frac{1}{50}\epsilon^2$	$\frac{1}{2} + \frac{1}{10}\epsilon + \frac{11}{200}\epsilon^2$
N = 2	Pentagon	$\frac{10}{3}$	3 <u>-</u> c	$\frac{1}{2} + \frac{3}{20}c$
N = 2	Tri-0(2)	3	$\frac{1}{392}e^{2}$	$\frac{1}{2} + \frac{1}{98}e^2$
	Heptagon	$\frac{14}{5}$	<u>19</u> €	$\frac{1}{2} + \frac{5}{14}c$
	Tetra-0(2)	$\frac{8}{3}$	9 59858 € ²	$\frac{1}{2} + \frac{135}{239432}e^2$
	0(3)	4	$\frac{5}{242}e^{2}$	$\frac{1}{2} + \frac{5}{44}e + \frac{345}{5324}e^2$
	Cubic ₃	4	$\frac{5}{243}e^{2}$	$\frac{1}{2} + \frac{1}{9}e + \frac{599}{8748}e^2$
N = 3	Tri-0(3)	3	$\frac{35}{11532}e^2$	$\frac{1}{2} + \frac{35}{2883}e^2$
	ϕ^6 -Cubic ₃	3	$0.00261529e^2$	$\frac{1}{2} + 0.0104612 e^2$
	Tetra-0(3)	$\frac{8}{3}$	945 4798802 c ²	$\frac{1}{2} + \frac{14175}{19195208}e^2$
	0(4)	4	$\frac{1}{48}\epsilon^2$	$\frac{1}{2} + \frac{1}{8}e + \frac{7}{96}e^2$
N = 4	Quartic-Potts5	4	$\frac{55}{2646}e^{2}$	$\frac{1}{2} + \frac{5}{42}e + \frac{22465}{222284}e^2$
	Tri-0(4)	3	$\frac{1}{289}e^{2}$	$\frac{1}{2} + \frac{4}{289}e^2$
	ϕ^6 -Cubic ₄	3	$0.00322216e^2$	$\frac{1}{2} + 0.0128886 e^2$
	Tetra-0(4)	$\frac{8}{3}$	$\frac{9}{36980}e^2$	$\frac{1}{2} + \frac{27}{29584}e^2$
	ϕ^8 -Cubic ₄	$\frac{8}{3}$	$0.000196765 e^2$	$\frac{1}{2} + 0.000737867 e^2$

Fixed points and critical exponents of PFTs

Towards a classification of UCs for general N

- We have all the beta functions for multicomponent scalars in d=3 and d=4
- Within the ϵ -expansion LO analysis is enough to classify fixed points (Osborn+Stergiou)
- Example: N=2 in $d_c=4$ the most general potential has 5 marginal couplings

$$V(\phi_1, \phi_2) = \lambda_1 \phi_1^4 + \lambda_2 \phi_2 \phi_1^3 + \lambda_3 \phi_2^2 \phi_1^2 + \lambda_4 \phi_2^3 \phi_1 + \lambda_5 \phi_2^4$$

• From the LO beta functional in $d_c = 4$

$$\beta_V = \frac{1}{2} V_{ij} V_{ij}$$

We derive the LO beta functions

$$\begin{array}{lll} \beta_1 & = & -\epsilon\lambda_1 + 72\lambda_1^2 + 9\lambda_2^2 + 2\lambda_3^2 \\ \beta_2 & = & -\epsilon\lambda_2 + 72\lambda_1\lambda_2 + 24\lambda_3\lambda_2 + 12\lambda_3\lambda_4 \\ \beta_3 & = & -\epsilon\lambda_3 + 18\lambda_2^2 + 18\lambda_4\lambda_2 + 16\lambda_3^2 + 18\lambda_4^2 + 24\lambda_1\lambda_3 + 24\lambda_3\lambda_5 \\ \beta_4 & = & -\epsilon\lambda_4 + 12\lambda_2\lambda_3 + 24\lambda_4\lambda_3 + 72\lambda_4\lambda_5 \\ \beta_5 & = & -\epsilon\lambda_5 + 2\lambda_2^2 + 9\lambda_4^2 + 72\lambda_5^2 \end{array}$$

General N=2 case in $d_c=4$

• The Landau-Ginzburg potentials turn out to be $(\epsilon \times ...)$

0	Gauss
$\begin{array}{l} \frac{1}{7?}\phi_2^4 \\ \frac{1}{288}\left(\phi_1 - \phi_2\right)^4 \\ \frac{1}{288}\left(\phi_1 + \phi_2\right)^4 \\ \frac{1}{144}\left(\phi_1^4 + 6\phi_2^2\phi_1^2 + \phi_2^4\right) \end{array}$	${\tt Ising} \times {\tt Gauss}$
$\frac{1}{288} (\phi_1 - \phi_2)^4$	${\tt Ising} \times {\tt Gauss}$
$\frac{1}{288}(\phi_1+\phi_2)^4$	${\tt Ising} \times {\tt Gauss}$
$\frac{1}{144} \left(\phi_1^4 + 6\phi_2^2 \phi_1^2 + \phi_2^4 \right)$	${\tt Ising} \times {\tt Ising}$
$\frac{1}{288} \left(3\phi_1^2 + 2\phi_2\phi_1 + \phi_2^2 \right) \left(\phi_1^2 - 2\phi_2\phi_1 + 3\phi_2^2 \right) \\ \frac{1}{288} \left(3\phi_1^2 - 2\phi_2\phi_1 + \phi_2^2 \right) \left(\phi_1^2 + 2\phi_2\phi_1 + 3\phi_2^2 \right)$	${\tt Ising} \times {\tt Ising}$
$\frac{1}{288} \left(3\phi_1^2 - 2\phi_2\phi_1 + \phi_2^2\right) \left(\phi_1^2 + 2\phi_2\phi_1 + 3\phi_2^2\right)$	${\tt Ising} \times {\tt Ising}$
$\frac{1}{80} \left(\dot{\phi}_1^2 + \phi_2^2 \right)^2$ $\frac{1}{72} \phi_1^4$	0(2)
$\frac{1}{72}\phi_1^4$	${\tt Ising} \times {\tt Gauss}$
$\frac{1}{72} \left(\phi_1^4 + \phi_2^4 \right)$	$\mathtt{Ising} \times \mathtt{Ising}$

- ullet Field redefinitions remove redundancy (Osborn+Stergiou) (o Safari's talk)
- Same strategy can be followed for all d_c , in particular for those that lead to non-trivial UCs in d=3 ($d_c=6,4,\frac{10}{3}$) and in d=4 ($d_c=6$)
- ⇒ we can systematically span all physically relevant UCs
- \bullet Classification of UCs within the $\epsilon\text{-expansion}$ is reduced to group theory problem

Conclusion and Outlook

- FPRG: functional constraint very efficient in re-organizing perturbative RG
- ullet Allows the computation of some CFT data in the ϵ -expansion
- ullet General setting for the classification of universality classes in the ϵ -expansion
- Question I: Can we classify all N = 3, 4, ... universality classes in d = 3?
- Generalization I: Add fermions and gauge fields [Yukawa: (Jena Group) (Herbut's Group)]
- Generalization II: Higher derivative theories $S = \int \frac{1}{2} \phi \Box^k \phi + V(\phi)$ (Vacca+Safari)
- Question II: Are there non-trivial unitary fixed points in d = 4?
- Generalization III: Quantum Gravity in the ϵ -expansion (ϵ QG) in $d_c=2,4,6,...$
- Question III: Asymptotic Safety in d = 4 by "pulling down" the $d_c = 6$ theory?